In Vivo Photoacoustic Ultrasound (PAUS) Assay for Monitoring Tendon Collagen Compositional Changes during Injury and Healing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Injury Model
2.3. Endogenous Photoacoustic Ultrasound
2.4. Picrosirius Red Histology
2.5. B-Mode Echogenicity Analysis
2.6. Statistics
3. Results
3.1. Collagen Photoacoustic Signal Exhibited a Strong, Positive Correlation with Picrosirius Red Staining
3.2. Some Variance in Photoacoustic Signal vs. PSR Area Is Likely Due to Differences in Collagen Alignment
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, T.W.; Cardenas, L.; Soslowsky, L.J. Biomechanics of tendon injury and repair. J. Biomech. 2004, 37, 865–877. [Google Scholar] [CrossRef] [PubMed]
- Kirchgesner, T.; Larbi, A.; Omoumi, P.; Malghem, J.; Zamali, N.; Manelfe, J.; Lecouvet, F.; Berg, B.V.; Djebbar, S.; Dallaudière, B. Drug-induced tendinopathy: From physiology to clinical applications. Jt. Bone Spine 2014, 81, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Maffulli, N. Biology of tendon injury: Healing, modeling and remodeling. J. Musculoskelet. Neuronal Interact. 2006, 6, 181–190. [Google Scholar]
- Sharma, P.; Maffulli, N. Tendon injury and tendinopathy: Healing and repair. J. Bone Jt. Surg. Am. 2005, 87, 187–202. [Google Scholar] [PubMed]
- Aro, A.; Perez, M.; Vieira, C.; Esquisatto, M.; Rodrigues, R.; Gomes, L.; Pimentel, E. Effect of Calendula officinalis cream on achilles tendon healing. Anat. Rec. 2015, 298, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Akamatsu, F.E.; Saleh, S.O.; Teodoro, W.R.; da Silva, A.Q.; Martinez, C.A.R.; Duarte, R.J.; de Andrade, M.F.C.; Jacomo, A.L. Experimental model of Achilles tendon injury in rats. Acta Cir. Bras. 2014, 29, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Vieira, C.P.; De Aro, A.A.; Guerra, F.D.R.; De Oliveira, L.P.; Almeida, M.D.S.D.; Pimentel, E.R. Inflammatory process induced by carrageenan in adjacent tissue triggers the acute inflammation in deep digital flexor tendon of rats. Anat. Rec. 2013, 296, 1187–1195. [Google Scholar] [CrossRef] [PubMed]
- Goldfarb, C.A.; Harwood, F.; Silva, M.J.; Gelberman, R.H.; Amiel, D.; Boyer, M.I. The effect of variations in applied rehabilitation force on collagen concentration and maturation at the intrasynovial flexor tendon repair site. J. Hand Surg. 2001, 26, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Fouré, A. New imaging methods for non-invasive assessment of mechanical, structural, and biochemical properties of human achilles tendon: A mini review. Front. Physiol. 2016, 7, 324. [Google Scholar] [CrossRef]
- Bey, M.J.; Derwin, K.A. Measurement of in vivo tendon function. J. Shoulder Elb. Surg. 2012, 21, 149–157. [Google Scholar] [CrossRef]
- Heinemeier, K.M.; Kjaer, M. In vivo investigation of tendon responses to mechanical loading. J. Musculoskelet. Neuronal Interact. 2011, 11, 115–123. [Google Scholar] [PubMed]
- Steinberg, I.; Huland, D.M.; Vermesh, O.; Frostig, H.E.; Tummers, W.S.; Gambhir, S.S. Photoacoustic clinical imaging. Photoacoustics 2019, 14, 77–98. [Google Scholar] [CrossRef] [PubMed]
- Riggin, C.N.; Schultz, S.M.; Sehgal, C.M.; Soslowsky, L.J. Ultrasound Evaluation of Anti-Vascular Endothelial Growth Factor–Induced Changes in Vascular Response Following Tendon Injury. Ultrasound Med. Biol. 2019, 45, 1841–1849. [Google Scholar] [CrossRef] [PubMed]
- Riggin, C.N.; Weiss, S.N.; Rodriguez, A.B.; Raja, H.; Chen, M.; Schultz, S.M.; Sehgal, C.M.; Soslowsky, L.J. Increasing Vascular Response to Injury Improves Tendon Early Healing Outcome in Aged Rats. Ann. Biomed. Eng. 2022, 50, 587–600. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.D.; Shin, J.G.; Hyun, H.; Yu, B.-A.; Eom, T.J. Label-free photoacoustic microscopy for in-vivo tendon imaging using a fiber-based pulse laser. Sci. Rep. 2018, 8, 4805. [Google Scholar] [CrossRef] [PubMed]
- Sekar, S.K.V.; Bargigia, I.; Mora, A.D.; Taroni, P.; Ruggeri, A.; Tosi, A.; Pifferi, A.; Farina, A. Diffuse optical characterization of collagen absorption from 500 to 1700 nm. J. Biomed. Opt. 2017, 22, 015006. [Google Scholar] [CrossRef]
