The Preoperative Factors for the Undercorrection of Myopia in an Extend Depth-of-Focus Intraocular Lens: A Case-Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Selection
2.2. Surgical Details
2.3. Ophthalmic Examinations
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cicinelli, M.V.; Buchan, J.C.; Nicholson, M.; Varadaraj, V.; Khanna, R.C. Cataracts. Lancet 2023, 401, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Gothwal, V.K.; Wright, T.A.; Lamoureux, E.L.; Pesudovs, K. Cataract Symptom Scale: Clarifying measurement. Br. J. Ophthalmol. 2009, 93, 1652–1656. [Google Scholar] [CrossRef] [PubMed]
- Davis, G. The Evolution of Cataract Surgery. Mo. Med. 2016, 113, 58–62. [Google Scholar] [PubMed]
- Aggarwal, M.; Gour, A.; Gupta, N.; Singh, A.; Sangwan, V. Visual outcome and postoperative complications of cataract surgery in patients with ocular surface disorders. J. Cataract. Refract. Surg. 2024, 50, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Danzinger, V.; Schartmüller, D.; Lisy, M.; Schranz, M.; Schwarzenbacher, L.; Abela-Formanek, C.; Menapace, R.; Leydolt, C. Intraindividual Comparison of an Enhanced Monofocal and an Aspheric Monofocal Intraocular Lens of the Same Platform. Am. J. Ophthalmol. 2024, 261, 95–102. [Google Scholar] [CrossRef]
- Fonteh, C.N.; Patnaik, J.L.; Grove, N.C.; Lynch, A.M.; Pantcheva, M.B.; Christopher, K.L. Refractive outcomes using Barrett formulas and patient characteristics of cataract surgery patients with and without prior LASIK/PRK. Graefes Arch. Clin. Exp. Ophthalmol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Lwowski, C.; Pawlowicz, K.; Hinzelmann, L.; Adas, M.; Kohnen, T. Prediction accuracy of IOL calculation formulas using the ASCRS online calculator for a diffractive extended depth-of-focus IOL after myopic laser in situ keratomileusis. J. Cataract. Refract. Surg. 2020, 46, 1240–1246. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Abulimiti, A.; Liang, J.; Zhou, S.; Wu, Z.; Chen, Y.; Ju, R.; Wang, Z.; Xu, R.; Chen, X. Comparison of short-term clinical outcomes of a diffractive trifocal intraocular lens with phacoemulsification and femtosecond laser assisted cataract surgery. BMC Ophthalmol. 2024, 24, 189. [Google Scholar] [CrossRef]
- Kanclerz, P.; Toto, F.; Grzybowski, A.; Alio, J.L. Extended Depth-of-Field Intraocular Lenses: An Update. Asia-Pac. J. Ophthalmol. 2020, 9, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Asena, L.; Kırcı Dogan, İ.; Oto, S.; Dursun Altınors, D. Comparison of visual performance and quality of life with a new nondiffractive EDOF intraocular lens and a trifocal intraocular lens. J. Cataract Refract. Surg. 2023, 49, 504–511. [Google Scholar] [CrossRef]
- Wang, X.; Liu, S.; Chen, Y.; Gong, J.; Wu, N.; Yao, Y. Extended depth of focus IOL in eyes with different axial myopia and targeted refraction. BMC Ophthalmol. 2024, 24, 183. [Google Scholar] [CrossRef]
- Arrigo, A.; Gambaro, G.; Fasce, F.; Aragona, E.; Figini, I.; Bandello, F. Extended depth-of-focus (EDOF) AcrySof® IQ Vivity® intraocular lens implant: A real-life experience. Graefes Arch. Clin. Exp. Ophthalmol. 2021, 259, 2717–2722. [Google Scholar] [CrossRef]
- Fernández-Buenaga, R.; Alió, J.L.; Pérez Ardoy, A.L.; Quesada, A.L.; Pinilla-Cortés, L.; Barraquer, R.I. Resolving refractive error after cataract surgery: IOL exchange, piggyback lens, or LASIK. J. Refract. Surg. 2013, 29, 676–683. [Google Scholar] [CrossRef] [PubMed]
