Emerging Trends and Recent Progress of MXene as a Promising 2D Material for Point of Care (POC) Diagnostics
Abstract
:1. Introduction
2. Design, Synthesis, and Surface Functionalization of MXenes
2.1. Top-Down Approach
2.1.1. Hydrothermal Method
2.1.2. Ball-Milling Method
2.1.3. Ultrasonication Method
2.2. Bottom-Up Approach
2.2.1. Molten Salt Synthesis
2.2.2. Pyrolysis Method
2.3. Etching Method
2.3.1. Hydrofluoric Acid (HF) Etching
2.3.2. Modified Acid Etching
2.3.3. Modified Fluoride-Based Etching
2.3.4. Molten Salt Etching
2.3.5. Etching without Fluorine-Based Species
3. Properties and Biological Effects of MXenes
3.1. Electrical Properties
3.2. Mechanical Properties
3.3. Thermal Properties
3.4. Magnetic Properties
3.5. Optical Properties
4. Application of MXenes in Point-of-Care Testing
4.1. Electrochemical Biosensors
4.1.1. Enzyme-Based Electrochemical Biosensors
4.1.2. Electrochemical Immunobiosensors
4.1.3. Nucleic Acid-Based Biosensors
4.2. Optical Biosensors
4.2.1. Photoluminescent Biosensors
4.2.2. Electrochemiluminescence Biosensors
4.2.3. Photoelectrochemical Biosensors
4.3. Wearable Biosensors
5. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaushik, A.; Khan, R.; Solanki, P.; Gandhi, S.; Gohel, H.; Mishra, Y.K. From Nanosystems to a Biosensing Prototype for an Efficient Diagnostic: A Special Issue in Honor of Professor Bansi D. Malhotra. Biosensors 2021, 11, 359. [Google Scholar] [CrossRef] [PubMed]
- Yasun, E.; Gandhi, S.; Choudhury, S.; Mohammadinejad, R.; Benyettou, F.; Gozubenli, N.; Arami, H. Hollow Micro and Nanostructures for Therapeutic and Imaging Applications. J. Drug Deliv. Sci. Technol. 2020, 60, 102094. [Google Scholar] [CrossRef] [PubMed]
- Banga, I.; Tyagi, R.; Shahdeo, D.; Gandhi, S. Biosensors and Their Application for the Detection of Avian Influenza Virus. In Nanotechnology in Modern Animal Biotechnology: Concepts and Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–16. [Google Scholar] [CrossRef]
- Nandi, S.; Mondal, A.; Roberts, A.; Gandhi, S. Biosensor Platforms for Rapid HIV Detection. Adv. Clin. Chem. 2020, 98, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Shahdeo, D.; Gandhi, S. Next Generation Biosensors as a Cancer Diagnostic Tool. In Biosensor Based Advanced Cancer Diagnostics: From Lab to Clinics; Academic Press: Cambridge, MA, USA, 2022; pp. 179–196. [Google Scholar] [CrossRef]
- Chouhan, R.S.; Jerman, I.; Heath, D.; Bohm, S.; Gandhi, S.; Sadhu, V.; Baker, S.; Horvat, M. Emerging Tri-s-Triazine-Based Graphitic Carbon Nitride: A Potential Signal-Transducing Nanostructured Material for Sensor Applications. Nano Sel. 2021, 2, 712–743. [Google Scholar] [CrossRef]
- Mishra, P.; Banga, I.; Tyagi, R.; Munjal, T.; Goel, A.; Capalash, N.; Sharma, P.; Suri, C.R.; Gandhi, S. An Immunochromatographic Dipstick as an Alternate for Monitoring of Heroin Metabolites in Urine Samples. RSC Adv. 2018, 8, 23163–23170. [Google Scholar] [CrossRef]
- Shahdeo, D.; Roberts, A.; Archana, G.J.; Shrikrishna, N.S.; Mahari, S.; Nagamani, K.; Gandhi, S. Label Free Detection of SARS CoV-2 Receptor Binding Domain (RBD) Protein by Fabrication of Gold Nanorods Deposited on Electrochemical Immunosensor (GDEI). Biosens. Bioelectron. 2022, 212, 114406. [Google Scholar] [CrossRef] [PubMed]
- Mahari, S.; Roberts, A.; Gandhi, S. Probe-Free Nanosensor for the Detection of Salmonella Using Gold Nanorods as an Electroactive Modulator. Food Chem. 2022, 390, 133219. [Google Scholar] [CrossRef]
- Roberts, A.; Mahari, S.; Gandhi, S. Signal Enhancing Gold Nanorods (GNR) and Antibody Modified Electrochemical Nanosensor for Ultrasensitive Detection of Japanese Encephalitis Virus (JEV) Secretory Non-Structural 1 (NS1) Biomarker. J. Electroanal. Chem. 2022, 919, 116563. [Google Scholar] [CrossRef]
- Rohaizad, N.; Mayorga-Martinez, C.C.; Fojtů, M.; Latiff, N.M.; Pumera, M. Two-Dimensional Materials in Biomedical, Biosensing and Sensing Applications. Chem. Soc. Rev. 2021, 50, 619–657. [Google Scholar] [CrossRef]
- Roberts, A.; Mahari, S.; Shahdeo, D.; Gandhi, S. Label-Free Detection of SARS-CoV-2 Spike S1 Antigen Triggered by Electroactive Gold Nanoparticles on Antibody Coated Fluorine-Doped Tin Oxide (FTO) Electrode. Anal. Chim. Acta 2021, 1188, 339207. [Google Scholar] [CrossRef]
- Khazaei, M.; Mishra, A.; Venkataramanan, N.S.; Singh, A.K.; Yunoki, S. Recent Advances in MXenes: From Fundamentals to Applications. Curr. Opin. Solid State Mater. Sci. 2019, 23, 164–178. [Google Scholar] [CrossRef]
- Parihar, A.; Singhal, A.; Kumar, N.; Khan, R.; Khan, M.A.; Srivastava, A.K. Next-Generation Intelligent MXene-Based Electrochemical Aptasensors for Point-of-Care Cancer Diagnostics. Nano-Micro Lett. 2022, 14, 100. [Google Scholar] [CrossRef]
- Yoon, J.; Shin, M.; Lim, J.; Lee, J.Y.; Choi, J.W. Recent Advances in MXene Nanocomposite-Based Biosensors. Biosensors 2020, 10, 185. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Tong, P.; Huang, L.; Yu, Z.; Tang, D. Ti3C2 MXene Nanosheet-Based Capacitance Immunoassay with Tyramine-Enzyme Repeats to Detect Prostate-Specific Antigen on Interdigitated Micro-Comb Electrode. Electrochim. Acta 2019, 319, 375–381. [Google Scholar] [CrossRef]
- Sarycheva, A.; Makaryan, T.; Maleski, K.; Satheeshkumar, E.; Melikyan, A.; Minassian, H.; Yoshimura, M.; Gogotsi, Y. Two-Dimensional Titanium Carbide (MXene) as Surface-Enhanced Raman Scattering Substrate. J. Phys. Chem. C 2017, 121, 19983–19988. [Google Scholar] [CrossRef]
- Qurat ul Ain, Z.; Ullah, S.; Shahzad, F.; Qiu, B.; Fang, X.; Ammar, A.; Luo, Z.; Abbas Zaidi, S. MXene-Based Aptasensors: Advances, Challenges, and Prospects. Prog. Mater. Sci. 2022, 129, 100967. [Google Scholar] [CrossRef]
