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Abstract: Two-dimensional (2D) nanomaterials with chemical and structural diversity have piqued
the interest of the scientific community due to their superior photonic, mechanical, electrical, mag-
netic, and catalytic capabilities that distinguish them from their bulk counterparts. Among these
2D materials, two-dimensional (2D) transition metal carbides, carbonitrides, and nitrides with a
general chemical formula of Mn+1XnTx (where n = 1–3), together known as MXenes, have gained
tremendous popularity and demonstrated competitive performance in biosensing applications. In
this review, we focus on the cutting-edge advances in MXene-related biomaterials, with a systematic
summary on their design, synthesis, surface engineering approaches, unique properties, and biologi-
cal properties. We particularly emphasize the property–activity–effect relationship of MXenes at the
nano–bio interface. We also discuss the recent trends in the application of MXenes in accelerating
the performance of conventional point of care (POC) devices towards more practical approaches as
the next generation of POC tools. Finally, we explore in depth the existing problems, challenges,
and potential for future improvement of MXene-based materials for POC testing, with the goal of
facilitating their early realization of biological applications.

Keywords: MXenes; 2D nanomaterials; biosensors; POC testing

1. Introduction

Major advancements in the health-care industry and subsequent analytical industry
have been centered on the fabrication of compact, reusable, and efficient miniature plat-
forms or point of care (POC) solutions. POC testing (POCT) is a discipline that strives
to develop diagnostic techniques that provide a number of benefits, including the poten-
tial to deliver quick and reliable results, easy operation, cost-effectiveness, and a lack of
specialized equipment. Biosensors are devices that are used to detect target molecules
with high sensitivity and specificity. Needless to say, the effectiveness and performance of
these biosensor POC devices are heavily reliant on the quality of the material that makes
up the device [1–5]. Biosensing materials have a lengthy history, comprising a diverse
variety of 0D, 1D, and 2D nanomaterials such as transition metal nanoparticles [6], gold
nanoparticles [7], nanorods [8–10], and MoSe2 [11,12]. Because of its excellent potential,
MXene is among the greatest materials for the fabrication of biosensors among recent
nanomaterials drawing attention. Several breakthroughs in the last few years have greatly
enhanced the synthesis of new MAX phases with ordered double-transition metals and as
a result the synthesis of novel MXenes with diversified chemical and structural complexity,
which is rarely observed in other families of two-dimensional (2D) materials [13]. MXenes
and their derivatives are currently well known in the realm of biosensing and have excep-
tional sensitivity, stability, range of detection, and low detection limit [14,15]. MXenes are
two-dimensional inorganic compounds with a number of atomic layers that are comprised
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of transition metal in combination with carbon, nitrogen, or both, such as titanium carbide
(Ti3C2) and titanium carbonitride (Ti2CN), endowing them with exceptional features, such
as high conductivity and superior fluorescent, optical, and plasmonic properties [16,17].
They have the general formula Mn+1XnTx, where M represents early transition metals, X
represents carbon or nitrogen, T represents surface functional groups (-OH, F, =O), and
n represents an integer (n = 1–3). They are made by selectively etching closely packed
multilayered MAX phases with alternate layers of M and A that have strong M-X bonds and
weak M-A bonds. Because of their distinct surface chemistry and intriguing electrochemical
behavior, as well as their excellent biocompatibility, they are perfect as a solid support
for the fabrication of cutting-edge electrochemical sensing and biosensing devices [18].
MXene has recently been employed successfully in a variety of sensing purposes, targeted
drug delivery, cancer therapeutics, energy storage [19], heat-resistant material production,
catalysis [20], and many more. In spite of their versatility and superior performance in
biosensing applications, MXenes face a number of obstacles, including the unavoidable use
of hazardous chemicals and laborious etching methods. Furthermore, present synthetic
processes have difficulty in scaling up yields and managing characteristics such as size,
surface termination, and flaws in the resultant MXenes [21]. Given the fast growth of
MXene-based research and technology, it is important to update our current understanding
on different properties and future applications. Hence, in this review we focus on the most
recent breakthroughs in MXene-related biomaterials, providing a systematic overview of
their design, synthesis, surface engineering methodologies, unique features, and biological
consequences. We review recent trends in the use of MXenes to accelerate the performance
of conventional POC devices towards more practical approaches as the next generation of
POC equipment. Finally, we put forth a critical analysis of the current problems, limitations,
and prospects for the future enhancement of MXene-based materials for POC testing, with
an emphasis on their enormous sensing potential, which is yet to be unearthed.

2. Design, Synthesis, and Surface Functionalization of MXenes

Electrical properties, physicochemical traits, and a variety of applications of MXenes
were significantly influenced by the synthesis methods of MXenes. More than 20 MXenes
have been produced by selective chemical etching of a few atomic layers acquired from
pretreatment agents such as carbide, nitride, and carbonitride (Figure 1). There are mainly
three approaches for MXene synthesis: top-down, bottom-up, and etching [22]. A brief
introduction of all approaches is given below.
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2.1. Top-Down Approach

In this method, large or huge material is exfoliated into smaller sheets, which could be
monolayered or single-layer. Bulk precursors might be crystalline in nature, which will be
converted into sheets. Methods such as ball milling [24], liquid exfoliation, hydrothermal/
solvent-assisted heating, ultrasonication, and microwave-assisted exfoliation are used in a
top-down approach. The top-down approach is appropriate for conditions such as acid
reflux or chemical etching. Moreover, this method is simple to implement and is used to
generate a large amount of material. However, there are difficulties, such as the limited
yield and the necessity for certain treatments.