- Ang, R.E.T.; Rapista, A.J.B.; Remo, J.T.M.; Tan-Daclan, M.A.T.; Cruz, E.M. Clinical outcomes and comparison of intraocular lens calculation formulas in eyes with long axial myopia. Taiwan J. Ophthalmol. 2022, 12, 305–311. [Google Scholar] [CrossRef]
- Goggin, M.; Zamora-Alejo, K.; Esterman, A.; van Zyl, L. Adjustment of anterior corneal astigmatism values to incorporate the likely effect of posterior corneal curvature for toric intraocular lens calculation. J. Refract. Surg. 2015, 31, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Meng, J.; He, W.; Lu, Y.; Zhu, X. Challenges of refractive cataract surgery in the era of myopia epidemic: A mini-review. Front. Med. 2023, 10, 1128818. [Google Scholar] [CrossRef] [PubMed]
- Espinosa Soto, A.L.; Ceja Martínez, J.; Gulias-Cañizo, R.; Guerrero-Berger, O. Accuracy of Astigmatism Calculation with the Barrett, Panacea, and enVista Toric Calculators. Life 2023, 13, 2009. [Google Scholar] [CrossRef]
- Flitcroft, D.I.; He, M.; Jonas, J.B.; Jong, M.; Naidoo, K.; Ohno-Matsui, K.; Rahi, J.; Resnikoff, S.; Vitale, S.; Yannuzzi, L. IMI—Defining and Classifying Myopia: A Proposed Set of Standards for Clinical and Epidemiologic Studies. Investig. Ophthalmol. Vis. Sci. 2019, 60, M20–M30. [Google Scholar] [CrossRef]
- Lee, C.Y.; Jeng, Y.T.; Chao, C.C.; Lian, I.B.; Huang, J.Y.; Yang, S.F.; Chang, C.K. Refraction and topographic risk factors for early myopic regression after small-incision lenticule extraction surgery. Sci. Rep. 2024, 14, 8732. [Google Scholar] [CrossRef]
- Ucar, F.; Turgut Ozturk, B. Effectiveness of toric IOL and capsular tension ring suturing technique for rotational stability in eyes with long axial length. Int. Ophthalmol. 2023, 43, 2917–2924. [Google Scholar] [CrossRef]
- He, S.; Chen, X.; Wu, X.; Ma, Y.; Yu, X.; Xu, W. Early-stage clinical outcomes and rotational stability of TECNIS toric intraocular lens implantation in cataract cases with long axial length. BMC Ophthalmol. 2020, 20, 204. [Google Scholar] [CrossRef] [PubMed]
- Vass, C.; Menapace, R.; Schmetterer, K.; Findl, O.; Rainer, G.; Steineck, I. Prediction of pseudophakic capsular bag diameter based on biometric variables. J. Cataract. Refract. Surg. 1999, 25, 1376–1381. [Google Scholar] [CrossRef]
- Lin, L.; Xu, M.; Mo, E.; Huang, S.; Qi, X.; Gu, S.; Sun, W.; Su, Q.; Li, J.; Zhao, Y.E. Accuracy of Newer Generation IOL Power Calculation Formulas in Eyes With High Axial Myopia. J. Refract. Surg. 2021, 37, 754–758. [Google Scholar] [CrossRef]
- Kawahara, A.; Sato, T.; Hayashi, K. Multivariate Regression Analysis to Predict Postoperative Refractive Astigmatism in Cataract Surgery. J. Ophthalmol. 2020, 2020, 9842803. [Google Scholar] [CrossRef]
- Hoffmann, P.C.; Abraham, M.; Hirnschall, N.; Findl, O. Prediction of residual astigmatism after cataract surgery using swept source fourier domain optical coherence tomography. Curr. Eye Res. 2014, 39, 1178–1186. [Google Scholar] [CrossRef]
- Roszkowska, A.M.; Urso, M.; Signorino, G.A.; Spadea, L.; Aragona, P. Photorefractive keratectomy after cataract surgery in uncommon cases: Long-term results. Int. J. Ophthalmol. 2018, 11, 612–615. [Google Scholar] [CrossRef] [PubMed]