- Zhang, C.; Cui, L.; Abdolhosseinzadeh, S.; Heier, J. Two-Dimensional MXenes for Lithium-Sulfur Batteries. InfoMat 2020, 2, 613–638. [Google Scholar] [CrossRef]
- Ye, Z.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. Enhanced Catalytic Conversion of Polysulfide Using 1D CoTe and 2D MXene for Heat-Resistant and Lean-Electrolyte Li–S Batteries. Chem. Eng. J. 2022, 430, 132734. [Google Scholar] [CrossRef]
- Shuck, C.E.; Sarycheva, A.; Anayee, M.; Levitt, A.; Zhu, Y.; Uzun, S.; Balitskiy, V.; Zahorodna, V.; Gogotsi, O.; Gogotsi, Y. Scalable Synthesis of Ti3C2Tx MXene. Adv. Eng. Mater. 2022, 22, 1901241. [Google Scholar] [CrossRef]
- Zhan, X.; Si, C.; Zhou, J.; Sun, Z. MXene and MXene-Based Composites: Synthesis, Properties and Environment-Related Applications. Nanoscale Horiz. 2020, 5, 235–258. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, P.; Soomro, R.A.; Zhu, Q.; Xu, B. Advances in the Synthesis of 2D MXenes. Adv. Mater. 2021, 33, 2103148. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Chen, Y.; Wang, N.; He, Z. Magnesium Doped Carbon Quantum Dots Synthesized by Mechanical Ball Milling and Displayed Fe3+ Sensing. Mater. Technol. 2018, 34, 336–342. [Google Scholar] [CrossRef]
- Xue, Q.; Zhang, H.; Zhu, M.; Pei, Z.; Li, H.; Wang, Z.; Huang, Y.; Huang, Y.; Deng, Q.; Zhou, J.; et al. Photoluminescent Ti3C2 MXene Quantum Dots for Multicolor Cellular Imaging. Adv. Mater. 2017, 29, 1604847. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Sun, X.; Xu, W.; Pan, G.; Zhou, D.; Zhu, J.; Wang, H.; Bai, X.; Dong, B.; Song, H. Ratiometric Photoluminescence Sensing Based on Ti3C2 MXene Quantum Dots as an Intracellular PH Sensor. Nanoscale 2018, 10, 1111–1118. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Jiang, X.; Li, G.; Yao, Q.; Lee, J.Y. A Red-Phosphorous-Assisted Ball-Milling Synthesis of Few-Layered Ti3C2Tx (MXene) Nanodot Composite. ChemNanoMat 2018, 4, 56–60. [Google Scholar] [CrossRef]
- Yu, X.; Cai, X.; Cui, H.; Lee, S.W.; Yu, X.F.; Liu, B. Fluorine-Free Preparation of Titanium Carbide MXene Quantum Dots with High Near-Infrared Photothermal Performances for Cancer Therapy. Nanoscale 2017, 9, 17859–17864. [Google Scholar] [CrossRef]
- Han, M.; Yang, J.; Jiang, J.; Jing, R.; Ren, S.; Yan, C. Efficient Tuning the Electronic Structure of N-Doped Ti-Based MXene to Enhance Hydrogen Evolution Reaction. J. Colloid Interface Sci. 2021, 582, 1099–1106. [Google Scholar] [CrossRef]
- Xu, Q.; Cai, W.; Li, W.; Sreeprasad, T.S.; He, Z.; Ong, W.J.; Li, N. Two-Dimensional Quantum Dots: Fundamentals, Photoluminescence Mechanism and Their Energy and Environmental Applications. Mater. Today Energy 2018, 10, 222–240. [Google Scholar] [CrossRef]
- Shao, B.; Liu, Z.; Zeng, G.; Wang, H.; Liang, Q.; He, Q.; Cheng, M.; Zhou, C.; Jiang, L.; Song, B. Two-Dimensional Transition Metal Carbide and Nitride (MXene) Derived Quantum Dots (QDs): Synthesis, Properties, Applications and Prospects. J. Mater. Chem. A 2020, 8, 7508–7535. [Google Scholar] [CrossRef]
- Cheng, H.; Ding, L.-X.; Chen, G.-F.; Zhang, L.; Xue, J.; Wang, H.; Cheng, H.; Ding, L.; Chen, G.; Zhang, L.; et al. Molybdenum Carbide Nanodots Enable Efficient Electrocatalytic Nitrogen Fixation under Ambient Conditions. Adv. Mater. 2018, 30, 1803694. [Google Scholar] [CrossRef]
- Liu, L.; Orbay, M.; Luo, S.; Duluard, S.; Shao, H.; Harmel, J.; Rozier, P.; Taberna, P.L.; Simon, P. Exfoliation and Delamination of Ti3C2Tx MXene Prepared via Molten Salt Etching Route. ACS Nano 2022, 16, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, M.; Hou, J.; Lu, K.; Yue, X.; Li, Y.; Chen, L.; Liu, Z.; Yang, X. Molten Salt Method Synthesis of Multivalent Cobalt and Oxygen Vacancy Modified Nitrogen-Doped MXene as Highly Efficient Hydrogen and Oxygen Evolution Reaction Electrocatalysts. J. Colloid Interface Sci. 2022, 615, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, C.; Han, X.; Liu, D.; Zhao, H.; Li, Z.; Xu, P.; Du, Y. Ultrasmall Mo2C Nanoparticle-Decorated Carbon Polyhedrons for Enhanced Microwave Absorption. ACS Appl. Nano Mater. 2018, 1, 5366–5376. [Google Scholar] [CrossRef]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef]
- Alhabeb, M.; Maleski, K.; Mathis, T.S.; Sarycheva, A.; Hatter, C.B.; Uzun, S.; Levitt, A.; Gogotsi, Y. Selective Etching of Silicon from Ti3SiC2 (MAX) To Obtain 2D Titanium Carbide (MXene). Angew. Chem. Int. Ed. 2018, 57, 5444–5448. [Google Scholar] [CrossRef]
- Srivastava, P.; Mishra, A.; Mizuseki, H.; Lee, K.R.; Singh, A.K. Mechanistic Insight into the Chemical Exfoliation and Functionalization of Ti3C2 MXene. ACS Appl. Mater. Interfaces 2016, 8, 24256–24264. [Google Scholar] [CrossRef]
- Cockreham, C.B.; Zhang, X.; Li, H.; Hammond-Pereira, E.; Sun, J.; Saunders, S.R.; Wang, Y.; Xu, H.; Wu, D. Inhibition of AlF3·3H2O Impurity Formation in Ti3C2Tx MXene Synthesis under a Unique CoFx/HCl Etching Environment. ACS Appl. Energy Mater. 2019, 2, 8145–8152. [Google Scholar] [CrossRef]
- Rahman, U.U.; Humayun, M.; Ghani, U.; Usman, M.; Ullah, H.; Khan, A.; El-Metwaly, N.M.; Khan, A. MXenes as Emerging Materials: Synthesis, Properties, and Applications. Molecules 2022, 27, 4909. [Google Scholar] [CrossRef]
- Kumar, S.; Kang, D.; Hong, H.; Rehman, M.A.; Lee, Y.J.; Lee, N.; Seo, Y. Effect of Ti3C2Tx MXenes Etched at Elevated Temperatures Using Concentrated Acid on Binder-Free Supercapacitors. RSC Adv. 2020, 10, 41837–41845. [Google Scholar] [CrossRef]
- Luo, J.; Matios, E.; Wang, H.; Tao, X.; Li, W. Interfacial Structure Design of MXene-Based Nanomaterials for Electrochemical Energy Storage and Conversion. InfoMat 2020, 2, 1057–1076. [Google Scholar] [CrossRef]
