Influence of Covariates on 18F-FDG PET/CT Diagnostic Accuracy for Liver Metastasis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. PET/CT Protocol
2.3. PET/CT Analysis
2.4. Reference Standard
2.5. Patients and Disease Characteristics
2.6. Statistical Analysis
3. Results
3.1. Patients and Lesions Characteristics
3.2. PET/CT Overall Diagnostic Accuracy
3.3. Variables Influencing the PET/CT Sensitivity
3.3.1. Bivariate Analysis
Overall Results
Results in the TOF PET/CT Subgroup
3.3.2. Multivariate Analysis
Overall Results
Results in the PET/CT Subgroups
Multivariate Analysis with Interaction Terms between Covariates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Detailed Criteria Used for the Reference Standard Classification
- (a)
- Histopathologic results from liver resection or biopsy;
- (b)
- Increase in contrast-enhanced lesion’s largest diameter by more than 20% (with a minimum of 5 mm change in size) or decrease by more than 30% for patients undergoing systemic therapy (with a minimum of 5 mm change in size);
- (c)
- Typical LM appearance on both contrast-enhanced CT and MRI;
- (d)
- Lesion stability under treatment (not meeting the above criteria) with typical signs of LMs on at least contrast-enhanced CT or MRI;
- (e)
- Concomitant assessment of the overall disease course on imaging at other sites and on clinical and biological reports.
- (a)
- Histopathologic results from hepatic resection or biopsy;
- (b)
- Decrease in contrast-enhanced lesion’s largest diameter by more than 30% (with a minimum of 5 mm change in size) or no morphological lesion visible on contrast-enhanced CT and MRI follow-up without any systemic therapy or local cancer therapy at that site;
- (c)
- Typical BL appearance on both contrast-enhanced CT and MRI;
- (d)
- Lesion stability (contrast-enhanced lesion’s largest diameter decreased by less than 30% or increased by less than 20%) in the absence of cancer treatment or in contrast to the disease course under treatment on imaging at other sites and/or on clinical and biological reports.
References
- Budczies, J.; Von Winterfeld, M.; Klauschen, F.; Bockmayr, M.; Lennerz, J.K.; Denkert, C.; Wolf, T.; Warth, A.; Dietel, M.; Anagnostopoulos, I.; et al. The Landscape of Metastatic Progression Patterns across Major Human Cancers. Oncotarget 2015, 6, 570–583. [Google Scholar] [CrossRef] [PubMed]
- Horn, S.R.; Stoltzfus, K.C.; Lehrer, E.J.; Dawson, L.A.; Tchelebi, L.; Gusani, N.J.; Sharma, N.K.; Chen, H.; Trifiletti, D.M.; Zaorsky, N.G. Epidemiology of Liver Metastases. Cancer Epidemiol. 2020, 67, 101760. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Hindman, N.M.; Al-Refaie, W.B.; Arif-Tiwari, H.; Cash, B.D.; Chernyak, V.; Farrell, J.; Grajo, J.R.; Horowitz, J.M.; McNamara, M.M.; et al. ACR Appropriateness Criteria® Suspected Liver Metastases. J. Am. Coll. Radiol. 2017, 14, S314–S325. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.H.; Kim, S.Y.; Park, S.H.; Kim, K.W.; Lee, J.Y.; Lee, S.S.; Lee, M.-G. Diagnostic Performance of CT, Gadoxetate Disodium-Enhanced MRI, and PET/CT for the Diagnosis of Colorectal Liver Metastasis: Systematic Review and Meta-Analysis: Diagnostic Imaging Tests in CRLM. J. Magn. Reson. Imaging 2018, 47, 1237–1250. [Google Scholar] [CrossRef] [PubMed]
