Next Article in Journal
Early Assessment of Neoadjuvant Chemotherapy Response Using Multiparametric Magnetic Resonance Imaging in Luminal B-like Subtype of Breast Cancer Patients: A Single-Center Prospective Study
Previous Article in Journal
Dysregulated Levels of Circulating Autoantibodies against Neuronal and Nervous System Autoantigens in COVID-19 Patients
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Blood Biomarkers in Patients with Parkinson’s Disease: A Review in Context of Anesthetic Care

Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
*
Author to whom correspondence should be addressed.
Diagnostics 2023, 13(4), 693; https://doi.org/10.3390/diagnostics13040693
Submission received: 21 December 2022 / Revised: 8 February 2023 / Accepted: 10 February 2023 / Published: 12 February 2023
(This article belongs to the Special Issue Blood Biomarkers for Brain Disorders)

Abstract

:
Parkinson’s disease (PD) is the second most common inflammatory neurodegenerative disorder after dementia. Preclinical and epidemiological data strongly suggest that chronic neuroinflammation slowly induces neuronal dysfunction. Activated microglia secrete several neurotoxic substances, such as chemokines and proinflammatory cytokines, which may promote blood–brain barrier (BBB) permeabilization. CD4+ T cells comprise proinflammatory cells such as T helper (Th) 1 and Th17 cells, as well as anti-inflammatory cells such as Th2 and T regulatory cells (Tregs). Th1 and Th17 cells can be detrimental to dopamine neurons, whereas Th2 and Tregs are neuroprotective. The results of studies on the serum levels of cytokines such as IFN-γ and TNF-α secreted by Th1 T cells, IL-8 and IL-10 secreted by Th2 T cells, and IL-17 secreted by Th17 cells in PD patients are not uniform. In addition, the relationships between serum cytokine levels and motor and non-motor symptoms of PD are controversial. Surgical stress and anesthesia induce inflammatory responses by disturbing the balance between pro- and anti-inflammatory cytokines, which may exacerbate the neuroinflammatory response in PD patients. Here we review studies on blood inflammatory biomarkers in PD patients and discuss the roles of surgery and anesthesia in PD progression.