- Yu, H.; Wang, Y.; Jing, Y.; Ma, J.; Du, C.F.; Yan, Q. Surface Modified MXene-Based Nanocomposites for Electrochemical Energy Conversion and Storage. Small 2019, 15, 1901503. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Yao, L.; Liu, Q.; Gu, J.; Luo, R.; Li, J.; Yan, X.; Wang, W.; Liu, P.; Chen, B.; et al. Fluorine-Free Synthesis of High-Purity Ti3C2Tx (T=OH, O) via Alkali Treatment. Angew. Chem. Int. Ed. 2018, 57, 6115–6119. [Google Scholar] [CrossRef]
- Tran, M.H.; Schäfer, T.; Shahraei, A.; Dürrschnabel, M.; Molina-Luna, L.; Kramm, U.I.; Birkel, C.S. Adding a New Member to the MXene Family: Synthesis, Structure, and Electrocatalytic Activity for the Hydrogen Evolution Reaction of V4C3Tx. ACS Appl. Energy Mater. 2018, 1, 3908–3914. [Google Scholar] [CrossRef]
- Feng, A.; Yu, Y.; Jiang, F.; Wang, Y.; Mi, L.; Yu, Y.; Song, L. Fabrication and Thermal Stability of NH4HF2-Etched Ti3C2 MXene. Ceram. Int. 2017, 43, 6322–6328. [Google Scholar] [CrossRef]
- Wang, G. Theoretical Prediction of the Intrinsic Half-Metallicity in Surface-Oxygen-Passivated Cr2N MXene. J. Phys. Chem. C 2016, 120, 18850–18857. [Google Scholar] [CrossRef]
- Zhou, J.; Zha, X.; Chen, F.Y.; Ye, Q.; Eklund, P.; Du, S.; Huang, Q.; Zhou, J.; Zha, X.H.; Chen, F.Y.; et al. A Two-Dimensional Zirconium Carbide by Selective Etching of Al3C3 from Nanolaminated Zr3Al3C5. Angew. Chem. Int. Ed. 2016, 55, 5008–5013. [Google Scholar] [CrossRef]
- Qiu, F.; Wang, Z.; Liu, M.; Wang, Z.; Ding, S. Synthesis, Characterization and Microwave Absorption of MXene/NiFe2O4 Composites. Ceram. Int. 2021, 47, 24713–24720. [Google Scholar] [CrossRef]
- Gao, X.; Jia, Z.; Wang, B.; Wu, X.; Sun, T.; Liu, X.; Chi, Q.; Wu, G. Synthesis of NiCo-LDH/MXene Hybrids with Abundant Heterojunction Surfaces as a Lightweight Electromagnetic Wave Absorber. Chem. Eng. J. 2021, 419, 130019. [Google Scholar] [CrossRef]
- Lim, G.P.; Soon, C.F.; Jastrzębska, A.M.; Ma, N.L.; Wojciechowska, A.R.; Szuplewska, A.; Wan Omar, W.I.; Morsin, M.; Nayan, N.; Tee, K.S. Synthesis, Characterization and Biophysical Evaluation of the 2D Ti2CTx MXene Using 3D Spheroid-Type Cultures. Ceram. Int. 2021, 47, 22567–22577. [Google Scholar] [CrossRef]
- Jolly, S.; Paranthaman, M.P.; Naguib, M. Synthesis of Ti3C2Tz MXene from Low-Cost and Environmentally Friendly Precursors. Mater. Today Adv. 2021, 10, 100139. [Google Scholar] [CrossRef]
- Zou, X.; Liu, H.; Xu, H.; Wu, X.; Han, X.; Kang, J.; Reddy, K.M. A Simple Approach to Synthesis Cr2CTx MXene for Efficient Hydrogen Evolution Reaction. Mater. Today Energy 2021, 20, 100668. [Google Scholar] [CrossRef]
- Quyen, V.T.; Ha, L.T.T.; Thanh, D.M.; Van Le, Q.; Viet, N.M.; Nham, N.T.; Thang, P.Q. Advanced Synthesis of MXene-Derived Nanoflower-Shaped TiO2@Ti3C2 Heterojunction to Enhance Photocatalytic Degradation of Rhodamine B. Environ. Technol. Innov. 2021, 21, 101286. [Google Scholar] [CrossRef]
- Guo, Y.; Jin, S.; Wang, L.; He, P.; Hu, Q.; Fan, L.Z.; Zhou, A. Synthesis of Two-Dimensional Carbide Mo2CTx MXene by Hydrothermal Etching with Fluorides and Its Thermal Stability. Ceram. Int. 2020, 46, 19550–19556. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, J.; Guo, D.; Li, Z.; Su, Y. Ti3C2Tx MXene/Graphene Nanocomposites: Synthesis and Application in Electrochemical Energy Storage. J. Alloys Compd. 2020, 815, 152403. [Google Scholar] [CrossRef]
- Xu, Q.; Chen, S.; Xu, J.; Duan, X.; Lu, L.; Tian, Q.; Zhang, X.; Cai, Y.; Lu, X.; Rao, L.; et al. Facile Synthesis of Hierarchical MXene/ZIF-67/CNTs Composite for Electrochemical Sensing of Luteolin. J. Electroanal. Chem. 2021, 880, 114765. [Google Scholar] [CrossRef]
- Prasad, C.; Yang, X.; Liu, Q.; Tang, H.; Rammohan, A.; Zulfiqar, S.; Zyryanov, G.V.; Shah, S. Recent Advances in MXenes Supported Semiconductors Based Photocatalysts: Properties, Synthesis and Photocatalytic Applications. J. Ind. Eng. Chem. 2020, 85, 1–33. [Google Scholar] [CrossRef]
- Kumar, J.A.; Prakash, P.; Krithiga, T.; Amarnath, D.J.; Premkumar, J.; Rajamohan, N.; Vasseghian, Y.; Saravanan, P.; Rajasimman, M. Methods of Synthesis, Characteristics, and Environmental Applications of MXene: A Comprehensive Review. Chemosphere 2022, 286, 131607. [Google Scholar] [CrossRef]
- Shahdeo, D.; Chauhan, N.; Majumdar, A.; Ghosh, A.; Gandhi, S. Graphene-Based Field-Effect Transistor for Ultrasensitive Immunosensing of SARS-CoV-2 Spike S1 Antigen. ACS Appl. Bio Mater. 2022, 5, 3563–3572. [Google Scholar] [CrossRef]
- Mahari, S.; Gandhi, S. Electrochemical Immunosensor for Detection of Avian Salmonellosis Based on Electroactive Reduced Graphene Oxide (RGO) Modified Electrode. Bioelectrochemistry 2022, 144, 108036. [Google Scholar] [CrossRef]
- Dey, J.; Roberts, A.; Mahari, S.; Gandhi, S.; Tripathi, P.P. Electrochemical Detection of Alzheimer’s Disease Biomarker, β-Secretase Enzyme (BACE1), with One-Step Synthesized Reduced Graphene Oxide. Front. Bioeng. Biotechnol. 2022, 10, 873811. [Google Scholar] [CrossRef]
- Kong, F.; He, X.; Liu, Q.; Qi, X.; Zheng, Y.; Wang, R.; Bai, Y. Improving the Electrochemical Properties of MXene Ti3C2 Multilayer for Li-Ion Batteries by Vacuum Calcination. Electrochim. Acta 2018, 265, 140–150. [Google Scholar] [CrossRef]