- Freitas, P.S.; Janicas, C.; Veiga, J.; Matos, A.P.; Herédia, V.; Ramalho, M. Imaging Evaluation of the Liver in Oncology Patients: A Comparison of Techniques. World J. Hepatol. 2021, 13, 1936–1955. [Google Scholar] [CrossRef]
- Salaün, P.-Y.; Abgral, R.; Malard, O.; Querellou-Lefranc, S.; Quere, G.; Wartski, M.; Coriat, R.; Hindie, E.; Taieb, D.; Tabarin, A.; et al. Good Clinical Practice Recommendations for the Use of PET/CT in Oncology. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 28–50. [Google Scholar] [CrossRef] [PubMed]
- Rogasch, J.M.M.; Hofheinz, F.; Van Heek, L.; Voltin, C.-A.; Boellaard, R.; Kobe, C. Influences on PET Quantification and Interpretation. Diagnostics 2022, 12, 451. [Google Scholar] [CrossRef] [PubMed]
- Keramida, G.; Potts, J.; Bush, J.; Dizdarevic, S.; Peters, A.M. Hepatic Steatosis Is Associated with Increased Hepatic FDG Uptake. Eur. J. Radiol. 2014, 83, 751–755. [Google Scholar] [CrossRef] [PubMed]
- Eskian, M.; Alavi, A.; Khorasanizadeh, M.; Viglianti, B.L.; Jacobsson, H.; Barwick, T.D.; Meysamie, A.; Yi, S.K.; Iwano, S.; Bybel, B.; et al. Effect of Blood Glucose Level on Standardized Uptake Value (SUV) in 18F- FDG PET-Scan: A Systematic Review and Meta-Analysis of 20,807 Individual SUV Measurements. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 224–237. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Li, Y.; Hu, P.; Cheng, D.; Shi, H. The Combined Effects of Serum Lipids, BMI, and Fatty Liver on 18F-FDG Uptake in the Liver in a Large Population from China: An 18F-FDG-PET/CT Study. Nucl. Med. Commun. 2015, 36, 709–716. [Google Scholar] [CrossRef]
- Malladi, A.; Viner, M.; Jackson, T.; Mercier, G.; Subramaniam, R.M. PET/CT Mediastinal and Liver FDG Uptake: Effects of Biological and Procedural Factors: FDG PET CT and Liver and Mediastinal Uptake. J. Med. Imaging Radiat. Oncol. 2013, 57, 169–175. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Ding, H.-J.; Lin, C.-C.; Chen, C.-C.; Sun, S.-S.; Kao, C.-H. Impact of Age on FDG Uptake in the Liver on PET Scan. Clin. Imaging 2010, 34, 348–350. [Google Scholar] [CrossRef]
- Boellaard, R.; Delgado-Bolton, R.; Oyen, W.J.G.; Giammarile, F.; Tatsch, K.; Eschner, W.; Verzijlbergen, F.J.; Barrington, S.F.; Pike, L.C.; Weber, W.A.; et al. FDG PET/CT: EANM Procedure Guidelines for Tumour Imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 328–354. [Google Scholar] [CrossRef]
- Kodama, Y.; Ng, C.S.; Wu, T.T.; Ayers, G.D.; Curley, S.A.; Abdalla, E.K.; Vauthey, J.N.; Charnsangavej, C. Comparison of CT Methods for Determining the Fat Content of the Liver. Am. J. Roentgenol. 2007, 188, 1307–1312. [Google Scholar] [CrossRef] [PubMed]
- Genders, T.S.S.; Spronk, S.; Stijnen, T.; Steyerberg, E.W.; Lesaffre, E.; Hunink, M.G.M. Methods for Calculating Sensitivity and Specificity of Clustered Data: A Tutorial. Radiology 2012, 265, 910–916. [Google Scholar] [CrossRef] [PubMed]