1. Introduction

Parkinson’s disease (PD) is the second most common inflammatory neurodegenerative disorder after dementia, affecting 7–10 million people worldwide [1]. About 2–3% of elderly patients (aged ≥ 65 years) are affected by PD [2]. People with PD suffer motor symptoms such as bradykinesia, rigidity, resting tremor, and postural instability. In addition, patients often complain of ‘non-motor symptoms’ such as cognitive impairment, anxiety, depression, hypothermia, constipation, bowel and rapid eye movement sleep behavior disorder, and autonomic nervous system disorders [2,3].
PD is characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, the appearance of Lewy bodies (intracellular inclusions of aggregated a-synuclein), and the presence of neuroinflammation [4,5,6,7]. Although the mechanism of neuron loss in PD is unclear, inflammation and the peripheral immune system play key roles [7,8,9]. Preclinical and epidemiological data suggest that chronic neuroinflammation induces neuronal dysfunction during the asymptomatic stage of PD [6,10]. The activation of resident microglia precedes dopamine neuron loss [11,12]. Activated microglia secrete several neurotoxic substances, such as chemokines and proinflammatory cytokines, which may cause blood–brain barrier (BBB) permeabilization and subsequent infiltration of peripheral leukocytes into the central nervous system (CNS) [11,12,13].
There is currently no cure for PD to prevent PD or delay its progression, mainly due to the still limited comprehension of the events ultimately leading to neurodegeneration. Available treatments for PD are only symptomatic, aimed at relieving the loss of brain dopaminergic neurons by using levodopa (the dopamine precursor), some dopaminergic agonists, and other indirect dopaminergic agents. Surgery, including deep brain stimulation, may be considered in advanced PD patients who fail to respond to levodopa [14].
CD4+ T lymphocytes play a pivotal role in orchestrating immune responses implicated not only in the pathogenesis of inflammatory diseases, but also in host defense. CD4+ T cells include proinflammatory cells such as T helper (Th) 1 and Th17, and anti-inflammatory cells such as Th2 and T regulatory cells (Tregs) [15,16]. Interestingly, both animal models of PD and clinical studies suggest that Th1 and Th17 can be detrimental to dopamine neurons, whereas Th2 and Tregs are neuroprotective [17,18]. Indeed, the number of circulating CD4+ T cells is reduced in patients with PD [19], but the relative proportions and functional profiles of subdivided cell populations are controversial. The decrease in CD4+ T cells seen in the peripheral blood of patients with PD is mainly due to decreases in Th2, Th17, and Tregs [20,21]. As a result, Th1 T cells, the absolute numbers of which are similar to healthy controls, increase in PD patients compared to other T cells, resulting in a Th1 bias. Consequently, the production of IFN-γ and TNF-α by Th1 cell lineages increases [21]. The results of studies on the serum levels of cytokines such as IFN-γ and TNF-α secreted by Th1 T cells, IL-8 and IL-10 secreted by Th2 T cells, and IL-17 secreted by Th17 in PD patients are not uniform [19,22,23,24,25,26,27]. In addition, the relationships between serum cytokine levels and motor and non-motor symptoms of PD are controversial [19,23,26,27].
Surgical stress and anesthesia induce inflammatory responses by disturbing the balance between pro- and anti-inflammatory cytokines [28], which may exacerbate the neuroinflammatory response in PD patients. The effects of inhalational anesthetics on the inflammatory response are controversial [29,30,31,32]. Meanwhile, Shan et al. [33] reported that sevoflurane worsened the prognosis of PD in a Drosophila model. There are few studies on the effect of the immune response on PD symptoms and prognosis after surgery and anesthesia [34,35,36,37].
Here we review studies on blood inflammatory biomarkers in PD patients and discuss the role of surgery and anesthesia in PD progression. We searched the PubMed, PubMed Central, Medline, Google Scholar, and Google databases for clinical studies using the key words “Parkinson’s disease”, “inflammation”, “immune” “blood”, “cytokine”, and “chemokine.”

2. Blood Inflammatory Biomarkers in PD Patients

Only seven markers (CRP, IL-1β, IL-2, IL-6, IL-8, IFN-γ, TNF-α) were reported in more than 5 of 51 studies. The most frequently studied inflammatory biomarkers are CRP and IL-1β [26,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58]. These two biomarkers show consistently higher levels in PD patients than healthy controls. Data for IL-2, IL-6, IFN-γ, and TNF-α are controversial. Some studies report higher blood levels of these biomarkers, while others found no differences between PD patients and healthy controls, or lower levels in the former group [27,38,41,42,43,44,49,50,51,53,54,55,56,59,60,61,62,63,64,65,66,67,68,69,70,71,72]. Blood markers evaluated to date are listed in Table 1 and Figure 1.
Although many studies have focused on proinflammatory profiles, inflammation is a balance between pro- and anti-inflammatory processes. CD4+ T lymphocytes orchestrate an effective immune response during host defense, as well as in the pathogenesis of inflammatory diseases. CD4+ T cells can select for proinflammatory phenotypes such as Th 1 and Th17 cells, as well as anti-inflammatory phenotypes such as Th2 and Tregs [15,16]. Results from animal models of PD and clinical studies suggest that Th1 and Th17 cells are detrimental to neurons, while Th2 and Tregs are neuroprotective [17,18].
The most investigated anti-inflammatory blood biomarker in the context of PD is IL-10. However, while some studies report higher levels in PD patients, others report lower levels or no difference in PD patients compared to healthy controls [41,43,44,49,52,53,54,60,67,70].