2.1.1. Hydrothermal Method

The hydrothermal method is an inhomogeneous reaction process that requires heating
aqueous solutions over the water’s boiling point in a high-pressure autoclave that also
involves precursor material. The hydrothermal method is an effective method for creating
multipatterned, two-dimensional MXene components while being environmentally friendly.
Afterward, by tuning the conditions of the hydrothermal method, physical properties such
as size, shape, and thickness can be manipulated. Xue et al. synthesized Ti3C2 MXene
quantum dots (MQDs) with the help of the facile hydrothermal method, and by managing
the temperature conditions, the size of the luminescent QD was also controlled. With an
elevation in temperature, the size and thickness of QDs decreases [25]. The hydrothermal
method is an efficient way to create multipatterned, 2D MXene components without using
hazardous acids, such as HF. Using a novel leaching technique without fluorine, by dipping
Ti3AlC2 in an aqueous alkali solution at roughly 85 ◦C for 100 h and then hydrothermally
treating it with 1 M H2SO4 at 85 ◦C for 1.5 h, aluminum layers made with the MAX system
are produced. When—instead of an aqueous solution—any organic solution is preferred
for a reaction, it is called a “solvothermal reaction.” MXene precursors are more miscible
than aqueous phases, and in organic phases of crystalline nature, particle distribution is
more controllable than in the hydrothermal method [26].

2.1.2. Ball-Milling Method

For the synthesis of 0D QDs, the ball-milling approach has been extensively employed
for the top-down method. A variety of variables, such as speed and timing of milling, the
amount of powder used for milling, and dry/wet type of milling, are responsible for the
physical characteristics of nanomaterials. Zhang et al., using Ti3C2Tx where T can be O, OH,
or F, demonstrated that MXene size can be reduced from micrometers to approximately
6 nm nanodots by a ball-milling method with red phosphorus [27].

2.1.3. Ultrasonication Method

Ultrasonication is an eco-friendly, nonhazardous method. Solvent acoustics, cavi-
tation, and reverberation cause changes in a layered material. Organic solvents such as
dimethyl sulfoxide (DMSO), dimethyl formamide (DMF), N-methyl-2-pyrrolidone (NMP),
and tetrabutylammonium hydroxide (TBAOH) are used for ultrasound-assisted synthe-
sis [28]. Nitrogen-doped MXene (Figure 2) was synthesized by ultrasonication, in which
MXene was prepared by fluoride etching followed by ultrasonication of the mixture of
MXene and ammonia [29].
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from [29] with copyright permission for figure obtained from Elsevier).

2.2. Bottom-Up Approach

In this approach, molecular material is used as a starting material, unlike the bulk used
in the top-down method. The involvement of molecular or tiny precursors, an increase
in atomic usage, tunable structural and functional features, and the ability to perform
functionalization more quickly are all advantages of a bottom-up approach over a top-
down approach [30]. Bottom-up synthesis is simpler than top-down synthesis because it
only requires one pot reaction; however, more research on the bottom-up synthesis protocol
is required [31].

2.2.1. Molten Salt Synthesis

In molten salt synthesis, molten salt is used as a reaction medium containing a pre-
cursor of nanomaterials. Molten salt enhances reaction kinetics by depleting the distance
between the reacting species and acting as a solvent in the reaction. In the synthesis of
molybdenum carbide nanodots coupled with carbon nanosheets (Mo2C/C), molten NaCl
solution, sucrose and Mo precursor was used. The mixture was calcinated at around 800 ◦C
for 2 h, and Mo and sucrose were confined between the nanocrystals of NaCl [32]. Cl−-
functionalized MXene sheets were obtained with molten salt-assisted sonication followed
by functionalization after exfoliation by TBAOH (tetrabutylammonium hydroxide) [33].
Further, molten salt at high temperatures has been used to obtain multivalent vacancy in
MXenes (Figure 3) [34].
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2.2.2. Pyrolysis Method

In a bottom-up approach, pyrolysis is a practicable method for MXene synthesis that
is both simple and environmentally friendly. As the increased interest in the bottom-up
approach resulted in the application of different molecular precursors and optimized
conditions for the synthesis of MXenes, advancement in the bottom-up approach could
be observed in the pyrolysis method, i.e., efficiently performed, simple procedure, high
concentration of monodispersed product, high yield, and amended crystallinity in the
product. Wang and his group synthesized MXene nanocomposites by employing the
pyrolysis technique [35].

2.3. Etching Method

Etching is the removal of the surface layer in fabrication with the help of chemicals.
There are several methods for preparing MXenes. Different terminal functions could be
added to the metal atoms or central atom to complete their coordination spheres and reduce
their surface Gibbs free energy as a result of modifications in their etching techniques. The
MXene’s surface characteristics therefore have a significant impact on their manufacture.