- Midi, H.; Sarkar, S.K.; Rana, S. Collinearity Diagnostics of Binary Logistic Regression Model. J. Interdiscip. Math. 2010, 13, 253–267. [Google Scholar] [CrossRef]
- Bieler, G.S.; Brown, G.G.; Williams, R.L.; Brogan, D.J. Estimating Model-Adjusted Risks, Risk Differences, and Risk Ratios from Complex Survey Data. Am. J. Epidemiol. 2010, 171, 618–623. [Google Scholar] [CrossRef]
- Muller, C.J.; MacLehose, R.F. Estimating Predicted Probabilities from Logistic Regression: Different Methods Correspond to Different Target Populations. Int. J. Epidemiol. 2014, 43, 962–970. [Google Scholar] [CrossRef]
- Glazer, E.S. Effectiveness of Positron Emission Tomography for Predicting Chemotherapy Response in Colorectal Cancer Liver Metastases. Arch. Surg. 2010, 145, 340. [Google Scholar] [CrossRef] [PubMed]
- Surti, S.; Scheuermann, J.; El Fakhri, G.; Daube-Witherspoon, M.E.; Lim, R.; Abi-Hatem, N.; Moussallem, E.; Benard, F.; Mankoff, D.; Karp, J.S. Impact of Time-of-Flight PET on Whole-Body Oncologic Studies: A Human Observer Lesion Detection and Localization Study. J. Nucl. Med. 2011, 52, 712–719. [Google Scholar] [CrossRef]
- Mehranian, A.; Wollenweber, S.D.; Walker, M.D.; Bradley, K.M.; Fielding, P.A.; Huellner, M.; Kotasidis, F.; Su, K.-H.; Johnsen, R.; Jansen, F.P.; et al. Deep Learning–Based Time-of-Flight (ToF) Image Enhancement of Non-ToF PET Scans. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 3740–3749. [Google Scholar] [CrossRef] [PubMed]
- Katal, S.; Eibschutz, L.S.; Saboury, B.; Gholamrezanezhad, A.; Alavi, A. Advantages and Applications of Total-Body PET Scanning. Diagnostics 2022, 12, 426. [Google Scholar] [CrossRef] [PubMed]
- López-Mora, D.A.; Flotats, A.; Fuentes-Ocampo, F.; Camacho, V.; Fernández, A.; Ruiz, A.; Duch, J.; Sizova, M.; Domènech, A.; Estorch, M.; et al. Comparison of Image Quality and Lesion Detection between Digital and Analog PET/CT. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1383–1390. [Google Scholar] [CrossRef] [PubMed]
- Tsili, A.C.; Alexiou, G.; Naka, C.; Argyropoulou, M.I. Imaging of Colorectal Cancer Liver Metastases Using Contrast-Enhanced US, Multidetector CT, MRI, and FDG PET/CT: A Meta-Analysis. Acta Radiol. 2021, 62, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Lincke, T.; Zech, C.J. Liver Metastases: Detection and Staging. Eur. J. Radiol. 2017, 97, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Schulz, A.; Viktil, E.; Godt, J.C.; Johansen, C.K.; Dormagen, J.B.; Holtedahl, J.E.; Labori, K.J.; Bach-Gansmo, T.; Kløw, N.-E. Diagnostic Performance of CT, MRI and PET/CT in Patients with Suspected Colorectal Liver Metastases: The Superiority of MRI. Acta Radiol. 2016, 57, 1040–1048. [Google Scholar] [CrossRef] [PubMed]
- Suyama, J.; Takeshita, Y.; Shirakawa, Y.; Okada, K.; Takakuwa, C.; Kawada, M.; Yokoyama, K. Diagnostic Value of Deep Learning Image Reconstruction for Detection of Liver Metastases on FDG-PET with Digital PET: Comparison with EOB-MRI. J. Nucl. Med. 2023, 64, P1022. [Google Scholar]
