The Role of Social Determinants in Diagnosis Timing for Fetal Care Center-Eligible Conditions: A Scoping Review
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Centers for Disease Control and Prevention. Birth Defects. Available online: https://www.cdc.gov/birth-defects/about/index.html (accessed on 10 November 2023).
- Russo, C.A.; Elixhauser, A. Hospitalizations for Birth Defects, 2004. In Healthcare Cost and Utilization Project (HCUP) Statistical Briefs; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2007. [Google Scholar]
- Quartermain, M.D.; Hill, K.D.; Goldberg, D.J.; Jacobs, J.P.; Jacobs, M.L.; Pasquali, S.K.; Verghese, G.R.; Wallace, A.S.; Ungerleider, R.M. Prenatal Diagnosis Influences Preoperative Status in Neonates with Congenital Heart Disease: An Analysis of the Society of Thoracic Surgeons Congenital Heart Surgery Database. Pediatr. Cardiol. 2019, 40, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Baschat, A.A.; Blackwell, S.B.; Chatterjee, D.; Cummings, J.J.; Emery, S.P.; Hirose, S.; Hollier, L.M.; Johnson, A.; Kilpatrick, S.J.; Luks, F.I.; et al. Care Levels for Fetal Therapy Centers. Obstet. Gynecol. 2022, 139, 1027–1042. [Google Scholar] [CrossRef] [PubMed]
- Sperling, J.D.; Sparks, T.N.; Berger, V.K.; Farrell, J.A.; Gosnell, K.; Keller, R.L.; Norton, M.E.; Gonzalez, J.M. Prenatal Diagnosis of Congenital Diaphragmatic Hernia: Does Laterality Predict Perinatal Outcomes? Am. J. Perinatol. 2018, 35, 919–924. [Google Scholar] [CrossRef] [PubMed]
- Akinkuotu, A.C.; Cruz, S.M.; Cass, D.L.; Cassady, C.I.; Mehollin-Ray, A.R.; Williams, J.L.; Lee, T.C.; Ruano, R.; Welty, S.E.; Olutoye, O.O. Revisiting outcomes of right congenital diaphragmatic hernia. J. Surg. Res. 2015, 198, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Malin, G.; Tonks, A.M.; Morris, R.K.; Gardosi, J.; Kilby, M.D. Congenital lower urinary tract obstruction: A population-based epidemiological study. BJOG 2012, 119, 1455–1464. [Google Scholar] [CrossRef] [PubMed]
- Campbell, M.J.; Lorch, S.; Rychik, J.; Quartermain, M.D.; Passarella, M.; Groeneveld, P.W. Socioeconomic barriers to prenatal diagnosis of critical congenital heart disease. Prenat. Diagn. 2021, 41, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Gianelle, M.; Turan, S.; Mech, J.; Chaves, A.H. The Impact of Neighborhood Socioeconomic Status, Race and Ethnicity, and Language on Prenatal Diagnosis of CHD. Pediatr. Cardiol. 2023, 44, 1168–1175. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, A.; Jacobs, M.B.; Morris, S.A.; Peyvandi, S.; Bhat, A.H.; Chelliah, A.; Chiu, J.S.; Cuneo, B.F.; Freire, G.; Hornberger, L.K.; et al. Impact of Socioeconomic Status, Race and Ethnicity, and Geography on Prenatal Detection of Hypoplastic Left Heart Syndrome and Transposition of the Great Arteries. Circulation 2021, 143, 2049–2060. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Social Determinants of Health. Available online: https://www.who.int/health-topics/social-determinants-of-health#tab=tab_1 (accessed on 10 November 2023).