3. Effects of Blood Biomarkers on PD Symptoms

High blood levels of CRP, IL-6 [45,56,62,77,87], fractalkine, IL-1β, IL-15, IFN-γ, S100B, TNF-α, and VCAM-1 [81] are related to worse motor function [58,69,74,78,80,82]. By contrast, reduced blood levels of the anti-inflammatory markers IL-4 and IL-12p40 are associated with worse motor function [44,90].
CRP, FABP, IL-6, IL-10, IL-17A, TNF-α, and TNFR are related to worse cognitive function and dementia [68,77,80,83]. Furthermore, higher levels of C3 and C4 are related to reduced memory function [23,88]. Dufek et al. [75] showed an association between a high level of IL-6 and overall mortality in PD.

4. Influence of Peripheral Inflammation on the CNS

Systemic inflammation causes physiological and behavioral changes in humans and animals, characterized by reduced cognitive function, fever, reduced food intake, drowsiness, and general fatigue [91]. Aseptic inflammation activates innate immune pathways similar to other forms of immunologic attack [92]. Importantly, although inflammation is protective against injury overall, it can be detrimental if dysregulated and can contribute to pathologies including neuroinflammation [93,94,95]. The impact of systemic inflammation on the brain can be severe. Blood-borne factors, as well as a systemic proinflammatory milieu, degrade CNS function, thereby directly affecting synaptic plasticity and cognitive function during normal aging [96,97].
Endothelial cells, pericytes, and astrocyte end-feet are key components of the neurovascular unit [98]. Together with tight junction and adherent proteins of the endothelial cell layer, they ensure proper barrier formation and protection against potentially harmful peripheral molecules [99]. Under pathological conditions, the BBB allows extravasation of various immune cells and systemic biomarkers, such as plasma proteins, prostaglandins, cytokines, and chemokines, into brain parenchyma [100]. Surgery triggers inflammation and receptors expressed on the BBB can lead to endothelial inflammation and subsequent neuroinflammation [101,102,103,104,105].
Cytokines and the migration of peripheral immunocompetent cells across the BBB are associated with perioperative neurocognitive impairment in animal models [105]. Other preclinical surgical models have shown similar changes in the BBB ultrastructure, with exogenous tracers penetrating into the brain parenchyma [102,106]. In aged mice, laparotomy may trigger changes in several markers including claudins, occludins, and adhesion molecules, leading to an increase in BBB permeability. The increase in BBB permeability resulted in cognitive decline in a manner dependent on IL-6 signaling [104]. Furthermore, the administration of an IL-6 monoclonal antibody and targeting of TNF-α prevent perioperative neurocognitive disorder [103,107]. Surgery can upregulate enzymes that degrade extracellular matrix 9, such as matrix metallopeptidases, and cause the increase in BBB permeability and neuroinflammation [101]. Different concentrations of sevoflurane anesthesia differentially regulate matrix metallopeptidase 9 and 2 [108], suggesting that anesthesia itself contributes to the increase in BBB permeability. The role and timing of BBB/neurovascular unit opening after surgery need further investigation to develop strategies to suppress neuroinflammation during surgery.