- Masuda, Y.; Kondo, C.; Matsuo, Y.; Uetani, M.; Kusakabe, K. Comparison of Imaging Protocols for 18 F-FDG PET/CT in Overweight Patients: Optimizing Scan Duration Versus Administered Dose. J. Nucl. Med. 2009, 50, 844–848. [Google Scholar] [CrossRef] [PubMed]
- El Fakhri, G.; Surti, S.; Trott, C.M.; Scheuermann, J.; Karp, J.S. Improvement in Lesion Detection with Whole-Body Oncologic Time-of-Flight PET. J. Nucl. Med. 2011, 52, 347–353. [Google Scholar] [CrossRef]
- Creasy, J.M.; Sadot, E.; Koerkamp, B.G.; Chou, J.F.; Gonen, M.; Kemeny, N.E.; Balachandran, V.P.; Kingham, T.P.; DeMatteo, R.P.; Allen, P.J.; et al. Actual 10-Year Survival after Hepatic Resection of Colorectal Liver Metastases: What Factors Preclude Cure? Surgery 2018, 163, 1238–1244. [Google Scholar] [CrossRef]
- Furtado, F.S.; Suarez-Weiss, K.E.; Vangel, M.; Clark, J.W.; Cusack, J.C.; Hong, T.; Blaszkowsky, L.; Wo, J.; Striar, R.; Umutlu, L.; et al. Clinical Impact of PET/MRI in Oligometastatic Colorectal Cancer. Br. J. Cancer 2021, 125, 975–982. [Google Scholar] [CrossRef]
- Bohlok, A.; Lucidi, V.; Bouazza, F.; Daher, A.; Germanova, D.; Van Laethem, J.L.; Hendlisz, A.; Donckier, V. The Lack of Selection Criteria for Surgery in Patients with Non-Colorectal Non-Neuroendocrine Liver Metastases. World J. Surg. Oncol. 2020, 18, 106. [Google Scholar] [CrossRef]
- Flavell, R.R.; Naeger, D.M.; Mari Aparici, C.; Hawkins, R.A.; Pampaloni, M.H.; Behr, S.C. Malignancies with Low Fluorodeoxyglucose Uptake at PET/CT: Pitfalls and Prognostic Importance: Resident and Fellow Education Feature. RadioGraphics 2016, 36, 293–294. [Google Scholar] [CrossRef]
Characteristics | Patients (N = 192) |
---|---|
Age, years | 68.0 (28.0–91.0) |
Male | 107 (55.7%) |
Diabete | 21 (10.9%) |
Blood glucose level, mmol/L a | 5.5 (3.2–10.5) |
BMI, kg/m2 a | 24.5 (13.7–46.6) |
BMI > 30 kg/m2 | 36 (18.8%) |
Steatosis | 24 (12.5%) |
Number of liver lesion | |
1 | 119 (62.0%) |
2 | 32 (16.7%) |
3 | 25 (13.0%) |
4 | 8 (4.2%) |
5 | 8 (4.2%) |
Previous systemic therapy | 71 (37.0%) |
Previous local liver treatment | 21 (10.9%) |
TOF PET/CT camera | 128 (66.7%) |
PET/CT Clinical Indication | |
Initial Staging | 88 (45.8%) |
Progression/Recurrence | 91 (47.4%) |
Systematic Follow-up | 13 (6.8%) |
Characteristics | Benign Lesions (N = 95) | Liver Metastases (N = 235) |
---|---|---|
Lesion size, mm a | 12.0 (3.0–36.0) | 16.0 (5.0–105.0) |
Lesion size < 10 mm | 12/48 (25.0%) | 37/216 (17.1%) |
No measurable lesion b | 47 | 19 |
Histological confirmation | 3 (3.2%) | 60 (25.5%) |
MRI during follow-up | 40 (42.1%) | 120 (51.1%) |
Lesion size during follow-up c | ||
Increase | 0 (0.0%) | 137 (58.3%) |
Decrease under treatment | 0 (0.0%) | 98 (41.7%) |
Spontaneous decrease/disappearance d | 47 (49.5%) | 0 (0.0%) |
Stability | 48 (50.5%) | 0 (0.0%) |
Variable | Beta Coefficient | Sensitivity a, Value (95% CI) | Sensitivity Difference b, Value (95% CI) | p-Value c |
---|---|---|---|---|