2.3.1. Hydrofluoric Acid (HF) Etching

Hydrofluoric acid (HF) is known as the fluoride solution in water. HF etching is
a commonly practiced protocol for MXene synthesis. HF causes strong irritation in the
MAX phase. In this method, reaction time, temperature applied, and strength of fluoride
(F-) ions are important variables for the quality of MXene. Using the HF etching method,
distinct functionalities such as (-OH, -O, -F) can be imparted to the MXenes surface. HF
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implies regular displacement mechanism, when Ti3AlC2 phase treated with the HF solution
with evolution of H2 gas confiscate Al layers from the phase [36]. A series of the MAX
complexes of Ti2AlC, (Ti0.5Nb0.5) 2AlC, Ti3AlCN, Ta4AlC3, (V0.5Cr0.5) 3AlC2, Nb2AlC,
Zr3Al3C5, Ti3SiC2, and Mo2Ga2C have been effectively converted into MXenes using the
HF acid etching method [37]. Srivastava et al. showed synthesis of Ti3C2 through exfoliation
of Ti3AlC2 with HF treatment (Figure 4) [38].
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2.3.2. Modified Acid Etching

Even though it is commonly used and has good outcomes, because of the poisonous
properties and hazardous effects of HF, direct treatment with HF is replaced by fluoride
salts such as LiF, NH4HF2, FeF3, KF, and NaF. HF treatment with MAX phases containing
Al or Ga gives the unwanted by-product of hydrated fluorides (i.e., AlF3·3H2O) [39]. By
changing the method, one can avoid this. Another advantage of the modified method over
regular HF etching is cation chelation, which decreases interlayer force [40].

2.3.3. Modified Fluoride-Based Etching

Researchers have studied hard to identify improved outcomes for the removal of
atoms from MAX layers to avoid the toxicity caused by HF etching. Aside from HF, fluoride
salts such as KF, NaF, LiF, and NH4F are used as fluoride precursors with the addition of
other strong acids, such as HCl. In this method, the ratio of fluoride to acid strength plays a
role in the synthesis of MXene sheets with controllable size. Kumar et al. studied the effect
of temperature on etching with fluoride salt and acid LiF/HCl, in which they observed that
etching efficiency increases with increasing temperature (Figure 5) [41].
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2.3.4. Molten Salt Etching

Similar to the bottom-up approach, molten salt solutions are used for the etching and
delamination of MXenes. In this method, a mixture of fluoride salts (LiF, NaF, and KF) has
been used at high temperatures. The molten salt method has a faster reaction time and
can be synthesized to a limited degree. Along with the difficulties of this method, etching
requires a considerable amount of heat and energy. The final product has lower purity
and a less crystalline nature, resulting in the production of final MXene with numerous
significant defects and vacancies [42].

2.3.5. Etching without Fluorine-Based Species

Most of the synthetic approaches for MXene are based on HF or fluoride-based salt
and acid mixtures. This procedure generates -O, -F functionalization at the surface and
interfaces. Fluoride-based MXene showed depletion of electrochemical properties [43]. As
a result, fluoride-free synthesis techniques are required to improve the electrochemical
properties. Etching and delamination of Al layers with strong alkali NaOH were used as
an etching agent [44].

Surface functionalization, or interface functionalization, is responsible for the physical
and chemical properties that could be used for various applications. Different functional
groups—oxygen, fluorine, and hydroxyl—can be rendered onto MXene layers. MXene
bears combinations of different functional groups that result from various synthetic ap-
proaches [45]. Techniques such as neutron scattering images and nuclear magnetic reso-
nance spectroscopy have been utilized to validate surface modification and atomic distribu-
tion. Through a hydrophilic surface, ionic/polar species can be adsorbate. It has been noted
that F-group compounds are often used when MXenes are used for adsorptive purposes.
Since hydroxyl and oxygen groups are intended to be considerably more stable, fluorine
group terminations can be made up for after washing or keeping in water using OH groups.
Because of this, -O and -OH functional groups are involved in a variety of terminations
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for MXenes that are made possible by modifying chemical etching techniques [46]. Re-
cently, the idea of chemical vapor deposition technology has been utilized purposefully to
manufacture bare MXene (MO2C) without the attachment of functional groups [47]. They
are outstanding in terms of their physical characteristics, which have also been effectively
investigated using density functional theory (DFT). They are particularly active and have
more chemical reactivity than other constituents, as shown by the molecules that do not
undergo termination. Combining two or more of the methods discussed above can also
be used to synthesize and functionalize MXenes. A heterojunction may also be used to
describe the combination used. Future research should concentrate on the adsorptive prop-
erties of MXenes without regard to functional group connections [48]. Table 1 represents
the methods used for the synthesis and functionalization of MXene.

Table 1. Methods used for the synthesis and functionalization of MXene.

Material Synthesis Protocol Reference

MXene/NiFe2O4 nanocomposites One step hydrothermal [49]

NiCo-LDH/MXene hybrids Heterojunction surface [50]

2D Ti2CTx MXene HF etching [51]

Ti3C2Tz MXene Intensive layer delamination and acid [52]

Cr2CTx MXene Etching [53]

MXene-derived nanoflower-shaped TiO2@Ti3C2 Heterojunction (In situ Transformation) [54]

Mo2CTx MXene Mo2Ga2C by etching [55]

Ti3C2Tx MXene/graphene nanocomposites Hydrothermal method [56]

Ti3C2-MXene/ZIF-67/CNTs heterostructure heterojunction [57]

MXene hybrids Heterojunction [58]

Reproduced from [59] with copyright permission of Elsevier.

3. Properties and Biological Effects of MXenes

Excellent Young’s modulus, heat and electron transfer, as well as a tunable band
gap are some of the phenomenal MXene characteristics. Remarkably, MXenes are unique
among 2D nanomaterials, including graphene, owing to their hydrophilic exterior and
strong metal-like conductivity (Table 2) [60–62]. Last but not least, their composition
(such as the generation of homogeneous mixtures of various transition metal and carbon
or nitrogen elements), surface modification (via chemical and heat manipulations), and
architecture/arrangement modifications can all be utilized to adjust their characteristics
and applicability [63,64]. The principal characteristics of the MXene series are listed below.
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Table 2. Comparison of properties of MXenes with other 2D nanomaterials.