- Kayali, E.; Vahidmohammadi, A.; Orangi, J.; Beidaghi, M. Controlling the Dimensions of 2D MXenes for Ultrahigh-Rate Pseudocapacitive Energy Storage. ACS Appl. Mater. Interfaces 2018, 10, 25949–25954. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Anasori, B.; Seral-Ascaso, A.; Park, S.-H.; McEvoy, N.; Shmeliov, A.; Duesberg, G.S.; Coleman, J.N.; Gogotsi, Y.; Nicolosi, V. Transparent, Flexible, and Conductive 2D Titanium Carbide (MXene) Films with High Volumetric Capacitance. Adv. Mater. 2017, 29, 1702678. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.J.; Zhang, J.Z.; Liu, Y.J.; Wang, L.L. Novel Electrochemical Sensing Platform Based on Molybdenum Disulfide Nanosheets-Polyaniline Composites and Au Nanoparticles. Sens. Actuators B Chem. 2014, 194, 303–310. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The Chemistry of Graphene Oxide. Chem. Soc. Rev. 2009, 39, 228–240. [Google Scholar] [CrossRef]
- Lin, H.; Wang, X.; Yu, L.; Chen, Y.; Shi, J. Two-Dimensional Ultrathin MXene Ceramic Nanosheets for Photothermal Conversion. Nano Lett. 2017, 17, 384–391. [Google Scholar] [CrossRef]
- Wu, L.; Lu, X.; Wu, Z.S.; Dong, Y.; Wang, X.; Zheng, S.; Chen, J. 2D Transition Metal Carbide MXene as a Robust Biosensing Platform for Enzyme Immobilization and Ultrasensitive Detection of Phenol. Biosens. Bioelectron. 2018, 107, 69–75. [Google Scholar] [CrossRef]
- Hu, H.; Zavabeti, A.; Quan, H.; Zhu, W.; Wei, H.; Chen, D.; Ou, J.Z. Recent Advances in Two-Dimensional Transition Metal Dichalcogenides for Biological Sensing. Biosens. Bioelectron. 2019, 142, 111573. [Google Scholar] [CrossRef]
- Lee, D.W.; Lee, J.; Sohn, I.Y.; Kim, B.Y.; Son, Y.M.; Bark, H.; Jung, J.; Choi, M.; Kim, T.H.; Lee, C.; et al. Field-Effect Transistor with a Chemically Synthesized MoS2 Sensing Channel for Label-Free and Highly Sensitive Electrical Detection of DNA Hybridization. Nano Res. 2015, 8, 2340–2350. [Google Scholar] [CrossRef]
- Lawal, A.T. Graphene-Based Nano Composites and Their Applications. A Review. Biosens. Bioelectron. 2019, 141, 111384. [Google Scholar] [CrossRef]
- Kuila, T.; Bose, S.; Khanra, P.; Mishra, A.K.; Kim, N.H.; Lee, J.H. Recent Advances in Graphene-Based Biosensors. Biosens. Bioelectron. 2011, 26, 4637–4648. [Google Scholar] [CrossRef] [PubMed]
- Maleski, K.; Mochalin, V.N.; Gogotsi, Y. Dispersions of Two-Dimensional Titanium Carbide MXene in Organic Solvents. Chem. Mater. 2017, 29, 1632–1640. [Google Scholar] [CrossRef]
- Li, D.; Müller, M.B.; Gilje, S.; Kaner, R.B.; Wallace, G.G. Processable Aqueous Dispersions of Graphene Nanosheets. Nat. Nanotechnol. 2008, 3, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhou, X.; Wang, D.; Xu, X.; Xu, Q. Nanomechanical Properties of Ti3C2 Mxene. Langmuir. 2019, 35, 14481–14485. [Google Scholar] [CrossRef] [PubMed]
- Jeong, G.H.; Sasikala, S.P.; Yun, T.; Lee, G.Y.; Lee, W.J.; Kim, S.O. Nanoscale Assembly of 2D Materials for Energy and Environmental Applications. Adv. Mater. 2020, 32, 1907006. [Google Scholar] [CrossRef]
- Xu, H.; Ren, A.; Wu, J.; Wang, Z. Recent Advances in 2D MXenes for Photodetection. Adv. Funct. Mater. 2020, 30, 2000907. [Google Scholar] [CrossRef]
- Huang, X.; Yin, Z.; Wu, S.; Qi, X.; He, Q.; Zhang, Q.; Yan, Q.; Boey, F.; Zhang, H. Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications. Small 2011, 7, 1876–1902. [Google Scholar] [CrossRef]
- Nasrallah, G.K.; Al-Asmakh, M.; Rasool, K.; Mahmoud, K.A. Ecotoxicological Assessment of Ti3C2Tx (MXene) Using a Zebrafish Embryo Model. Environ Sci Nano 2018, 5, 1002–1011. [Google Scholar] [CrossRef]
- Lin, H.; Gao, S.; Dai, C.; Chen, Y.; Shi, J. A Two-Dimensional Biodegradable Niobium Carbide (MXene) for Photothermal Tumor Eradication in NIR-I and NIR-II Biowindows. J. Am. Chem. Soc. 2017, 139, 16235–16247. [Google Scholar] [CrossRef]
- Lim, C.T. Biocompatibility and Nanotoxicity of Layered Two-Dimensional Nanomaterials. ChemNanoMat 2017, 3, 5–16. [Google Scholar] [CrossRef]
- Appel, J.H.; Li, D.O.; Podlevsky, J.D.; Debnath, A.; Green, A.A.; Wang, Q.H.; Chae, J. Low Cytotoxicity and Genotoxicity of Two-Dimensional MoS2 and WS2. ACS Biomater. Sci. Eng. 2016, 2, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.M.; Gonçalves, I.C.; Magalhães, F.D. Graphene-Based Materials Biocompatibility: A Review. Colloids Surf. B Biointerfaces 2013, 111, 188–202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.J.; Pinilla, S.; McEvoy, N.; Cullen, C.P.; Anasori, B.; Long, E.; Park, S.H.; Seral-Ascaso, A.; Shmeliov, A.; Krishnan, D.; et al. Oxidation Stability of Colloidal Two-Dimensional Titanium Carbides (MXenes). Chem. Mater. 2017, 29, 4848–4856. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Ou, J.Z. Biosensors Based on Two-Dimensional MoS2. ACS Sens. 2016, 1, 5–16. [Google Scholar] [CrossRef]
- Yeh, C.N.; Raidongia, K.; Shao, J.; Yang, Q.H.; Huang, J. On the Origin of the Stability of Graphene Oxide Membranes in Water. Nat. Chem. 2015, 7, 166–170. [Google Scholar] [CrossRef]
- Girit, Ç.Ö.; Meyer, J.C.; Erni, R.; Rossell, M.D.; Kisielowski, C.; Yang, L.; Park, C.H.; Crommie, M.F.; Cohen, M.L.; Louie, S.G.; et al. Graphene at the Edge: Stability and Dynamics. Science 2009, 323, 1705–1708. [Google Scholar] [CrossRef]
- Huang, Z.; Lui, B.; Liu, J. MXene Ti3C2: Mn2+-Assisted DNA Oligonucleotide Adsorption on Ti2C MXene Nanosheets. Langmuir 2019, 35, 9858–9866. [Google Scholar] [CrossRef]
- Xuan, J.; Wang, Z.; Chen, Y.; Liang, D.; Cheng, L.; Yang, X.; Liu, Z.; Ma, R.; Sasaki, T.; Geng, F. Organic-Base-Driven Intercalation and Delamination for the Production of Functionalized Titanium Carbide Nanosheets with Superior Photothermal Therapeutic Performance. Angew. Chem. Int. Ed. 2016, 55, 14569–14574. [Google Scholar] [CrossRef]
- Li, X.; Guo, S.; Kan, C.; Zhu, J.; Tong, T.; Ke, S.; Choy, W.C.H.; Wei, B. Au Multimer@MoS2 Hybrid Structures for Efficient Photocatalytical Hydrogen Production via Strongly Plasmonic Coupling Effect. Nano Energy 2016, 30, 549–558. [Google Scholar] [CrossRef]