5. Impact of Surgery and Anesthesia on the Immune System

Tissue damage during major surgery induces inflammatory responses by disturbing the balance between pro- and anti-inflammatory cytokines [28]. Other invasive measures such as mechanical ventilation, transfusion of blood products, and perioperative tissue hypoperfusion with reperfusion injury can also trigger a perioperative immune response [92].
Neutrophils are the primary effector cells of the innate immune system and represent the first line of defense against invading exogenous pathogens [109]. Neutrophil functions also carry a risk of host tissue damage, which may lead to organ dysfunction, making neutrophil activation a double-edged sword [110]. Neutrophils are also recruited and activated during aseptic inflammation, as seen in cases of ischemia-reperfusion injury and excessive tissue damage caused by surgical procedures. After surgical procedures, oxidative stress is evoked by activated neutrophils in association with inflammatory processes [111]. Aseptic inflammation activates the innate immune response by releasing cytokines [92]. Blood levels of IL-1ß, IL-6 and IL-10 are commonly elevated after tissue damage [112,113,114]. IL-6 (a proinflammatory factor) and IL-10 (an anti-inflammatory factor) are simultaneously increased, indicating the activation of opposite mechanisms. Although IL-6 is proinflammatory, it can also inhibit Th1 differentiation [115]. It is therefore conceivable that IL-6 also suppresses host defenses.
Most general anesthetic agents directly or indirectly suppress the immune response [116,117,118], including by impairing neutrophil function [119]. Modulation of neuro-immunomodulatory circuits is another immunosuppressive mechanism of anesthetics [120]. Total intravenous anesthesia using propofol is superior to inhalational anesthetics for inhibiting inflammatory responses [121,122,123,124]. The effects of inhalational anesthetics on the inflammatory response are controversial [29,30,31,32]. Regional anesthesia is used to partially alleviate the stress response to the surgical procedure. A retrospective study showed fewer perioperative complications with regional compared to general anesthesia [125]. Avoidance of general anesthesia can reduce the perioperative immune response and serum cortisol level [126]. Liu et al. [127] reported that single use of regional anesthesia was associated with a lower postoperative infection rate compared to general anesthesia. Elevation of inflammatory biomarkers has been noted after general and spinal anesthesia [128]. The effects of different methods of anesthesia on the immune response have been documented in studies on cancer recurrence and metastasis [129,130,131]. However, the effects of different methods of anesthesia on clinical outcomes are unclear.

6. Influence of Surgery and Anesthesia on the Prognosis of Parkinson’s Disease

There has been diverse research reporting that dysbiosis, obesity, diabetes, and vascular disorders are closely related to the occurrence of neurodegenerative diseases including Parkinson’s disease [132,133,134,135,136]. However, few studies have reported worsening symptoms after surgery and anesthesia in PD patients [34,36,37]. After total knee arthroplasty, functional ability does not improve in patients with PD, and functional loss has been reported in final-stage PD patients. Poorer knee function has been found in PD patients compared with healthy controls [36].
Shan et al. [33] reported that impairment of locomotor abilities was exacerbated by exposure to sevoflurane in a Drosophila PD model. Tuon et al. [137] reported that IL-17 levels decreased after physical training in an experimental mouse model of PD. Serum levels of cytokines, such as IL-1β, TNF-α, and IL-10, were higher in PD patients than age-matched non-PD controls; higher TNF-α levels were associated with a faster rate of motor decline and higher IL-1β levels with a faster rate of cognitive decline [22]. Therefore, IL-17 and TNF-α are closely related to the motor symptoms of PD. In a study of patients diagnosed with PD about 10 years prior, deep brain stimulation surgery was required to manage motor symptoms that were not controlled by medications. These observations suggest that serum levels of IL-17 increase with the progression of PD. The larger increase of IL-17 at 24 h after surgery seen under inhalation anesthetics suggests that propofol has advantages in terms of the inhibition of neuroinflammation after surgery [138]. However, studies on the effects of surgery and anesthesia on neuroinflammation and consequent worsening of PD symptoms are scarce. As the elderly population increases, the number of patients with PD who undergo surgery is also growing. Therefore, studies should evaluate neuroinflammatory changes and symptom exacerbation in PD patients during the perioperative period.

7. Conclusions

Insight into the inflammatory processes induced by surgical and therapeutic interventions during the perioperative period has been provided by clinical and experimental studies. Because inflammation affects disease progression and patient outcomes at multiple levels, knowledge of the molecular mechanisms and pathways involved in these processes would facilitate the development of new therapeutic approaches. CRP, IL-1β, IL-2, IL-6, IL-8, IFN-γ, TNF-α are 7 the most intensely evaluated blood biomarkers in PD patients. Although they are correlated with motor and nonmotor symptoms, the results are controversial and vary by study design. Surgery and anesthesia induce inflammatory responses by disturbing the balance between pro- and anti-inflammatory cytokines. Studies on the effects of surgery and anesthesia on neuroinflammation and the consequent worsening of PD symptoms are scarce. Therefore, research on the effects of surgery and anesthesia on neuroinflammation, and methods for its amelioration, are needed to prevent worsening of perioperative symptoms in patients with PD.