Properties
MXenes TMDs (Transition Metal Dichalcogenides) Graphene

Comments References Comments References Comments References

Conductivity 9880 S/cm of Ti3C2Tx [65] 5.0 S/cm of MoS2 [66] 106 S/cm of pristine graphene [67]

Functionalization Abundant hydrophilic terminations
for easy functionalization [68,69] Lacking dangling bonds or π electrons

for covalent linking [70,71] Lacking surface terminations for
biofunctionalization [72,73]

Dispersity Stable water dispersity [74] Easy to form agglomerates [70] Intense aggregation of pristine
graphene in water [75]

Bandgap
Metallic bandgap of Ti3C2, could be

tunable by terminations
and intercalations

[76–78] 1.8 eV of monolayer MoS2, 1.45 eV of
monolayer WS2

[79] 0 of bilayer graphene [79]

Biosafety Good biocompatibility,
negligible cytotoxicity [80,81] Few cytotoxic responses of TMDs

in cells [82,83] Low cytotoxicity and
good biocompatibility [77,84]

Stability Vulnerable in humid,
oxygen-enriched environment [85] Grave degradation in ambient oxygen

and moisture [86] Rather stable in
ambient conditions [87,88]

Distinctive merits in
biosensing

Wide adsorption spectrum for optical
sensing; strong chelation interaction

with DNA
[89,90] Formation of Au–S bonds with

gold-based nanomaterials [91,92] Superior catalysis and fast
charge transfer [93]

Reproduced from [94] with copyright permission of Elsevier.
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3.1. Electrical Properties

The electron transfer characteristics of MXenes are one of the most important aspects
of significance, and can be tailored by modifying the functionalization moieties, adjusting
the stoichiometry, or producing a solid-state solution. The electron transport properties
of MXene pressed disks were comparable to graphene (coefficient of friction ranging
from 22 Ω to 339 Ω, depending on the chemical composition) and greater than CNTs and
rGO [95,96]. Surface alteration by providing heat and basic treatment is a valuable technique
for enhancing electronic characteristics. Kim et al. reported twofold increased thermoelastic
properties of 2D molybdenum-based MXenes due to modification in functional groups
(either addition or removal) and eventual change in embedded surface groups [97].

3.2. Mechanical Properties

Carbon and nitrogen form very stable and strong bonds with metal, leading to excep-
tional mechanical properties of MXenes. Some simulation-based studies revealed a higher
elastic property of MXene than their native MAX phase. As a result of the presence of
various functional groups, MXenes intercalated with polymeric matrices are more effective
than graphene for use as composite materials [98,99]. Titanium based MXenes exhibited a
hydrophilic nature with a low contact angle compared to graphene [100]. Additionally, it
was observed that the Young modulus of MXene (both C and N) lowers with every added
layers [101]. Even though measurement techniques can be hard, the lack of control over
MXene surface modifications, the occurrence of intrinsic defects (such as gaps), and limited
composite integrations are still a bigger problem and make it hard to evaluate MXenes’
mechanical properties [102].

3.3. Thermal Properties

Due to their ongoing downsizing, MXenes are essential for electrical and energy-
related thermal dispersion technologies [103]. Simulations projected reduced heat con-
traction constants and greater heat conductivities compared to other monolayered com-
pounds [104]. Some titanium-, zirconium-, and strontium-based MXenes display thermal
conductivities in the range of 22 to 472 Wm−1 K−1 at room temperature [105]. Heat con-
ductivity of compounds eliminated the oxygen rise with respect to atomic number of the
associated metal [106]. Finally, the relationship between size of particles and heat transfer
capacity emphasizes the significance of morphological regulation and modification in
MXene production.

3.4. Magnetic Properties

Unlike MAX phases, investigations on MXenes’ magnetic characteristics have been
extended owing to the magnetic possibilities. The presence of magnetic properties has
been hypothesized for a number of pure compounds, including carbides and nitrides of
titanium, iron, zirconium, chromium and zirconium: Ti4C3 [107], Ti3CN [108], Fe2C [109],
Cr2C [110], Ti3N2 [111], Ti2N [112], Zr2C, and Zr3C2 [113]. However, when dealing with
terminations, separate analyses involving individual MXenes and chemical modification
class are required. Examples include the fact that functional groups inhibit the magnetic
properties for Ti3CNTx and Ti4C3Tx, but conserve the ferromagnetic properties for Cr2CTx
and Cr2NTx at ambient temperature with OH and F groups present [114]. Surprisingly,
Mn2NT6 remains ferromagnetic independently of surface modifications [115]. It should be
noted that the stated magnetic moment properties are as yet simply theoretical predictions
and have not been observed experimentally. This is because it is difficult to synthesize
MXene compounds (particularly pure ones) and there is little control over the surface
chemistry [116].