- Liu, X.; Shuai, H.L.; Liu, Y.J.; Huang, K.J. An Electrochemical Biosensor for DNA Detection Based on Tungsten Disulfide/Multi-Walled Carbon Nanotube Composites and Hybridization Chain Reaction Amplification. Sens. Actuators B Chem. 2016, 235, 603–613. [Google Scholar] [CrossRef]
- Li, R.; Guiney, L.M.; Chang, C.H.; Mansukhani, N.D.; Ji, Z.; Wang, X.; Liao, Y.P.; Jiang, W.; Sun, B.; Hersam, M.C.; et al. Surface Oxidation of Graphene Oxide Determines Membrane Damage, Lipid Peroxidation, and Cytotoxicity in Macrophages in a Pulmonary Toxicity Model. ACS Nano 2018, 12, 1390–1402. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lu, Y.; Liu, Q. Electrochemical and Optical Biosensors Based on Multifunctional MXene Nanoplatforms: Progress and Prospects. Talanta 2021, 235, 122726. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhang, L.; Shi, L.; Wang, P. MXene Ti3C2: An Effective 2D Light-to-Heat Conversion Material. ACS Nano 2017, 11, 3752–3759. [Google Scholar] [CrossRef] [PubMed]
- Naguib, M.; Mochalin, V.N.; Barsoum, M.W.; Gogotsi, Y. 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials. Adv. Mater. 2014, 26, 992–1005. [Google Scholar] [CrossRef]
- Kim, H.; Anasori, B.; Gogotsi, Y.; Alshareef, H.N. Thermoelectric Properties of Two-Dimensional Molybdenum-Based MXenes. Chem. Mater. 2017, 29, 6472–6479. [Google Scholar] [CrossRef]
- Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Transition Metal Carbides. ACS Nano 2012, 6, 1322–1331. [Google Scholar] [CrossRef]
- Borysiuk, V.N.; Mochalin, V.N.; Gogotsi, Y. Molecular Dynamic Study of the Mechanical Properties of Two-Dimensional Titanium Carbides Tin+1Cn (MXenes). Nanotechnology 2015, 26, 265705. [Google Scholar] [CrossRef]
- Ling, Z.; Ren, C.E.; Zhao, M.Q.; Yang, J.; Giammarco, J.M.; Qiu, J.; Barsoum, M.W.; Gogotsi, Y. Flexible and Conductive MXene Films and Nanocomposites with High Capacitance. Proc. Natl. Acad. Sci. USA 2014, 111, 16676–16681. [Google Scholar] [CrossRef]
- Zhang, N.; Hong, Y.; Yazdanparast, S.; Zaeem, M.A. Superior Structural, Elastic and Electronic Properties of 2D Titanium Nitride MXenes over Carbide MXenes: A Comprehensive First Principles Study. 2D Mater. 2018, 5, 045004. [Google Scholar] [CrossRef]
- Borysiuk, V.N.; Mochalin, V.N.; Gogotsi, Y. Bending Rigidity of Two-Dimensional Titanium Carbide (MXene) Nanoribbons: A Molecular Dynamics Study. Comput. Mater. Sci. 2018, 143, 418–424. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Y.; Yuan, X.; Zeng, G.; Zhou, J.; Wang, X.; Chew, J.W.; Wang, H.; Wu, Y.; Wang, X.; et al. Clay-Inspired MXene-Based Electrochemical Devices and Photo-Electrocatalyst: State-of-the-Art Progresses and Challenges. Adv. Mater. 2018, 30, 1704561. [Google Scholar] [CrossRef]
- Zha, X.H.; Zhou, J.; Zhou, Y.; Huang, Q.; He, J.; Francisco, J.S.; Luo, K.; Du, S. Promising Electron Mobility and High Thermal Conductivity in Sc2CT2 (T=F, OH) MXenes. Nanoscale 2016, 8, 6110–6117. [Google Scholar] [CrossRef] [PubMed]
- Luo, K.; Zha, X.H.; Zhou, Y.; Guo, Z.; Lin, C.-T.; Huang, Q.; Zhou, S.; Zhang, R.; Du, S. First-Principles Study on the Electrical and Thermal Properties of the Semiconducting Sc3(CN)F2 MXene. RSC Adv. 2018, 8, 22452–22459. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Shi, X.; Yu, N.; Zhang, X.; Du, X.; Lin, J. Measurement and Analysis of Thermal Conductivity of Ti3C2Tx MXene Films. Materials 2018, 11, 1701. [Google Scholar] [CrossRef]
- Urbankowski, P.; Anasori, B.; Makaryan, T.; Er, D.; Kota, S.; Walsh, P.L.; Zhao, M.; Shenoy, V.B.; Barsoum, M.W.; Gogotsi, Y. Synthesis of Two-Dimensional Titanium Nitride Ti4N3 (MXene). Nanoscale 2016, 8, 11385–11391. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Luo, K.; Huang, C.; Wu, W.; Meng, P.; Liu, Y.; Kan, E. Theoretical Understanding of Magnetic and Electronic Structures of Ti3C2 Monolayer and Its Derivatives. Solid State Commun. 2015, 222, 9–13. [Google Scholar] [CrossRef]
- Yue, Y. Fe2C Monolayer: An Intrinsic Ferromagnetic MXene. J. Magn. Magn. Mater. 2017, 434, 164–168. [Google Scholar] [CrossRef]
- Zou, X.; Li, G.; Wang, Q.; Tang, D.; Wu, B.; Wang, X. Energy Storage Properties of Selectively Functionalized Cr-Group MXenes. Comput. Mater. Sci. 2018, 150, 236–243. [Google Scholar] [CrossRef]
- Shein, I.R.; Ivanovskii, A.L. Graphene-like Titanium Carbides and Nitrides Tin+1Cn, Tin+1Nn (n = 1, 2, and 3) from de-Intercalated MAX Phases: First-Principles Probing of Their Structural, Electronic Properties and Relative Stability. Comput. Mater. Sci. 2012, 65, 104–114. [Google Scholar] [CrossRef]
- Gao, G.; Ding, G.; Li, J.; Yao, K.; Wu, M.; Qian, M. Monolayer MXenes: Promising Half-Metals and Spin Gapless Semiconductors. Nanoscale 2016, 8, 8986–8994. [Google Scholar] [CrossRef]
- Meng, Q.; Ma, J.; Zhang, Y.; Li, Z.; Hu, A.; Kai, J.J.; Fan, J. Theoretical Investigation of Zirconium Carbide MXenes as Prospective High Capacity Anode Materials for Na-Ion Batteries. J. Mater. Chem. A 2018, 6, 13652–13660. [Google Scholar] [CrossRef]
- Shein, I.R.; Ivanovskii, A.L. Graphene-like Nanocarbides and Nanonitrides of d Metals (MXenes): Synthesis, Properties and Simulation. Micro Nano Lett. 2013, 8, 59–62. [Google Scholar] [CrossRef]
- Kumar, H.; Frey, N.C.; Dong, L.; Anasori, B.; Gogotsi, Y.; Shenoy, V.B. Tunable Magnetism and Transport Properties in Nitride MXenes. ACS Nano 2017, 11, 7648–7655. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.C.; Zhang, X.; Zhou, Z. Recent Advances in MXene: Preparation, Properties, and Applications. Front. Phys. 2015, 10, 276–286. [Google Scholar] [CrossRef]
- Chertopalov, S.; Mochalin, V.N. Environment-Sensitive Photoresponse of Spontaneously Partially Oxidized Ti3C2 MXene Thin Films. ACS Nano 2018, 12, 6109–6116. [Google Scholar] [CrossRef] [PubMed]