- Crear-Perry, J.; Correa-de-Araujo, R.; Lewis Johnson, T.; McLemore, M.R.; Neilson, E.; Wallace, M. Social and Structural Determinants of Health Inequities in Maternal Health. J. Womens Health 2021, 30, 230–235. [Google Scholar] [CrossRef]
- Grandjean, H.; Larroque, D.; Levi, S. The performance of routine ultrasonographic screening of pregnancies in the Eurofetus Study. Am. J. Obstet. Gynecol. 1999, 181, 446–454. [Google Scholar] [CrossRef]
- Sacco, A.; Simpson, L.; Deprest, J.; David, A.L. A study to assess global availability of fetal surgery for myelomeningocele. Prenat. Diagn. 2018, 38, 1020–1027. [Google Scholar] [CrossRef]
- Moon-Grady, A.J.; Baschat, A.; Cass, D.; Choolani, M.; Copel, J.A.; Crombleholme, T.M.; Deprest, J.; Emery, S.P.; Evans, M.I.; Luks, F.I.; et al. Fetal Treatment 2017: The Evolution of Fetal Therapy Centers—A Joint Opinion from the International Fetal Medicine and Surgical Society (IFMSS) and the North American Fetal Therapy Network (NAFTNet). Fetal Diagn. Ther. 2017, 42, 241–248. [Google Scholar] [CrossRef]
- Racusin, D.A.; Villarreal, S.; Antony, K.M.; Harris, R.A.; Mastrobattista, J.; Lee, W.; Shamshirsaz, A.A.; Belfort, M.; Aagaard, K.M. Role of Maternal Serum Alpha-Fetoprotein and Ultrasonography in Contemporary Detection of Spina Bifida. Am. J. Perinatol. 2015, 32, 1287–1291. [Google Scholar] [CrossRef]
- Boyd, P.A.; DeVigan, C.; Khoshnood, B.; Loane, M.; Garne, E.; Dolk, H.; EUROCAT Working Group. Survey of prenatal screening policies in Europe for structural malformations and chromosome anomalies, and their impact on detection and termination rates for neural tube defects and Down’s syndrome. BJOG 2008, 115, 689–696. [Google Scholar] [CrossRef]
- Boyd, P.A.; Wellesley, D.G.; De Walle, H.E.; Tenconi, R.; Garcia-Minaur, S.; Zandwijken, G.R.; Stoll, C.; Clementi, M. Evaluation of the prenatal diagnosis of neural tube defects by fetal ultrasonographic examination in different centres across Europe. J. Med. Screen. 2000, 7, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Shao, B.; Chen, J.S.; Kozel, O.A.; Tang, O.Y.; Amaral-Nieves, N.; Sastry, R.A.; Watson-Smith, D.; Monteagudo, J.; Luks, F.I.; Carr, S.R.; et al. Postnatal Myelomeningocele Repair in the United States: Rates and Disparities Before and After the Management of Myelomeningocele Study Trial. Neurosurgery 2023, 93, 1374–1382. [Google Scholar] [CrossRef] [PubMed]
- Foy, A.B.; Sawin, K.J.; Derflinger, T.; Heffelfinger, A.K.; Koop, J.I.; Cohen, S.S.; Sherburne, E.C. Sociodemographic disparities in fetal surgery for myelomeningocele: A single-center retrospective review. J. Neurosurg. Pediatr. 2021, 29, 366–370. [Google Scholar] [CrossRef] [PubMed]
- Harbert, A.L.; Barnett, R.R.; Abumoussa, A.L.; Goodnight, W.H.; Tolleson-Rinehart, S.; Quinsey, C.S. Sociodemographic disparities as a determinant of fetal versus postnatal surgical myelomeningocele repair. J. Neurosurg. Pediatr. 2022, 29, 643–649. [Google Scholar] [CrossRef]
- Best, B.J.; Cabacungan, E.T.; Cohen, S.S.; Kim, I.; Sherburne, E.C.; Sawin, K.J.; Roach, A.; Foy, A.B. Trends in the early care of infants with myelomeningocele in the United States 2012–2018. Childs Nerv. Syst. 2023, 39, 2413–2421. [Google Scholar] [CrossRef]
- Hill, G.D.; Block, J.R.; Tanem, J.B.; Frommelt, M.A. Disparities in the prenatal detection of critical congenital heart disease. Prenat. Diagn. 2015, 35, 859–863. [Google Scholar] [CrossRef]
- Munn, Z.; Peters, M.D.J.; Stern, C.; Tufanaru, C.; McArthur, A.; Aromataris, E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med. Res. Methodol. 2018, 18, 143. [Google Scholar] [CrossRef] [PubMed]
- Elias, R.R.; Jutte, D.P.; Moore, A. Exploring consensus across sectors for measuring the social determinants of health. SSM Popul. Health 2019, 7, 100395. [Google Scholar] [CrossRef] [PubMed]