3.5. Optical Properties

Devices that utilize photocatalysis, photovoltaics, optoelectronics, or clear conductive
electrodes benefit greatly from an electrode material’s ability to absorb both visible and



Diagnostics 2023, 13, 697 11 of 24

ultraviolet light. Transmittance of up to 86% was observed for films with a thickness in
the range of 5–70 nm of Ti3C2Tx [117], and this film absorbed light with a wavelength
between 300 and 500 nm. Furthermore, depending on the film thickness, it may exhibit a
prominent and wide absorbance peak at about 700–800 nm, resulting in a light-greenish
film hue [118] and is significant for photothermal treatment (PTT) applications. Moreover,
the transmittance values may be adjusted by altering the diameter and embedded ions of
the material [119]. Hydrazine, urea, and DMSO decrease the transmittance of Ti3C2Tx films,
and tetramethylammonium hydroxide (NMe4OH) enhances it from 74.9% to 92%. First
conceptual simulations depicted that functional groups affect the optical characteristics of
these 2D materials. Oxygen terminations differ from fluorinated and hydroxyl ones. In
the visible range, fluoride and hydroxide terminations lower absorption and reflectivity,
but in the UV area, all terminations increase reflectivity relative to pure MXene [120].
Recently, lateral size reduction of MXene flakes reduced absorbance [121]. MXenes are
prospects for flexible transparent electrodes owing to their optical and electrical properties
in the visible range and metallic conductivity, and their strong ultraviolet reflectance
suggests anti-ultraviolet ray coating materials. Finally, biological and water evaporation
applications benefited from 100% light-to-heat conversion efficiency [95]. To develop
MXene applications, luminescence efficiency, emission colors, plasmonic, and nonlinear
optical characteristics must be understood [122].

4. Application of MXenes in Point-of-Care Testing

MXenes are 2D nanomaterials with distinct composition of elements and substantial
electrical, optical and mechanical characteristics [123]. Enhanced electrical conductance,
great wettability by water, strong stability, effective surface, easy to produce huge amounts
in water, and environment-friendly are the distinctive features of MXenes that give them
remarkable application prospects in diagnostic and therapeutic applications. Various ap-
proaches utilizing MXenes in biosensing and other fields have been stated. MXenes have
surface groups such as hydroxyl or oxygen that make them hydrophilic. It is ideal for
biosensor applications because its surface can interact with most biomolecules through
noncovalent interactions. It has been found that a variety of MXene compositions are
biocompatible and noncytotoxic [124]. According to recent research, with remarkable
sensitivity, endurance, sensing range, and detection limits, MXenes and derivatives are
currently prominent in the field of biosensing [125]. Biosensing devices are of differ-
ent types either based on the mechanism of transduction or on the biological signaling
mechanism, such as electrochemical, optical, immunosensor, enzyme-based sensors, and
nucleic acid-based sensors [126]. Numerous MXene-based sensors have been established
for examining biomolecules, and some of the examples are summarized in Table 3. Re-
cent applications of MXene-based sensors for point of care (POC) diagnostics are briefly
discussed in this section.
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Table 3. Some of the MXene-based sensors.

Type of Biosensor Formulation Analyte Sensing Range Limit of Detection (LOD) Reference

Electrochemical
biosensor

Prussian blue/Ti3C2 MXene Exosomes
secreted by various cancer cells

5 × 102–5 × 105 particles
µL−1 229 particles µL−1 [127]

MXene–MoS2
MicroRNA-21 biomarker for cancer

diagnosis and prognosis 100 fM to 100 nM 26 fM [128]

MXene @Au NPs@
methylene blue Prostate-specific antigen 5 pg mL−1 to 10 ng mL−1 0.83 pg mL−1 [129]

MXene-based cytosensor HER2-positive cancer cells 102–106 cells mL−1 47 cells mL−1

(Total detection time of ~75 min)
[130]

MXene–graphene
Influenza A (H1N1)

virus 125–250,000 copies mL−1 125 copies mL−1

[131]
SARS-CoV-2 1 fg mL−1–10 pg mL−1

1 fg mL−1

(Average response time for both virus
~50 ms)

Optical biosensor

MXene–Au Gram-negative and
Gram-positive bacteria 3 × 105–3 × 108 CFU mL−1 3 × 105 CFU mL−1 [132]

Ti3C2Tx MXene–Au
NPs@polyimide thin film Carcinoembryonic antigen 0.1–100 ng mL−1 0.001 ng mL−1 [133]

MXene N-Ti3C2 quantum
dot/Fe3+ Glutathione 0.5–100 × 10−9 fM 0.17 × 10−9fM [134]

MXene-derived quantum
dot@Au Triple-negative breast cancer 5 fM to 10 nM, 1.7 fM [135]

MXene-CRISPR-Cas 12a Siglec-5 20 fM–100 pM 20.22 fM [136]
Reproduced from [137,138] with copyright permission from Elsevier.
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4.1. Electrochemical Biosensors

Due to their excellent sensitivity, long-term dependability, good precision, speed, low
cost, and simplicity of downsizing, electrochemical biosensors have proven valuable for
the identification of substances of biological, environmental, agricultural, and therapeutic
significance, despite such drawbacks as extensive setup. Electrochemical sensors have
advanced significantly with a range of new applications, including single-molecule sensing,
in vivo testing, wearable technology, and point-of-care diagnostics [139]. The most often
utilized material for making electrochemical sensors among the MXenes is Ti3C2Tx. This
material’s high conductivity and simple synthesis make it suitable for use as an active com-
ponent in electrochemical applications [140]. Different types of electrochemical biosensors
are available depending on the biomolecules employed to detecting analytes. Figure 6A
represents the graphical abstract for the detection of cortisol in sweat.