- Hantanasirisakul, K.; Zhao, M.Q.; Urbankowski, P.; Halim, J.; Anasori, B.; Kota, S.; Ren, C.E.; Barsoum, M.W.; Gogotsi, Y. Fabrication of Ti3C2Tx MXene Transparent Thin Films with Tunable Optoelectronic Properties. Adv. Electron. Mater. 2016, 2, 1600050. [Google Scholar] [CrossRef]
- Ying, G.; Kota, S.; Dillon, A.D.; Fafarman, A.T.; Barsoum, M.W. Conductive Transparent V2CTx (MXene) Films. FlatChem 2018, 8, 25–30. [Google Scholar] [CrossRef]
- Berdiyorov, G.R. Optical Properties of Functionalized Ti3C2T2 (T=F, O, OH) MXene: First-Principles Calculations. AIP Adv. 2016, 6, 055105. [Google Scholar] [CrossRef]
- Maleski, K.; Ren, C.E.; Zhao, M.Q.; Anasori, B.; Gogotsi, Y. Size-Dependent Physical and Electrochemical Properties of Two-Dimensional MXene Flakes. ACS Appl. Mater. Interfaces 2018, 10, 24491–24498. [Google Scholar] [CrossRef]
- Huang, K.; Li, Z.; Lin, J.; Han, G.; Huang, P. Two-Dimensional Transition Metal Carbides and Nitrides (MXenes) for Biomedical Applications. Chem. Soc. Rev. 2018, 47, 5109–5124. [Google Scholar] [CrossRef]
- Ranjbari, S.; Darroudi, M.; Hatamluyi, B.; Arefinia, R.; Aghaee-Bakhtiari, S.H.; Rezayi, M.; Khazaei, M. Application of MXene in the Diagnosis and Treatment of Breast Cancer: A Critical Overview. Front. Bioeng. Biotechnol. 2022, 10, 1472. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Zhao, H.; Zhang, X.; Chen, Y.; Feng, L. New Horizons for MXenes in Biosensing Applications. Biosensors 2022, 12, 820. [Google Scholar] [CrossRef] [PubMed]
- Sinha, A.; Zhao, H.; Huang, Y.; Lu, X.; Chen, J.; Jain, R. MXene: An emerging material for sensing and biosensing. TrAC, Trends Anal. Chem. 2018, 105, 424–435. [Google Scholar] [CrossRef]
- Bhattarai, P.; Hameed, S. Basics of Biosensors and Nanobiosensors. In Nanobiosensors: From Design to Applications; Wu, A., Khan, W.S., Eds.; Wiley-VCH: Hoboken, NJ, USA, 2020; pp. 1–22. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Wang, F.; Zhang, Y.; Wang, H.; Liu, Y. Ti3C2 MXene Mediated Prussian Blue In Situ Hybridization and Electrochemical Signal Amplification for the Detection of Exosomes. Talanta 2021, 224, 121879. [Google Scholar] [CrossRef]
- Zhao, J.; He, C.; Wu, W.; Yang, H.; Dong, J.; Wen, L.; Hu, Z.; Yang, M.; Hou, C.; Huo, D. MXene-MoS2 Heterostructure Collaborated with Catalyzed Hairpin Assembly for Label-Free Electrochemical Detection of MicroRNA-21. Talanta 2022, 237, 122927. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, X.; Ding, C.; Luo, X. Ratiometric Antifouling Electrochemical Biosensors Based on Multifunctional Peptides and MXene Loaded with Au Nanoparticles and Methylene Blue. ACS Appl. Mater. Interfaces 2021, 13, 20388–20396. [Google Scholar] [CrossRef]
- Vajhadin, F.; Mazloum-Ardakani, M.; Shahidi, M.; Moshtaghioun, S.M.; Haghiralsadat, F.; Ebadi, A.; Amini, A. MXene-Based Cytosensor for the Detection of HER2-Positive Cancer Cells Using CoFe2O4@Ag Magnetic Nanohybrids Conjugated to the HB5 Aptamer. Biosens. Bioelectron. 2022, 195, 113626. [Google Scholar] [CrossRef]
- Li, Y.; Peng, Z.; Holl, N.J.; Hassan, M.R.; Pappas, J.M.; Wei, C.; Izadi, O.H.; Wang, Y.; Dong, X.; Wang, C.; et al. MXene-Graphene Field-Effect Transistor Sensing of Influenza Virus and SARS-CoV-2. ACS Omega 2021, 6, 6643–6653. [Google Scholar] [CrossRef]
- Yu, Z.; Jiang, L.; Liu, R.; Zhao, W.; Yang, Z.; Zhang, J.; Jin, S. Versatile Self-Assembled MXene-Au Nanocomposites for SERS Detection of Bacteria, Antibacterial and Photothermal Sterilization. Chem. Eng. J. 2021, 426, 131914. [Google Scholar] [CrossRef]
- Wu, Q.; Li, N.; Wang, Y.; Liu, Y.; Xu, Y.; Wei, S.; Wu, J.; Jia, G.; Fang, X.; Chen, F.; et al. A 2D Transition Metal Carbide MXene-Based SPR Biosensor for Ultrasensitive Carcinoembryonic Antigen Detection. Biosens. Bioelectron. 2019, 144, 111697. [Google Scholar] [CrossRef]
- Luo, W.; Liu, H.; Liu, X.; Liu, L.; Zhao, W. Biocompatibility Nanoprobe of MXene N-Ti3C2 Quantum Dot/Fe3+ for Detection and Fluorescence Imaging of Glutathione in Living Cells. Colloids Surf. B Biointerfaces 2021, 201, 111631. [Google Scholar] [CrossRef]
- Nie, Y.; Liang, Z.; Wang, P.; Ma, Q.; Su, X. MXene-Derived Quantum Dot@Gold Nanobones Heterostructure-Based Electrochemiluminescence Sensor for Triple-Negative Breast Cancer Diagnosis. Anal. Chem. 2021, 93, 17086–17093. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Fan, Z.; Yao, B.; Ding, Y.; Zhao, J.; Xie, M.; Pan, J. Exploring the Trans-Cleavage Activity of CRISPR-Cas12a for the Development of a Mxene Based Electrochemiluminescence Biosensor for the Detection of Siglec-5. Biosens. Bioelectron. 2021, 178, 113019. [Google Scholar] [CrossRef] [PubMed]
- Maleki, A.; Ghomi, M.; Nikfarjam, N.; Akbari, M.; Sharifi, E.; Shahbazi, M.A.; Kermanian, M.; Seyedhamzeh, M.; Nazarzadeh Zare, E.; Mehrali, M.; et al. Biomedical Applications of MXene-Integrated Composites: Regenerative Medicine, Infection Therapy, Cancer Treatment, and Biosensing. Adv. Funct. Mater. 2022, 32, 2203430. [Google Scholar] [CrossRef]
- Khunger, A.; Kaur, N.; Mishra, Y.K.; Ram Chaudhary, G.; Kaushik, A. Perspective and Prospects of 2D MXenes for Smart Biosensing. Mater. Lett. 2021, 304, 130656. [Google Scholar] [CrossRef]
- Zhou, Y.; Kubota, L.T.; Zhou, Y.L.; Kubota, L.T. Trends in Electrochemical Sensing. ChemElectroChem 2020, 7, 3684–3685. [Google Scholar] [CrossRef]
- Ali, I.; Faraz Ud Din, M.; Gu, Z.G. MXenes Thin Films: From Fabrication to Their Applications. Molecules 2022, 27, 4925. [Google Scholar] [CrossRef]