- Olsen, T. Calculation of intraocular lens power: A review. Acta Ophthalmol. Scand. 2007, 85, 472–485. [Google Scholar] [CrossRef] [PubMed]
- Stopyra, W.; Langenbucher, A.; Grzybowski, A. Intraocular Lens Power Calculation Formulas-A Systematic Review. Ophthalmol. Ther. 2023, 12, 2881–2902. [Google Scholar] [CrossRef] [PubMed]
- Kuo, I.C. Decentration of a toric intraocular lens implant in a patient with simple megalocornea. Am. J. Ophthalmol. Case Rep. 2020, 19, 100754. [Google Scholar] [CrossRef]
- Vargas, V.; Radner, W.; Allan, B.D.; Reinstein, D.Z.; Burkhard Dick, H.; Alió, J.L. Methods for the study of near, intermediate vision, and accommodation: An overview of subjective and objective approaches. Surv. Ophthalmol. 2019, 64, 90–100. [Google Scholar] [CrossRef]
- Moshirfar, M.; Stoakes, I.M.; Theis, J.S.; Porter, K.B.; Santos, J.M.; Martheswaran, T.; Payne, C.J.; Hoopes, P.C. Assessing Visual Outcomes: A Comparative Study of US-FDA Premarket Approval Data for Multifocal and EDOF Lens Implants in Cataract Surgery. J. Clin. Med. 2023, 12, 4365. [Google Scholar] [CrossRef] [PubMed]
- Kern, C.; Kortüm, K.; Müller, M.; Kampik, A.; Priglinger, S.; Mayer, W.J. Comparison of Two Toric IOL Calculation Methods. J. Ophthalmol. 2018, 2018, 2840246. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.; Zhang, F.; Li, H.; Liu, Z.; Li, S.; Qian, S.; Zhao, Y. Femtosecond Laser-Assisted Cataract Surgery versus Conventional Phacoemulsification Surgery: Clinical Outcomes with EDOF IOLs. J. Pers. Med. 2023, 13, 400. [Google Scholar] [CrossRef] [PubMed]
Feature | Non-Residual Group (N: 35) | Residual Group (N: 7) | p |
---|---|---|---|
Age (years, mean ± SD) | 59.00 ± 9.98 | 56.20 ± 12.33 | 0.699 |
Sex (male:female) | 15:20 | 2:5 | 0.580 |
Laterality (right:left) | 12:23 | 4:3 | 0.343 |
Disease | 0.085 | ||
Hypertension | 4 | 2 | |
Diabetes mellitus | 1 | 3 | |
Other | 4 | 0 | |
Refractive surgery | 3 | 1 | 0.545 |
UDVA (LogMAR) | 0.49 ± 0.17 | 0.30 ± 0.25 | 0.112 |
CDVA (LogMAR) | 0.37 ± 0.22 | 0.24 ± 0.14 | 0.240 |
Cycloplegia refraction (D) | |||
Sphere | −2.25 ± 5.43 | −2.60 ± 5.36 | 0.438 |
Cylinder | −1.36 ± 0.83 | −1.10 ± 0.89 | 0.518 |
SE | −2.93 ± 5.28 | −3.05 ± 5.51 | 0.394 |
Topography | |||
TCRP | 42.10 ± 2.99 | 44.62 ± 2.45 | 0.052 |
Cylinder power | 1.01 ± 0.54 | 1.27 ± 0.66 | 0.597 |
CCT | 529.77 ± 25.08 | 552.60 ± 32.82 | 0.190 |
Angle Kappa | 0.21 ± 0.07 | 0.13 ± 0.08 | 0.147 |
Pupil diameter | 3.76 ± 0.82 | 3.44 ± 0.36 | 0.581 |
Total HOA | 0.30 ± 0.13 | 0.27 ± 0.17 | 0.463 |
SA | 0.55 ± 0.55 | 0.58 ± 0.24 | 0.147 |
AXL | 23.78 ± 1.26 | 25.28 ± 1.79 | 0.112 |
ACD | 3.04 ± 0.43 | 3.27 ± 0.47 | 0.438 |
WTW | 11.91 ± 0.21 | 12.04 ± 0.41 | 0.364 |
LT | 4.58 ± 0.25 | 4.54 ± 0.62 | 0.774 |
ECD | 2816.33 ± 308.40 | 3038.00 ± 288.17 | 0.082 |
CV | 27.88 ± 2.71 | 29.80 ± 3.42 | 0.117 |
HEX | 68.09 ± 4.63 | 62.82 ± 7.42 | 0.190 |
Femtosecond laser | 6 | 2 | 0.610 |
Toric IOL | 9 | 2 | 0.797 |
Outcome | Non-Residual Group (N: 35) | Residual Group (N: 7) | p |
---|---|---|---|
UDVA | |||
1 day | 0.08 ± 0.09 | 0.15 ± 0.21 | 0.099 |
1 week | 0.10 ± 0.16 | 0.17 ± 0.21 | 0.138 |
2 weeks | 0.08 ± 0.12 | 0.23 ± 0.26 | 0.017 * |
1 month | 0.07 ± 0.07 | 0.22 ± 0.19 | 0.010 * |
UNVA | |||
1 day | 0.28 ± 0.06 | 0.19 ± 0.18 | 0.053 |
1 week | 0.34 ± 0.13 | 0.17 ± 0.27 | 0.036 * |