4.1.1. Enzyme-Based Electrochemical Biosensors

Entrapping enzymes in two-dimensional, multilayered MXene nanolayers with a
large surface area can give them a safe microenvironment where they can keep up their
activity and stability. MXenes are suitable for entrapping enzymes because of their bio-
compatibility, metallic conductivity, and hydrophilic surface. Several enzymatic sensors
are made by entrapping enzymes such as acetylcholinesterase, glucose oxidase, lactate
oxidase, cholesterol oxidase, horseradish peroxidase, tyrosinase, and xanthine oxidase.
The manufacturing of Chit/ChOx/Ti3C2Tx using a continuous self-assembled technique
resulted in the realization of a voltametric cholesterol sensor. The lipase enzyme was
immobilized on chitosan and MXene in this, increasing the electrical conductivity and,
consequently, the rate at which electrons transferred. In a different investigation, lipase
was immobilized covalently onto Ti3C2Tx MXene. The obtained immobilized lipase was
highly reusable and displayed excellent thermal and pH stability [141]. The need for ultra-
sensitive cholesterol detection at high temperatures was met by immobilizing cholesterol
oxidase on MXene/sodium alginate/silica@n-docosane hierarchical microcapsules as a
thermoregulatory electrode material for electrochemical biosensors. When compared to
existing cholesterol biosensors without a PCM, the newly developed biosensor had a higher
sensitivity of 4.63 µAµM−1cm−2 and a lower limit of detection of 0.081 µM at elevated
temperatures, providing exceptional and reliable cholesterol detection for real biological
fluids over a broad temperature range [142]. Regarding lactate oxidase (Lox) mounted on
Ti3C2@Eu-SnO2, the spectroscopy results show that Eu-SnO2, Ti3C2, and Lox exhibit high
hybrid coupling and compatible with biological molecules. A strong linearity in the lactate
concentration is revealed by the enzymatic electrochemical biosensor built using Ti3C2@Eu-
SnO2/Lox on glassy carbon electrode (GCE). Its low detection limit is 3.38 × 10−10 mol L−1,
with a high sensitivity of 4.815 mA nmol−1 L cm−2. Furthermore, the created biosensor can
accurately monitor lactate in serum samples with significant efficiency [143]. A sensitive
enzymatic glucose detection biosensor based on surface-functionalized MXene (Ti3C2Tx)
has been reported. The biosensor makes use of the functionalized MXene’s high electrical
conductivity and many active sites to provide a transfer channel for the electrons pro-
duced by the redox interaction between glucose and the enzyme glucose oxidase (GOx).
High sensitivity is displayed by the sensor, reaching 5.1 A/A for 10 mM glucose [144].
PB/Ti3C2Tx/GOx and Nafion were successfully used to create a unique paper-based screen-
printed ionic liquid–graphene device to detect glucose in actual plasma samples. This
platform could be utilized for direct measurement and used to track other processes that
result in the production of H2O2 as a by-product [145].

4.1.2. Electrochemical Immunobiosensors

Many biological recognition devices for protein detection fall within the category
of electrochemical immunosensors. Electrochemical immunosensors made using MXene
and its compounds have been used to detect a number of cancer biomarkers as well as
cardiovascular disease biomarkers, sweat biomarkers, inflammatory biomarkers, and oth-
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ers [146]. In a recent study, an immunoassay that uses platelet membrane–Au nanoparticles–
delaminated V2C nanosheets as the substrate of the sensing interface and methylene blue–
aminated metal organic framework (MB@NH2-Fe-MOF-Zn) as an electrochemical signal
probe was created. To improve the electrochemical sensing performance, the biosensor
effectively integrates the exceptional loading property of NH2-Fe-MOF-Zn with the high
ionic conductivity of AuNPs-loaded V2C MXene. The acquired antifouling biosensor has
great efficacy for CD44 analysis with a linear range of 0.5 ng mL−1 to 500 ng mL−1 and is
capable of highly sensitive and selective screening of CD44 and CD44-positive tumor cells
in heterogeneous liquids [147].

4.1.3. Nucleic Acid-Based Biosensors

Nucleic acid offers good detection capabilities because it is a biomolecule that is stable
and simple to handle. Combining the benefits of nucleic acid probes and electrochemical
detection, nucleic acid-based electrochemical biosensors enable the sensitive detection of
analytes such as genetic material, peptides, cellular structures, inorganic compounds, and
cells. Aptamer-based electrochemical biosensors are simple, trustworthy, quick to react,
inexpensive, and have tolerable reproducibility. A lead-specific binding DNA molecule was
used as the molecular identification molecule on an electrode modified with Au nanoparti-
cles and Nb4C3Tx to create an electrochemical aptasensor for the superior selectivity and
sensitive detection of lead. Through the AuS bond, the Au@Nb4C3Tx is coupled with
lead-binding DNA that has undergone thiol modification. With a limit of detection and
linear range of 4 nM and 10 nM to 5 µM respectively, the DNA-Au@Nb4C3Tx-modified
glassy carbon electrode demonstrated superior selectivity and improved specificity towards
the detection of lead. This research has demonstrated the viability of employing Nb4C3Tx
as a reliable immobilization platform for DNA nucleotides in a variety of biological and
environmental sensing applications [148]. The biosensor for gliotoxin detection outper-
formed previously established sensors in terms of great selectivity, good repeatability,
and acceptable stability with an LOD of 5 pM in real samples. With regard to clinical
applications, this discovery presents a novel route for mycotoxin detection employing
MXenes and DNA nanostructure [149]. An aptasensor based on Ti3C2Tx@FePcQDs that
exhibits good sensing properties in human serum has been created. It has a detection limit
of 4.3 aM and a wide linear range of miRNA-155 concentrations from 0.01 fM to 10 pM. The
generated Ti3C2Tx@FePcQDs-based aptasensor had shown a number of benefits, including
successful cDNA immobilization and cross-linking of cDNA/miRNA-155, as well as the
ability to prepare a sensing system without the need for labeled probes or electrochemical
indicators [150]. The N gene of SARS-CoV-2 was effectively detected with a highly sensitive,
quick, and selective Ti3C2Tx biosensor that was functionalized with DNA primers. With
ssDNA/Ti3C2Tx sensors, a distinct differentiable response to the N gene of SARS-CoV-2
may be shown at a concentration as low as 105 copies/mL in synthetic saliva, which is
within the current detection limit of traditional qPCR testing. This study demonstrates the
viability of creating real-time, extremely reliable diagnostic tools for clinical tests based on
DNA-functionalized Ti3C2Tx MXenes under the present COVID-19 outbreak [151].