Author Contributions

Conceptualization, H.J.P. and J.J. (Jin Joo), methodology, H.J.P., software, investigation, J.J. (Jongmin Jeong), H.J.P. and J.J. (Jin Joo), resources, J.J. (Jongmin Jeong), H.J.P. and J.J. (Jin Joo), data curation; writing—original draft preparation, J.J. (Jin Joo), writing—review and editing, H.J.P., visualization, J.J. (Jin Joo), supervision H.J.P. and J.J. (Jin Joo), funding acquisition, none. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Delenclos, M.; Jones, D.R.; McLean, P.J.; Uitti, R.J. Biomarkers in Parkinson’s disease: Advances and strategies. Parkinsonism Relat. Disord. 2016, 22, S106–S110. [Google Scholar] [CrossRef]
  2. Chaudhuri, K.R.; Odin, P.; Antonini, A.; Martinez-Martin, P. Parkinson’s disease: The non-motor issues. Parkinsonism Relat. Disord. 2011, 17, 717–723. [Google Scholar] [CrossRef]
  3. Corrado, L.; De Marchi, F.; Tunesi, S.; Oggioni, G.D.; Carecchio, M.; Magistrelli, L.; Tesei, S.; Riboldazzi, G.; Di Fonzo, A.; Locci, C.; et al. The Length of SNCA Rep1 Microsatellite May Influence Cognitive Evolution in Parkinson’s Disease. Front. Neurol. 2018, 9, 213. [Google Scholar] [CrossRef] [PubMed]
  4. Eriksen, J.L.; Wszolek, Z.; Petrucelli, L. Molecular pathogenesis of Parkinson disease. Arch. Neurol. 2005, 62, 353–357. [Google Scholar] [CrossRef]
  5. Schapira, A.H.; Jenner, P. Etiology and pathogenesis of Parkinson’s disease. Mov. Disord. 2011, 26, 1049–1055. [Google Scholar] [CrossRef]
  6. More, S.V.; Kumar, H.; Kim, I.S.; Song, S.Y.; Choi, D.K. Cellular and molecular mediators of neuroinflammation in the pathogenesis of Parkinson’s disease. Mediators Inflamm. 2013, 2013, 952375. [Google Scholar] [CrossRef]
  7. McGeer, P.L.; McGeer, E.G. Inflammation and neurodegeneration in Parkinson’s disease. Parkinsonism Relat. Disord. 2004, 10, S3–S7. [Google Scholar] [CrossRef]
  8. González, H.; Elgueta, D.; Montoya, A.; Pacheco, R. Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. J. Neuroimmunol. 2014, 274, 1–13. [Google Scholar] [CrossRef] [PubMed]
  9. Mosley, R.L.; Hutter-Saunders, J.A.; Stone, D.K.; Gendelman, H.E. Inflammation and adaptive immunity in Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2012, 2, a009381. [Google Scholar] [CrossRef]
  10. Lee, J.K.; Tran, T.; Tansey, M.G. Neuroinflammation in Parkinson’s disease. J. Neuroimmun. Pharmacol. 2009, 4, 419–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  11. Monahan, A.J.; Warren, M.; Carvey, P.M. Neuroinflammation and peripheral immune infiltration in Parkinson’s disease: An autoimmune hypothesis. Cell Transpl. 2008, 17, 363–372. [Google Scholar] [CrossRef]
  12. McGeer, P.L.; Itagaki, S.; Akiyama, H.; McGeer, E.G. Rate of cell death in parkinsonism indicates active neuropathological process. Ann. Neurol. 1988, 24, 574–576. [Google Scholar] [CrossRef] [PubMed]