- Ailes, E.C.; Gilboa, S.M.; Riehle-Colarusso, T.; Johnson, C.Y.; Hobbs, C.A.; Correa, A.; Honein, M.A.; National Birth Defects Prevention Study. Prenatal diagnosis of nonsyndromic congenital heart defects. Prenat. Diagn. 2014, 34, 214–222. [Google Scholar] [CrossRef]
- Evans, W.N.; Acherman, R.J.; Castillo, W.J.; Restrepo, H. The changing occurrences of tetralogy of Fallot and simple transposition of the great arteries in Southern Nevada. Cardiol. Young 2011, 21, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Friedberg, M.K.; Silverman, N.H.; Moon-Grady, A.J.; Tong, E.; Nourse, J.; Sorenson, B.; Lee, J.; Hornberger, L.K. Prenatal detection of congenital heart disease. J. Pediatr. 2009, 155, 26–31.e1. [Google Scholar] [CrossRef]
- Liberman, R.F.; Heinke, D.; Lin, A.E.; Nestoridi, E.; Jalali, M.; Markenson, G.R.; Sekhavat, S.; Yazdy, M.M. Trends in Delayed Diagnosis of Critical Congenital Heart Defects in an Era of Enhanced Screening, 2004–2018. J. Pediatr. 2023, 257, 113366. [Google Scholar] [CrossRef] [PubMed]
- Mahan, S.T.; Yazdy, M.M.; Kasser, J.R.; Werler, M.M. Prenatal screening for clubfoot: What factors predict prenatal detection? Prenat. Diagn. 2014, 34, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Mozumdar, N.; Rowland, J.; Pan, S.; Rajagopal, H.; Geiger, M.K.; Srivastava, S.; Stern, K.W. Diagnostic Accuracy of Fetal Echocardiography in Congenital Heart Disease. J. Am. Soc. Echocardiogr. 2020, 33, 1384–1390. [Google Scholar] [CrossRef]
- Oster, M.E.; Kim, C.H.; Kusano, A.S.; Cragan, J.D.; Dressler, P.; Hales, A.R.; Mahle, W.T.; Correa, A. A population-based study of the association of prenatal diagnosis with survival rate for infants with congenital heart defects. Am. J. Cardiol. 2014, 113, 1036–1040. [Google Scholar] [CrossRef]
- Perez, M.T.; Bucholz, E.; Asimacopoulos, E.; Ferraro, A.M.; Salem, S.M.; Schauer, J.; Holleman, C.; Sekhavat, S.; Tworetzky, W.; Powell, A.J.; et al. Impact of maternal social vulnerability and timing of prenatal care on outcome of prenatally detected congenital heart disease. Ultrasound Obstet. Gynecol. 2022, 60, 346–358. [Google Scholar] [CrossRef]
- Peiris, V.; Singh, T.P.; Tworetzky, W.; Chong, E.C.; Gauvreau, K.; Brown, D.W. Association of socioeconomic position and medical insurance with fetal diagnosis of critical congenital heart disease. Circ. Cardiovasc. Qual. Outcomes 2009, 2, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Pinto, N.M.; Keenan, H.T.; Minich, L.L.; Puchalski, M.D.; Heywood, M.; Botto, L.D. Barriers to prenatal detection of congenital heart disease: A population-based study. Ultrasound Obstet. Gynecol. 2012, 40, 418–425. [Google Scholar] [CrossRef]
- Sekar, P.; Heydarian, H.C.; Cnota, J.F.; Hornberger, L.K.; Michelfelder, E.C. Diagnosis of congenital heart disease in an era of universal prenatal ultrasound screening in southwest Ohio. Cardiol. Young 2015, 25, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Waller, D.K.; Pujazon, M.A.; Canfield, M.A.; Scheuerle, A.E.; Byrne, J.L. Frequency of prenatal diagnosis of birth defects in Houston, Galveston and the Lower Rio Grande Valley, Texas 1995. Fetal Diagn. Ther. 2000, 15, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Roux, A.V.; Merkin, S.S.; Arnett, D.; Chambless, L.; Massing, M.; Nieto, F.J.; Sorlie, P.; Szklo, M.; Tyroler, H.A.; Watson, R.L. Neighborhood of residence and incidence of coronary heart disease. N. Engl. J. Med. 2001, 345, 99–106. [Google Scholar] [CrossRef] [PubMed]
- United States Census Bureau. Nation’s Urban and Rural Populations Shift Following 2020 Census. Updated 4 April 2024. Available online: https://www.census.gov/newsroom/press-releases/2022/urban-rural-populations.html (accessed on 5 April 2024).