2 weeks | 0.25 ± 0.14 | 0.25 ± 0.18 | 0.797 |
1 month | 0.24 ± 0.22 | 0.12 ± 0.08 | 0.125 |
SE | |||
1 day | −0.39 ± 0.30 | −1.10 ± 0.64 | 0.004 * |
1 week | −0.23 ± 0.26 | −1.15 ± 0.68 | 0.001 * |
2 weeks | −0.29 ± 0.27 | −1.10 ± 0.68 | 0.002 * |
1 month | −0.21 ± 0.35 | −1.12 ± 0.57 | <0.001 * |
Factor | aOR | 95% CI | p | |
---|---|---|---|---|
Lower | Upper | |||
Cycloplegia Sphere | 2.315 | 1.495 | 4.061 | <0.001 * |
TCRP | 1.624 | 1.158 | 2.417 | 0.001 * |
Corneal cylinder | 1.232 | 1.074 | 1.581 | 0.023 * |
CCT | 0.977 | 0.912 | 1.128 | 0.694 |
Pupil diameter | 1.160 | 0.824 | 1.499 | 0.513 |
Total HOA | 1.222 | 0.900 | 1.658 | 0.171 |
SA | 0.943 | 0.782 | 1.167 | 0.205 |
Angle kappa | 1.246 | 0.933 | 1.471 | 0.178 |
AXL | 1.982 | 1.207 | 3.354 | <0.001 * |
ACD | 1.378 | 0.989 | 1.546 | 0.082 |
WTW | 1.007 | 0.865 | 1.387 | 0.729 |
LT | 0.975 | 0.911 | 1.102 | 0.840 |
Factor | aOR | 95% CI | p | |
---|---|---|---|---|
Lower | Upper | |||
Cycloplegia Sphere | 3.527 | 2.459 | 5.198 | <0.001 * |
TCRP | 2.287 | 1.642 | 3.114 | <0.001 * |
Corneal cylinder | 1.673 | 1.398 | 1.989 | <0.001 * |
CCT | 0.959 | 0.872 | 1.153 | 0.666 |
Pupil diameter | 1.217 | 0.727 | 1.435 | 0.525 |
Total HOA | 1.395 | 0.948 | 1.781 | 0.102 |
SA | 1.006 | 0.926 | 1.208 | 0.158 |
Angle kappa | 1.334 | 0.992 | 1.572 | 0.064 |
AXL | 2.525 | 1.753 | 3.994 | <0.001 * |
ACD | 1.523 | 1.174 | 1.965 | <0.001 * |
WTW | 1.448 | 1.000 | 1.876 | 0.049 * |
LT | 1.042 | 0.937 | 1.189 | 0.706 |
Factor | aOR | 95% CI | p | |
---|---|---|---|---|
Lower | Upper | |||
Cycloplegia Sphere | 1.562 | 1.173 | 1.869 | 0.005 * |
TCRP | 1.340 | 1.124 | 1.615 | 0.022 * |
Corneal cylinder | 1.257 | 0.951 | 1.453 | 0.097 |
CCT | 0.996 | 0.869 | 1.165 | 0.778 |
Pupil diameter | 1.082 | 0.811 | 1.254 | 0.621 |
Total HOA | 1.036 | 0.967 | 1.288 | 0.704 |
SA | 0.955 | 0.841 | 1.168 | 0.638 |
Angle kappa | 1.197 | 0.929 | 1.384 | 0.427 |
AXL | 1.389 | 1.203 | 1.746 | 0.009 * |
ACD | 1.102 | 0.935 | 1.357 | 0.183 |
WTW | 1.019 | 0.891 | 1.232 | 0.664 |
LT | 0.914 | 0.832 | 1.077 | 0.786 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-Y.; Chen, H.-C.; Lian, I.-B.; Huang, C.-T.; Huang, J.-Y.; Yang, S.-F.; Chang, C.-K. The Preoperative Factors for the Undercorrection of Myopia in an Extend Depth-of-Focus Intraocular Lens: A Case-Control Study. Diagnostics 2024, 14, 1499. https://doi.org/10.3390/diagnostics14141499
Lee C-Y, Chen H-C, Lian I-B, Huang C-T, Huang J-Y, Yang S-F, Chang C-K. The Preoperative Factors for the Undercorrection of Myopia in an Extend Depth-of-Focus Intraocular Lens: A Case-Control Study. Diagnostics. 2024; 14(14):1499. https://doi.org/10.3390/diagnostics14141499
Chicago/Turabian StyleLee, Chia-Yi, Hung-Chi Chen, Ie-Bin Lian, Chin-Te Huang, Jing-Yang Huang, Shun-Fa Yang, and Chao-Kai Chang. 2024. "The Preoperative Factors for the Undercorrection of Myopia in an Extend Depth-of-Focus Intraocular Lens: A Case-Control Study" Diagnostics 14, no. 14: 1499. https://doi.org/10.3390/diagnostics14141499
APA StyleLee, C.-Y., Chen, H.-C., Lian, I.-B., Huang, C.-T., Huang, J.-Y., Yang, S.-F., & Chang, C.-K. (2024). The Preoperative Factors for the Undercorrection of Myopia in an Extend Depth-of-Focus Intraocular Lens: A Case-Control Study. Diagnostics, 14(14), 1499. https://doi.org/10.3390/diagnostics14141499