4.2. Optical Biosensors

MXenes possess special qualities that make it easier to create optical biosensors with
the highest performance. MXenes have favorable energy levels and a broader absorption
band, which make them excellent candidates for optical, photothermal, and photoelectro-
chemical biosensing despite light interference. Figure 6B presents an ECL/SERS-based
optical biosensor for the detection of Vibrio vulnificus. The applications of MXenes in optical
biosensing will be outlined in the following section, with a focus on some notable recent ex-
amples in photoluminescence, electrochemiluminescence, and photoelectrochemistry [152].
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4.2.1. Photoluminescent Biosensors

Fluorescence analysis has a high sensitivity for the identification of biomolecules.
Two methods are generally recommended for creating MXene-based fluorometric sensors.
For “on/off” effects, the first type employs MXene nanostructures as efficient quenchers
(donors) for fluorophores or other fluorescent nanomaterials (donors), such as dyes, quan-
tum dots, and metal nanoparticles. The second type employs luminescent magnetic quan-
tum dots as the signal output modules, which are effectively and promptly quenched by
the presence of samples. Various design methodologies can be used to create fluorescent
biosensors based on MXenes with a variety of characteristics [153]. Nitrogen-doped Ti3C2
QDs with a high photoluminescence quantum yield (PLQY) have been used to create an
attractive mediator-free biosensor with high sensitivity and a detection limit of up to 100
µM for the detection of H2O2 [154]. Ti3C2 nanosheets and red-emitting carbon dots (RCDs)
were coupled to create a potent and focused fluorescent turn-on nanosensor for glucose
sensing. Ti3C2 nanosheets were able to effectively quench (>96%) the fluorescence intensity
of RCDs (IFE). The nanosensor can be used to monitor glucose based on hydrogen peroxide
generated by the oxidation of glucose catalyzed by glucose oxidase. The detection limit
under ideal circumstances was 50 µM (S/N = 3) [155]. An Ag@Ti3C2–MXene nanohybrid
was used to create a fluorescent turn-on detection system, which demonstrated biosens-
ing qualities for the recognition of neuron-specific enolase (NSE), with great sensitivity
(~771 ng mL−1), a wider linear sensing range (0.0001–1500 ng mL−1), finer detection limit
(0.05 pg mL−1), and a quicker reaction within 12 min [156].

4.2.2. Electrochemiluminescence Biosensors

One of the most popular methods for making electrochemically stimulated ECL emit-
ters emit light is electrochemiluminescence (ECL), sometimes known as electrogenerated
chemiluminescence [157]. A potent instrument in the realm of biosensing, ECL has drawn a
lot of interest. To detect HIV from serum samples with a LOD of 0.3 fM, a Ti3C2Tx MXenes
altered ZIF-8 aptamer-based sensor was created [158]. Based on PEIRu@Ti3C2@AuNPs
ECL material, a biosensor for the RdRp gene has been created. The ssDNA on the surface
of the biosensor is cut by activated CRISPR-Cas12a, which also makes the ferrocene re-
formed at one end of the DNA to shift away from the top of the electrode, boosting the
ECL signal. The magnitude of the electrochemiluminescence change reflects the amount of
the target gene present. This method encourages the medical use of ECL biosensors based
on CRISPR-Cas12a and innovative complex materials and adds to the quick and suitable
sensing of SARS-CoV-2-associated nucleic acids with a limit of detection of 12.8 aM [159].

4.2.3. Photoelectrochemical Biosensors

Photoelectrochemical (PEC) biosensing has garnered a lot of interest due to its capacity
to identify biomolecules using the photocurrent produced by biomolecule oxidation. PEC
is a promising cost-effective technique to alter chemical energy to electricity when applied
voltage and light illumination are present [160]. Using Ti3C2Tx and paper-thin covalent
organic framework nanosheets (referred to as TTPA-CONs), new composites were created
that had PEC-sensing capabilities. With great sensitivity, a detection limit of 0.0003 ng/mL,
and exceptional stability, the produced TTPA-CONs/Ti3C2Tx complex can be utilized as
photocathodes for PEC sensing of prostate-specific antigen (PSA), [161] built a PEC/EC
sensing platform using a MIP functionalized Bi2S3/Ti3C2Tx MXene nanocomposite and
achieved the dual-signal detection of chlorogenic acid (CGA). Bi2S3/Ti3C2Tx MXene’s
superior photoelectric conversion efficiency not only produced a PEC signal with a low
background but also had electrocatalytic properties. By merging a molecular imprinting
technique with Bi2S3/Ti3C2Tx MXene as the photoactive material and CGA as the idea
target, a quick and extremely sensitive PEC sensor was created [162].
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Figure 6. (A) Noninvasive electrochemical immunosensor for the detection of cortisol. The thread
electrode was modified by immobilization of anti-cortisol on L-cys/AuNPs/MXene; (B) Optical
sensor based on ECL/SERS fabricated for ultrasensitive detection of Vibrio vulnificus (VV), based
on a multifunctional MXene material R6G-Ti3C2Tx@AuNRs-Ab2/ABEI acting as the signal unit.
(Reproduced from [163,164] with copyright permission of Elsevier).