  13. Mosley, R.L.; Benner, E.J.; Kadiu, I.; Thomas, M.; Boska, M.D.; Hasan, K.; Laurie, C.; Gendelman, H.E. Neuroinflammation, Oxidative Stress and the Pathogenesis of Parkinson’s Disease. Clin. Neurosci. Res. 2006, 6, 261–281. [Google Scholar] [CrossRef]
  14. Church, F.C. Treatment Options for Motor and Non-Motor Symptoms of Parkinson’s Disease. Biomolecules 2021, 11, 612. [Google Scholar] [CrossRef]
  15. Zhu, J.; Yamane, H.; Paul, W.E. Differentiation of effector CD4 T cell populations (*). Ann. Rev. Immunol. 2010, 28, 445–489. [Google Scholar] [CrossRef] [PubMed]
  16. O’Shea, J.J.; Paul, W.E. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 2010, 327, 1098–1102. [Google Scholar] [CrossRef]
  17. González, H.; Contreras, F.; Pacheco, R. Regulation of the Neurodegenerative Process Associated to Parkinson’s Disease by CD4+ T-cells. J. Neuroimmun. Pharmacol. 2015, 10, 561–575. [Google Scholar] [CrossRef]
  18. Tahmasebinia, F.; Pourgholaminejad, A. The role of Th17 cells in auto-inflammatory neurological disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017, 79 (Pt B), 408–416. [Google Scholar] [CrossRef]
  19. Jiang, S.; Gao, H.; Luo, Q.; Wang, P.; Yang, X. The correlation of lymphocyte subsets, natural killer cell, and Parkinson’s disease: A meta-analysis. Neurol. Sci. 2017, 38, 1373–1380. [Google Scholar] [CrossRef]
  20. Kustrimovic, N.; Rasini, E.; Legnaro, M.; Bombelli, R.; Aleksic, I.; Blandini, F.; Comi, C.; Mauri, M.; Minafra, B.; Riboldazzi, G.; et al. Dopaminergic Receptors on CD4+ T Naive and Memory Lymphocytes Correlate with Motor Impairment in Patients with Parkinson’s Disease. Sci. Rep. 2016, 6, 33738. [Google Scholar] [CrossRef] [Green Version]
  21. Kustrimovic, N.; Comi, C.; Magistrelli, L.; Rasini, E.; Legnaro, M.; Bombelli, R.; Aleksic, I.; Blandini, F.; Minafra, B.; Riboldazzi, G.; et al. Parkinson’s disease patients have a complex phenotypic and functional Th1 bias: Cross-sectional studies of CD4+ Th1/Th2/T17 and Treg in drug-naïve and drug-treated patients. J. Neuroinflamm. 2018, 15, 205. [Google Scholar] [CrossRef] [PubMed]
  22. Williams-Gray, C.H.; Wijeyekoon, R.; Yarnall, A.J.; Lawson, R.A.; Breen, D.P.; Evans, J.R.; Cummins, G.A.; Duncan, G.W.; Khoo, T.K.; Burn, D.J.; et al. Serum immune markers and disease progression in an incident Parkinson’s disease cohort (ICICLE-PD). Mov. Disord. 2016, 31, 995–1003. [Google Scholar] [CrossRef]
  23. Veselý, B.; Dufek, M.; Thon, V.; Brozman, M.; Királová, S.; Halászová, T.; Koriťáková, E.; Rektor, I. Interleukin 6 and complement serum level study in Parkinson’s disease. J. Neural. Transm (Vienna) 2018, 125, 875–881. [Google Scholar] [CrossRef]
  24. Schlachetzki, J.C.; Winkler, J. The innate immune system in Parkinson’s disease: A novel target promoting endogenous neuroregeneration. Neural Regen. Res. 2015, 10, 704–706. [Google Scholar] [CrossRef] [PubMed]
  25. Storelli, E.; Cassina, N.; Rasini, E.; Marino, F.; Cosentino, M. Do Th17 Lymphocytes and IL-17 Contribute to Parkinson’s Disease? A Systematic Review of Available Evidence. Front. Neurol. 2019, 10, 13. [Google Scholar] [CrossRef] [PubMed]