- Koyappayil, A.; Chavan, S.G.; Roh, Y.G.; Lee, M.H. Advances of MXenes; Perspectives on Biomedical Research. Biosensors 2022, 12, 454. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, H.; Wang, X. Cholesterol Oxidase-Immobilized MXene/Sodium Alginate/Silica@n-Docosane Hierarchical Microcapsules for Ultrasensitive Electrochemical Biosensing Detection of Cholesterol. J. Mater. Chem. B 2023. Advance Article. [Google Scholar] [CrossRef]
- Liu, G.; Xia, T.; Liang, X.; Hou, S.; Hou, S. Enzymatic Electrochemical Biosensor from Eu-Doped SnO2 Embedded in MXene for High Performance Sensing Lactate. ChemElectroChem 2022, 9, e202200848. [Google Scholar] [CrossRef]
- Huang, Y.; Long, Z.; Zou, J.; Luo, L.; Zhou, X.; Liu, H.; He, W.; Shen, K.; Wu, J. A Glucose Sensor Based on Surface Functionalized MXene. IEEE Trans. Nanotechnol. 2022, 21, 399–405. [Google Scholar] [CrossRef]
- Niamsi, W.; Larpant, N.; Kalambate, P.K.; Primpray, V.; Karuwan, C.; Rodthongkum, N.; Laiwattanapaisal, W. Paper-Based Screen-Printed Ionic-Liquid/Graphene Electrode Integrated with Prussian Blue/MXene Nanocomposites Enabled Electrochemical Detection for Glucose Sensing. Biosensors 2022, 12, 852. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Lu, H.; Liu, S. Recent Advances of MXene-Based Electrochemical Immunosensors. Appl. Sci. 2022, 12, 5630. [Google Scholar] [CrossRef]
- Lian, M.; Shi, Y.; Chen, L.; Qin, Y.; Zhang, W.; Zhao, J.; Chen, D. Cell Membrane and V2C MXene-Based Electrochemical Immunosensor with Enhanced Antifouling Capability for Detection of CD44. ACS Sens. 2022, 7, 2701–2709. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, P.A.; Pandey, R.P.; Jabbar, K.A.; Mahmoud, K.A. Nb4C3Tx (MXene)/Au/DNA Aptasensor for the Ultraselective Electrochemical Detection of Lead in Water Samples. Electroanalysis 2022, 34, 1540–1546. [Google Scholar] [CrossRef]
- Wang, H.; Li, H.; Huang, Y.; Xiong, M.; Wang, F.; Li, C. A Label-Free Electrochemical Biosensor for Highly Sensitive Detection of Gliotoxin Based on DNA Nanostructure/MXene Nanocomplexes. Biosens. Bioelectron. 2019, 142, 111531. [Google Scholar] [CrossRef]
- Duan, F.; Guo, C.; Hu, M.; Song, Y.; Wang, M.; He, L.; Zhang, Z.; Pettinari, R.; Zhou, L. Construction of the 0D/2D Heterojunction of Ti3C2Tx MXene Nanosheets and Iron Phthalocyanine Quantum Dots for the Impedimetric Aptasensing of MicroRNA-155. Sens. Actuators B Chem. 2020, 310, 127844. [Google Scholar] [CrossRef]
- Chen, W.Y.; Lin, H.; Barui, A.K.; Gomez, A.M.U.; Wendt, M.K.; Stanciu, L.A. DNA-Functionalized Ti3C2T XMXenes for Selective and Rapid Detection of SARS-CoV-2 Nucleocapsid Gene. ACS Appl. Nano Mater. 2022, 5, 1902–1910. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, Y.; Liu, M.; Liu, Y. 2D Titanium Carbide MXenes as Emerging Optical Biosensing Platforms. Biosens. Bioelectron. 2021, 171, 112730. [Google Scholar] [CrossRef] [PubMed]
- Iravani, S.; Varma, R.S. Smart MXene Quantum Dot-Based Nanosystems for Biomedical Applications. Nanomaterials 2022, 12, 1200. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Ding, L.; Wen, Y.; Yang, W.; Zhou, H.; Chen, X.; Street, J.; Zhou, A.; Ong, W.J.; Li, N. High Photoluminescence Quantum Yield of 18.7% by Using Nitrogen-Doped Ti3C2 MXene Quantum Dots. J. Mater. Chem. C Mater. 2018, 6, 6360–6369. [Google Scholar] [CrossRef]
- Zhu, X.; Pang, X.; Zhang, Y.; Yao, S. Titanium Carbide MXenes Combined with Red-Emitting Carbon Dots as a Unique Turn-on Fluorescent Nanosensor for Label-Free Determination of Glucose. J. Mater. Chem. B 2019, 7, 7729–7735. [Google Scholar] [CrossRef] [PubMed]
- Kalkal, A.; Kadian, S.; Kumar, S.; Manik, G.; Sen, P.; Kumar, S.; Packirisamy, G. Ti3C2-MXene Decorated with Nanostructured Silver as a Dual-Energy Acceptor for the Fluorometric Neuron Specific Enolase Detection. Biosens. Bioelectron. 2022, 195, 113620. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Mishra, P.; Banga, I.; Parmar, A.S.; Prakash Tripathi, P.; Gandhi, S. Chemiluminescence Based Immunoassay for the Detection of Heroin and Its Metabolites. Bioimpacts 2018, 8, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Sobhanie, E.; Salehnia, F.; Xu, G.; Hamidipanah, Y.; Arshian, S.; Firoozbakhtian, A.; Hosseini, M.; Ganjali, M.R.; Hanif, S. Recent Trends and Advancements in Electrochemiluminescence Biosensors for Human Virus Detection. Trends Anal. Chem. 2022, 157, 116727. [Google Scholar] [CrossRef]
- Zhang, K.; Fan, Z.; Huang, Y.; Ding, Y.; Xie, M. A Strategy Combining 3D-DNA Walker and CRISPR-Cas12a Trans-Cleavage Activity Applied to MXene Based Electrochemiluminescent Sensor for SARS-CoV-2 RdRp Gene Detection. Talanta 2022, 236, 122868. [Google Scholar] [CrossRef]
- Devadoss, A.; Sudhagar, P.; Terashima, C.; Nakata, K.; Fujishima, A. Photoelectrochemical Biosensors: New Insights into Promising Photoelectrodes and Signal Amplification Strategies. J. Photochem. Photobiol. C Photochem. Rev. 2015, 24, 43–63. [Google Scholar] [CrossRef]
- Li, N.; Wang, C.; Chen, L.; Ye, C.; Peng, Y. Ultrathin Covalent Organic Framework Nanosheets/Ti3C2Tx-Based Photoelectrochemical Biosensor for Efficient Detection of Prostate-Specific Antigen. Molecules 2022, 27, 6732. [Google Scholar] [CrossRef]
- Qiu, Z.; Fan, D.; Xue, X.; Guo, S.; Lin, Y.; Chen, Y.; Tang, D. Molecularly Imprinted Polymer Functionalized Bi2S3/Ti3C2TX MXene Nanocomposites for Photoelectrochemical/Electrochemical Dual-Mode Sensing of Chlorogenic Acid. Chemosensors 2022, 10, 252. [Google Scholar] [CrossRef]
- Laochai, T.; Yukird, J.; Promphet, N.; Qin, J.; Chailapakul, O.; Rodthongkum, N. Non-Invasive Electrochemical Immunosensor for Sweat Cortisol Based on L-Cys/AuNPs/ MXene Modified Thread Electrode. Biosens. Bioelectron. 2022, 203, 114039. [Google Scholar] [CrossRef]