4.3. Wearable Biosensors

Electrically conductive and highly flexible nanosheets make up typical MXene films.
Even when the structure is mechanically deformed, the horizontal stacking allows for the
creation of a variety of electrical pathways, and the interaction between the negatively
charged MXene surface and the positively charged elements present in between or dipolar
water molecules can help preserve the structure. Due to these benefits, MXenes are appro-
priate for applications involving wearable sensors [165]. An electrochemical portable patch
system was fabricated for the detection of glucose and lactate in sweat samples (Figure 7).
Ti3C2Tx-based MXenes of great purity were prepared by in situ hydrofluoric acid wet
etching. PVDF membrane was coated with Ti3C2Tx via vacuum-assisted filtering. The
Ti3C2Tx-coated PVDF membrane was utilized to construct a wearable pressure sensor that
monitored finger bending/stretching resistance. Health monitoring with Ti3C2Tx-coated
PVDF membrane strain sensors appear promising [166].
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sponses of three glucose sensors and pH changes before and after meals. e) Measured pH sensor 
levels throughout workout. f) Lactate sensor chronoamperometry during exercise. g) Three glucose 
and pH sensors compared before and after meals. h) Three pH sensor comparisons during the 
workout. i) Lactate sensor comparisons during exercise. (Reprinted from [167] with copyright per-
mission from John Wiley and Sons). 
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Figure 7. (i) (a) Representation of the patch system of a sensor that consists of a cover layer, a sweat-
uptake layer, and a sensor layer. (b) Front-side optical picture of the pH sensor (bottom), reference
electrode (top), counter electrode (middle), and sensor array (left and right). (c) An optical picture of
the sensor array’s back side. (d) Photographs of the biosensor band printed optically on a person’s
skin. (ii) On-body sensor patch pH, lactate, and glucose monitoring. (a) A portable electrochemical
analyzer powers and operates the sweat-monitoring patch and communicates with commercial
mobile phones through Bluetooth. (b) A skin-mounted electrochemical analyzer connects to the
sweat-monitoring patch. (c) On-body cycling resistance profile. (d) Measured chronoamperometric
responses of three glucose sensors and pH changes before and after meals. (e) Measured pH sensor
levels throughout workout. (f) Lactate sensor chronoamperometry during exercise. (g) Three glucose
and pH sensors compared before and after meals. (h) Three pH sensor comparisons during the
workout. (i) Lactate sensor comparisons during exercise. (Reprinted from [167] with copyright
permission from John Wiley and Sons).

A stretchable piezoresistive pressure detector based on a Ti3C2Tx nanosheet-dipped
polyurethane sponge has been made from a molybdenum microstructured electrode pro-
duced by helium plasma irradiation. This electrode-modifying method allows the easy
conversion between sponge deformation and MXene interlamellar displacement, resulting
in elevated sensitivity (1.52 kPa−1) and strong linearity (r2 = 0.9985) in a broad sensing
range (0–100 kPa) with a pressure detection response time of 226 ms. The flexible pressure
sensor can also sense human radial pulse, monitor finger tapping, foot movement, and
identify objects, making wearable biomonitoring and health evaluation feasible. Epider-
mal sensors made of hydrogel can be employed in electronic skins, soft robotics, and
personal health-care monitoring. A flexible and wearable epidermal sensor made of MX-
ene/polyampholytes hydrogel has been created to monitor the daily activity of ADHD
patients [168].

5. Conclusions and Future Prospects

MXenes have shown tremendous potential in the domain of sensing due to their
superior electrical and optical properties compared to traditional 2D materials. The number
of investigations on MXene is increasing drastically, and we are hopeful that the majority of
concerns may be resolved by MXene research following the appropriate path. In this review,
the various design and synthesis method for fabricating MXenes, such as hydrothermal,
acid etching, etc., have been discussed and their applications are listed with examples in
order to serve as a roadmap for future efforts in the creation of efficient sensing platforms.
Furthermore, MXene possess exceptional electronic, magnetic, optical and thermal proper-
ties that are superior to other 2D materials such as graphene and TMD, and hence MXenes
are subsequently used for applications in developing sensing devices. Additionally, MXene
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shows significant potential in the fabrication of conductive substrates for different electrode
systems, particularly patterned electrodes. This opens the door to the creation of a wide
range of improved electrochemical sensing technologies, including portable and wearable
sensing devices for noninvasive bodily fluid tracking and tiny monitoring equipment for
practical interpretation. In a nutshell, MXene’s usefulness as a dependable electrochemical
sensing device has been demonstrated by overcoming several challenges, and this trend is
predicted to continue in the future. As a result, we are optimistic that MXene will fulfill its
full potential simply by bringing 2D materials to commercial applications.
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