- Wagner, A.L.; Danko, V.; Federle, A.; Klett, D.; Simon, D.; Heiss, R.; Jüngert, J.; Uder, M.; Schett, G.; Neurath, M.F.; et al. Precision of handheld multispectral optoacoustic tomography for muscle imaging. Photoacoustics 2021, 21, 100220. [Google Scholar] [CrossRef] [PubMed]
- Hysi, E.; He, X.; Fadhel, M.N.; Zhang, T.; Krizova, A.; Ordon, M.; Farcas, M.; Pace, K.T.; Mintsopoulos, V.; Lee, W.L.; et al. Photoacoustic imaging of kidney fibrosis for assessing pretransplant organ quality. JCI Insight 2020, 5, e136995. [Google Scholar] [CrossRef] [PubMed]
- Freedman, B.R.; Sarver, J.J.; Buckley, M.R.; Voleti, P.B.; Soslowsky, L.J. Biomechanical and structural response of healing Achilles tendon to fatigue loading following acute injury. J. Biomech. 2014, 47, 2028–2034. [Google Scholar] [CrossRef]
- Riggin, C.N.; Sarver, J.J.; Freedman, B.R.; Thomas, S.J.; Soslowsky, L.J. Analysis of collagen organization in mouse achilles tendon using high-frequency ultrasound imaging. J. Biomech. Eng. 2014, 136, 021029–0210296. [Google Scholar] [CrossRef]
- Janko, M.; Davydovskaya, P.; Bauer, M.; Zink, A.; Stark, R.W. Anisotropic Raman scattering in collagen bundles. Opt. Lett. 2010, 35, 2765–2767. [Google Scholar] [CrossRef] [PubMed]
- Freedman, B.; Gordon, J.; Castro, L. The Achilles tendon: Fundamental properties and mechanisms governing healing. Muscle Ligaments Tendons J. 2014, 04, 245–255. [Google Scholar] [CrossRef]
- Samuel, C.S. Determination of Collagen Content, Concentration, and Sub-types in Kidney Tissue. In Kidney Research: Experimental Protocols; Becker, G.J., Hewitson, T.D., Eds.; Humana Press: Totowa, NJ, USA, 2009; pp. 223–235. [Google Scholar] [CrossRef]
- Riching, K.M.; Cox, B.L.; Salick, M.R.; Pehlke, C.; Riching, A.S.; Ponik, S.M.; Bass, B.R.; Crone, W.C.; Jiang, Y.; Weaver, A.M.; et al. 3D collagen alignment limits protrusions to enhance breast cancer cell persistence. Biophys. J. 2014, 107, 2546–2558. [Google Scholar] [CrossRef] [PubMed]
- Law, J.X.; Liau, L.L.; Saim, A.; Yang, Y.; Idrus, R. Electrospun Collagen Nanofibers and Their Applications in Skin Tissue Engineering. Tissue Eng. Regen. Med. 2017, 14, 699–718. [Google Scholar] [CrossRef] [PubMed]
- Keshava, N.; Mustard, J.F. Spectral unmixing. IEEE Signal Process. Mag. 2002, 19, 44–57. [Google Scholar] [CrossRef]
- Grasso, V.; Holthof, J.; Jose, J. An Automatic Unmixing Approach to Detect Tissue Chromophores from Multispectral Photoacoustic Imaging. Sensors 2020, 20, 3235. [Google Scholar] [CrossRef]
Comparison | Correlation Coefficient (r) | Coefficient of Determination (r2) | Significance (p) |
---|---|---|---|
Collagen PA Avg vs. PSR Area % (Tendon) | 0.642 | 0.412 | 0.0002 |
Collagen PA Avg vs. PSR Area % (Injury) | 0.721 | 0.519 | <0.0001 |
Comparison | Correlation Coefficient (r) | Coefficient of Determination (r2) | Significance (p) |
---|---|---|---|
Collagen PA Avg vs. Echo Avg (Tendon) | 0.749 | 0.551 | <0.0001 |
Collagen PA Avg vs. Echo Avg (Injury) | 0.603 | 0.397 | 0.0003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Newton, J.B.; Nuss, C.A.; Weiss, S.N.; Betts, R.L.; Sehgal, C.M.; Soslowsky, L.J. In Vivo Photoacoustic Ultrasound (PAUS) Assay for Monitoring Tendon Collagen Compositional Changes during Injury and Healing. Diagnostics 2024, 14, 1498. https://doi.org/10.3390/diagnostics14141498
Newton JB, Nuss CA, Weiss SN, Betts RL, Sehgal CM, Soslowsky LJ. In Vivo Photoacoustic Ultrasound (PAUS) Assay for Monitoring Tendon Collagen Compositional Changes during Injury and Healing. Diagnostics. 2024; 14(14):1498. https://doi.org/10.3390/diagnostics14141498
Chicago/Turabian StyleNewton, Joseph B., Courtney A. Nuss, Stephanie N. Weiss, Rebecca L. Betts, Chandra M. Sehgal, and Louis J. Soslowsky. 2024. "In Vivo Photoacoustic Ultrasound (PAUS) Assay for Monitoring Tendon Collagen Compositional Changes during Injury and Healing" Diagnostics 14, no. 14: 1498. https://doi.org/10.3390/diagnostics14141498
APA StyleNewton, J. B., Nuss, C. A., Weiss, S. N., Betts, R. L., Sehgal, C. M., & Soslowsky, L. J. (2024). In Vivo Photoacoustic Ultrasound (PAUS) Assay for Monitoring Tendon Collagen Compositional Changes during Injury and Healing. Diagnostics, 14(14), 1498. https://doi.org/10.3390/diagnostics14141498