- Wei, W.; Lin, H.; Hao, T.; Su, X.; Jiang, X.; Wang, S.; Hu, Y.; Guo, Z. Dual-Mode ECL/SERS Immunoassay for Ultrasensitive Determination of Vibrio Vulnificus Based on Multifunctional MXene. Sens. Actuators B Chem. 2021, 332, 129525. [Google Scholar] [CrossRef]
- Kim, H.; Wang, Z.; Alshareef, H.N. MXetronics: Electronic and Photonic Applications of MXenes. Nano Energy 2019, 60, 179–197. [Google Scholar] [CrossRef]
- Thankappan, R.; Vasanthakumari, K.G.; Uzma Sulthana, U.M. MXene-Coated Flexible PVDF Membrane as Wearable Strain Sensor. J. Mater. Sci. Mater. Electron. 2022, 33, 24542–24549. [Google Scholar] [CrossRef]
- Lei, Y.; Zhao, W.; Zhang, Y.; Jiang, Q.; He, J.-H.; Baeumner, A.J.; Wolfbeis, O.S.; Lin Wang, Z.; Salama, K.N.; Alshareef, H.N.; et al. A MXene-Based Wearable Biosensor System for High-Performance In Vitro Perspiration Analysis. Small 2019, 15, 1901190. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Chen, G.; Pan, H.; Ye, Z.; Au, C.; Chen, C.; Zhao, X.; Zhou, Y.; Xiao, X.; Tai, H.; et al. MXene-Sponge Based High-Performance Piezoresistive Sensor for Wearable Biomonitoring and Real-Time Tactile Sensing. Small Methods 2022, 6, 2101051. [Google Scholar] [CrossRef] [PubMed]
Material | Synthesis Protocol | Reference |
---|---|---|
MXene/NiFe2O4 nanocomposites | One step hydrothermal | [49] |
NiCo-LDH/MXene hybrids | Heterojunction surface | [50] |
2D Ti2CTx MXene | HF etching | [51] |
Ti3C2Tz MXene | Intensive layer delamination and acid | [52] |
Cr2CTx MXene | Etching | [53] |
MXene-derived nanoflower-shaped TiO2@Ti3C2 | Heterojunction (In situ Transformation) | [54] |
Mo2CTx MXene | Mo2Ga2C by etching | [55] |
Ti3C2Tx MXene/graphene nanocomposites | Hydrothermal method | [56] |
Ti3C2-MXene/ZIF-67/CNTs heterostructure | heterojunction | [57] |
MXene hybrids | Heterojunction | [58] |
Properties | MXenes | TMDs (Transition Metal Dichalcogenides) | Graphene | |||
---|---|---|---|---|---|---|
Comments | References | Comments | References | Comments | References | |
Conductivity | 9880 S/cm of Ti3C2Tx | [65] | 5.0 S/cm of MoS2 | [66] | 106 S/cm of pristine graphene | [67] |
Functionalization | Abundant hydrophilic terminations for easy functionalization | [68,69] | Lacking dangling bonds or π electrons for covalent linking | [70,71] | Lacking surface terminations for biofunctionalization | [72,73] |
Dispersity | Stable water dispersity | [74] | Easy to form agglomerates | [70] | Intense aggregation of pristine graphene in water | [75] |
Bandgap | Metallic bandgap of Ti3C2, could be tunable by terminations and intercalations | [76,77,78] | 1.8 eV of monolayer MoS2, 1.45 eV of monolayer WS2 | [79] | 0 of bilayer graphene | [79] |
Biosafety | Good biocompatibility, negligible cytotoxicity | [80,81] | Few cytotoxic responses of TMDs in cells | [82,83] | Low cytotoxicity and good biocompatibility | [77,84] |
Stability | Vulnerable in humid, oxygen-enriched environment | [85] | Grave degradation in ambient oxygen and moisture | [86] | Rather stable in ambient conditions | [87,88] |
Distinctive merits in biosensing | Wide adsorption spectrum for optical sensing; strong chelation interaction with DNA | [89,90] | Formation of Au–S bonds with gold-based nanomaterials | [91,92] | Superior catalysis and fast charge transfer | [93] |
Type of Biosensor | Formulation | Analyte | Sensing Range | Limit of Detection (LOD) | Reference |
---|---|---|---|---|---|
Electrochemical biosensor | Prussian blue/Ti3C2 MXene | Exosomes secreted by various cancer cells | 5 × 102–5 × 105 particles µL−1 | 229 particles µL−1 | [127] |
MXene–MoS2 | MicroRNA-21 biomarker for cancer diagnosis and prognosis | 100 fM to 100 nM | 26 fM | [128] | |
MXene @Au NPs@ methylene blue | Prostate-specific antigen | 5 pg mL−1 to 10 ng mL−1 | 0.83 pg mL−1 | [129] | |
MXene-based cytosensor | HER2-positive cancer cells | 102–106 cells mL−1 | 47 cells mL−1 (Total detection time of ~75 min) | [130] | |
MXene–graphene | Influenza A (H1N1) virus | 125–250,000 copies mL−1 | 125 copies mL−1 | [131] | |
SARS-CoV-2 | 1 fg mL−1–10 pg mL−1 | 1 fg mL−1 (Average response time for both virus ~50 ms) | |||
Optical biosensor | MXene–Au | Gram-negative and Gram-positive bacteria | 3 × 105–3 × 108 CFU mL−1 | 3 × 105 CFU mL−1 | [132] |
Ti3C2Tx MXene–Au NPs@polyimide thin film | Carcinoembryonic antigen | 0.1–100 ng mL−1 | 0.001 ng mL−1 | [133] | |
MXene N-Ti3C2 quantum dot/Fe3+ | Glutathione | 0.5–100 × 10−9 fM | 0.17 × 10−9fM | [134] | |
MXene-derived quantum dot@Au | Triple-negative breast cancer | 5 fM to 10 nM, | 1.7 fM | [135] | |
MXene-CRISPR-Cas 12a | Siglec-5 | 20 fM–100 pM | 20.22 fM | [136] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chouhan, R.S.; Shah, M.; Prakashan, D.; P R, R.; Kolhe, P.; Gandhi, S. Emerging Trends and Recent Progress of MXene as a Promising 2D Material for Point of Care (POC) Diagnostics. Diagnostics 2023, 13, 697. https://doi.org/10.3390/diagnostics13040697
Chouhan RS, Shah M, Prakashan D, P R R, Kolhe P, Gandhi S. Emerging Trends and Recent Progress of MXene as a Promising 2D Material for Point of Care (POC) Diagnostics. Diagnostics. 2023; 13(4):697. https://doi.org/10.3390/diagnostics13040697
Chicago/Turabian StyleChouhan, Raghuraj Singh, Maitri Shah, Drishya Prakashan, Ramya P R, Pratik Kolhe, and Sonu Gandhi. 2023. "Emerging Trends and Recent Progress of MXene as a Promising 2D Material for Point of Care (POC) Diagnostics" Diagnostics 13, no. 4: 697. https://doi.org/10.3390/diagnostics13040697
APA StyleChouhan, R. S., Shah, M., Prakashan, D., P R, R., Kolhe, P., & Gandhi, S. (2023). Emerging Trends and Recent Progress of MXene as a Promising 2D Material for Point of Care (POC) Diagnostics. Diagnostics, 13(4), 697. https://doi.org/10.3390/diagnostics13040697