- Childs, E.M.; Boyas, J.F.; Blackburn, J.R. Off the beaten path: A scoping review of how ‘rural’ is defined by the U.S. government for rural health promotion. Health Promot. Perspect. 2022, 12, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Hoyer, D.; Dee, E. Using Healthy People as a Tool to Identify Health Disparities and Advance Health Equity. J. Public Health Manag. Pract. 2022, 28, 562–569. [Google Scholar] [CrossRef]
- Wilpers, A.; Lynn, A.Y.; Eichhorn, B.; Powne, A.B.; Lagueux, M.; Batten, J.; Bahtiyar, M.O.; Gross, C.P. Understanding Sociodemographic Disparities in Maternal-Fetal Surgery Study Participation. Fetal Diagn Ther. 2022, 49, 125–137. [Google Scholar] [CrossRef]
Congenital Heart Disease (CHD) | Congenital Fetal Anomalies | Complications of Monochorionic Twins | Fetal Anemia |
---|---|---|---|
|
|
|
|
Study Location | Design Data Sources as Reported | Sample Size * | Anomaly Category | Overall PD Rate | Conditions with Highest PD (%) | Conditions with Lowest PD (%) | SDOH and Indicators’ Associations with Diagnosis Timing |
---|---|---|---|---|---|---|---|
Ailes et al., 2014 [26] Multiple states | Retrospective cohort National Birth Defects Prevention Study (NBDPS), medical record review, patient self-reported | 7299 | CHD | 15% |
|
| Associated Maternal age Race and ethnicity Not associated Education level |
Campbell et al., 2020 [8] Multiple states | Retrospective population-based study Medicaid analytic extract (MAX) dataset, claims with maternal–infant linkage, diagnosis code search | 4702 | CCHD | 28% | Not specified | Not specified | Associated Sonographer labor quotient ZIP code level median household income Not associated Ethnicity OB location quotient Race Rural urban score |
Evans et al., 2011 [27] Nevada | Retrospective cohort Clark County fetal and congenital cardiac databases, surname ethnicity (e.g., Spanish), self-reported ethnicity | 327 | TOF TGA | <2007: <5% ‘07-‘09: 27% |
|
| Associated Ethnicity (2007–2009) Not associated Not specified |
Friedberg et al., 2009 [28] California | Prospective cohort Northern California referral centers, medical record review, parent-completed questionnaires | 309 | CHD | 36% |
|
| Not associated Ethnicity Household income Maternal employment level Maternal insurance structure Parental education level US provider type |
Gianelle et al., 2023 [9] Maryland | Retrospective cohort Society for Thoracic Surgery Congenital Heart Disease Database (U of MD center data), medical record review, US Census | 163 | CHD | 75% | Not specified | Not specified | Associated Ethnicity Preferred language Maternal insurance Neighborhood SES quartiles ‡ Not associated Race Residence in rural or MUA |
Hill et al., 2015 [23] Wisconsin | Retrospective cohort Children’s Hospital of Wisconsin, medical record review, US census | 535 | CCHD | 61% |
|
| Associated Percent below poverty Rural vs. non-rural Not associated Ethnicity Insurance type Marital status Race |
Krishnan et al., 2021 [10] ¶ Multiple states | Retrospective cohort Fetal Heart Society Research Collaborative, US census, medical record review | 1862 | HLHS, TGA | 79% |
|
| Associated Ethnicity (TGA only) Lower socioeconomic quartile Rural residence (TGA only) Not associated Distance and driving time from a cardiac surgical center Insurance type Race |
Liberman et al., 2023 [29] Massachusetts | Retrospective cohort Massachusetts Birth Defect Monitoring Program, diagnosis code search, medical record review | 1524 | CCHD | 63% |
|
| Associated with “timely diagnosis” (prenatal or before hospital discharge) Rural vs. non-rural residence Not associated Education Ethnicity Insurance type Maternal age Race |
Mahan et al., 2014 [30] Massachusetts, New York, North Carolina | Case control Slone Epidemiology Center (U of Boston) study data, medical record review, parent interviews | 676 | Clubfoot | 62% |
|
| Associated Maternal age Race and ethnicity Geography (state) Not associated Education level Number in household Income level Rural vs. urban residence Marital status Employment status |