PET/CT camera | ||||
Non-TOF | ref | 0.78 (0.68, 0.88) | ref | |
TOF | 0.9837 | 0.91 (0.84, 0.96) | 0.12 (0.01, 0.24) | 0.043 * |
Sex | ||||
Female | ref | 0.87 (0.78, 0.95) | ref | |
Male | −0.1113 | 0.85 (0.78, 0.93) | −0.01 (−0.13, 0.10) | 0.819 |
Liver density | ||||
>40 UH | ref | 0.87 (0.82, 0.93) | ref | |
≤40 UH | −0.8831 | 0.73 (0.54, 0.94) | −0.13 (−0.34, 0.07) | 0.199 |
BMI | ||||
<30 km/m2 | ref | 0.88 (0.83, 0.94) | ref | |
≥30 km/m2 | −1.0795 | 0.72 (0.56, 0.89) | −0.16 (−0.34, 0.01) | 0.069 |
Morphological Imaging | ||||
Lesion ≥ 10 mm | ref | 0.93 (0.88, 0.98) | ref | |
Lesion < 10 mm | −2.4706 | 0.54 (0.37, 0.71) | −0.39 (−0.56, −0.22) | <0.001 * |
No measurable lesion d | −1.3113 | 0.79 (0.63, 0.95) | −0.14 (−0.31, 0.02) | 0.088 |
Variable | Beta Coefficient | Sensitivity Difference a, Value (95% CI) | p-Value b |
---|---|---|---|
Patient Age, +10 years | 0.0002 | 0.01 (−0.05, 0.05) | 0.99 |
Lesion Size, +1 mm | 0.2668 | 0.02 (0.01, 0.03) | <0.001 * |
BMI, +5 kg/m2 | −0.07936 | −0.05 (−0.07, −0.02) | 0.001 * |
Blood Glucose level, +1 mmol/L | −0.2869 | −0.03 (−0.08, 0.01) | 0.155 |
Liver Density, +5 HU | 0.0144 | 0.01 (−0.03, 0.05) | 0.639 |
Variable | Beta Coefficient | Sensitivity a, Value (95% CI) | Sensitivity Difference b, Value (95% CI) | p-Value c |
---|---|---|---|---|
Categorical | ||||
PET/CT camera | ||||
Non-TOF | ref | 0.78 (0.68, 0.88) | ref | |
TOF | 1.39254 | 0.91 (0.87, 0.95) | 0.13 (0.02, 0.24) | 0.02 * |
Morphological Imaging | ||||
Lesion ≥ 10 mm | ref | 0.93 (0.88, 0.98) | ref | |
Lesion < 10 mm | −2.73613 | 0.56 (0.41, 0.71) | −0.37 (−0.53, −0.21) | <0.001 * |
No measurable lesion | −1.27456 | 0.81 (0.68, 0.94) | −0.12 (−0.26, 0.02) | 0.087 |
Continuous | ||||
BMI, +5 kg/m2 | −0.10313 | _ | −0.05 (−0.07, −0.02) | <0.001 * |
Blood Glucose, +1 mmol/L | −0.33174 | _ | −0.03 (−0.07, 0.01) | 0.175 |
Liver Density, +5 HU | −0.03641 | _ | −0.02 (−0.04, 0.01) | 0.117 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habouzit, V.; Flaus, A.; Phelip, J.-M.; Grange, S.; Le Roy, B.; Grange, R.; Prévot, N. Influence of Covariates on 18F-FDG PET/CT Diagnostic Accuracy for Liver Metastasis. Diagnostics 2024, 14, 1466. https://doi.org/10.3390/diagnostics14141466
Habouzit V, Flaus A, Phelip J-M, Grange S, Le Roy B, Grange R, Prévot N. Influence of Covariates on 18F-FDG PET/CT Diagnostic Accuracy for Liver Metastasis. Diagnostics. 2024; 14(14):1466. https://doi.org/10.3390/diagnostics14141466
Chicago/Turabian StyleHabouzit, Vincent, Anthime Flaus, Jean-Marc Phelip, Sylvain Grange, Bertrand Le Roy, Rémi Grange, and Nathalie Prévot. 2024. "Influence of Covariates on 18F-FDG PET/CT Diagnostic Accuracy for Liver Metastasis" Diagnostics 14, no. 14: 1466. https://doi.org/10.3390/diagnostics14141466
APA StyleHabouzit, V., Flaus, A., Phelip, J.-M., Grange, S., Le Roy, B., Grange, R., & Prévot, N. (2024). Influence of Covariates on 18F-FDG PET/CT Diagnostic Accuracy for Liver Metastasis. Diagnostics, 14(14), 1466. https://doi.org/10.3390/diagnostics14141466