Mozumdar et al., 2020 [31] New York | Retrospective cohort Fetal database (center data), medical record review | 222 | Major CHD § | 92% | Not specified | Not specified | Associated Maternal age Not associated Ethnicity Race Interpreting physician experience |
Oster et al., 2013 [32] Georgia | Retrospective cohort Metropolitan Atlanta Congenital Defects Program (MACDP), diagnosis code search, record review | 4348 | CHD | 10% |
|
| Associated Race and ethnicity
Maternal age Neighborhood poverty level |
Perez et al., 2022 [33] Massachusetts | Retrospective cohort Boston Children’s Hospital, Partners Healthcare System, diagnosis code search, medical record review | 441 | CHD | Sample included PDs only and examined early (<24 weeks GA) vs. late diagnosis (21%) | NA | NA | Associated PD ≥ 24 weeks GA Social vulnerability quartile Religion Not associated Ethnicity Insurance type Marital status Maternal age Race |
Peiris et al., 2009 [34] Massachusetts | Retrospective cohort Boston Children’s Hospital, hospital medical record review, electronic patient care databases | 444 | CCHD | 50% |
|
| Associated Insurance type Socioeconomic position Not associated Distance to fetal echocardiography Race |
Pinto et al., 2012 [35] Utah | Retrospective cohort Utah Birth Defects Network (CHD cases), US census | 1474 | Major CHD | 39% |
|
| Not associated Census-tract level education level Census-tract level poverty level Census-tract level rural/urban residence Initiation of prenatal care Education level Maternal age Race |
Sekar et al., 2013 [36] Cincinnati | Prospective cohort Cincinnati and 8-county surrounding area, record review, parent questionnaire | 95 | Major CHD | 43% |
|
| Not associated Education level Ethnicity Family income bracket Insurance type Race |
Waller et al., 2000 [37] Texas | Retrospective cohort Texas Birth Defects Monitoring Program data | 852 | 23 categories of birth defects | 33% |
|
| Associated Race and ethnicity Geographic location Not associated Maternal age |
Healthy People 2020 SDOH Framework—5 Categories of SDOH | |
---|---|
(1) Economic Stability | Employment Food insecurity Housing stability Poverty |
(2) Education | Early childhood education Enrollment in higher education High school graduation Language and literacy |
(3) Health and Healthcare | Access to healthcare Access to primary care Health literacy |
(4) Neighborhood and Built Environment | Access to healthy foods Crime and violence Environmental conditions Housing quality |
(5) Social and Community Context | Discrimination Incarceration Social cohesion |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilpers, A.B.; Eichhorn, B.; Batten, J.; Francis, K.; Powne, A.B.; Jumale, S.; Hansen, K.; Kohari, K.; Lorch, S.A. The Role of Social Determinants in Diagnosis Timing for Fetal Care Center-Eligible Conditions: A Scoping Review. Diagnostics 2024, 14, 1503. https://doi.org/10.3390/diagnostics14141503
Wilpers AB, Eichhorn B, Batten J, Francis K, Powne AB, Jumale S, Hansen K, Kohari K, Lorch SA. The Role of Social Determinants in Diagnosis Timing for Fetal Care Center-Eligible Conditions: A Scoping Review. Diagnostics. 2024; 14(14):1503. https://doi.org/10.3390/diagnostics14141503
Chicago/Turabian StyleWilpers, Abigail B., Barbara Eichhorn, Janene Batten, Katie Francis, Amy B. Powne, Shukri Jumale, Kara Hansen, Katherine Kohari, and Scott A. Lorch. 2024. "The Role of Social Determinants in Diagnosis Timing for Fetal Care Center-Eligible Conditions: A Scoping Review" Diagnostics 14, no. 14: 1503. https://doi.org/10.3390/diagnostics14141503
APA StyleWilpers, A. B., Eichhorn, B., Batten, J., Francis, K., Powne, A. B., Jumale, S., Hansen, K., Kohari, K., & Lorch, S. A. (2024). The Role of Social Determinants in Diagnosis Timing for Fetal Care Center-Eligible Conditions: A Scoping Review. Diagnostics, 14(14), 1503. https://doi.org/10.3390/diagnostics14141503