  26. Lindqvist, D.; Kaufman, E.; Brundin, L.; Hall, S.; Surova, Y.; Hansson, O. Non-motor symptoms in patients with Parkinson’s disease-correlations with inflammatory cytokines in serum. PLoS ONE 2012, 7, e47387. [Google Scholar] [CrossRef]
  27. Gupta, V.; Garg, R.K.; Khattri, S. Levels of IL-8 and TNF-α decrease in Parkinson’s disease. Neurol. Res. 2016, 38, 98–102. [Google Scholar] [CrossRef]
  28. Coffey, J.C.; Wang, J.H.; Smith, M.J.; Bouchier-Hayes, D.; Cotter, T.G.; Redmond, H.P. Excisional surgery for cancer cure: Therapy at a cost. Lancet Oncol. 2003, 4, 760–768. [Google Scholar] [CrossRef]
  29. Pirbudak Cocelli, L.; Ugur, M.G.; Karadasli, H. Comparison of effects of low-flow sevoflurane and desflurane anesthesia on neutrophil and T-cell populations. Curr. Ther. Res. Clin. Exp. 2012, 73, 41–51. [Google Scholar] [CrossRef]
  30. Jiao, B.; Yang, C.; Huang, N.N.; Yang, N.; Wei, J.; Xu, H. Relationship between Volatile Anesthetics and Tumor Progression: Unveiling the Mystery. Curr. Med. Sci. 2018, 38, 962–967. [Google Scholar] [CrossRef]
  31. Marana, E.; Russo, A.; Colicci, S.; Polidori, L.; Bevilacqua, F.; Viviani, D.; Di Stasio, E. Desflurane versus sevoflurane: A comparison on stress response. Minerva Anestesiol. 2013, 79, 7–14. [Google Scholar]
  32. Allaouchiche, B.; Debon, R.; Goudable, J.; Chassard, D.; Duflo, F. Oxidative stress status during exposure to propofol, sevoflurane and desflurane. Anesth. Analg. 2001, 93, 981–985. [Google Scholar] [CrossRef]
  33. Shan, Z.; Cai, S.; Zhang, T.; Kuang, L.; Wang, Q.; Xiu, H.; Wen, J.; Gu, H.; Xu, K. Effects of sevoflurane on leucine-rich repeat kinase 2-associated Drosophila model of Parkinson’s disease. Mol. Med. Rep. 2015, 11, 2062–2070. [Google Scholar] [PubMed]
  34. Goh, G.S.; Zeng, G.J.; Tay, D.K.; Lo, N.N.; Yeo, S.J.; Liow, M.H.L. Patients With Parkinson’s Disease Have Poorer Function and More Flexion Contractures After Total Knee Arthroplasty. J. Arthropl. 2021, 36, 2325–2330. [Google Scholar] [CrossRef]
  35. Oğuz, E.; Öztürk, İ.; Özkan, D.; Ergil, J.; Aydın, G.B. Parkinson’s Disease and Spinal Anaesthesia. Turk. J. Anaesthesiol. Reanim. 2014, 42, 280–282. [Google Scholar] [CrossRef] [PubMed]
  36. Rodríguez-Merchán, E.C.; Kalbakdij-Sánchez, C. The impact of Parkinson’s disease on results of primary total knee arthroplasty. EFORT Open Rev. 2022, 7, 701–709. [Google Scholar] [CrossRef] [PubMed]
  37. Rondon, A.J.; Tan, T.L.; Schlitt, P.K.; Greenky, M.R.; Phillips, J.L.; Purtill, J.J. Total Joint Arthroplasty in Patients With Parkinson’s Disease: Survivorship, Outcomes, and Reasons for Failure. J. Arthropl. 2018, 33, 1028–1032. [Google Scholar] [CrossRef] [PubMed]
  38. Ton, T.G.; Jain, S.; Biggs, M.L.; Thacker, E.L.; Strotmeyer, E.S.; Boudreau, R.; Newman, A.B.; Longstreth, W.T., Jr.; Checkoway, H. Markers of inflammation in prevalent and incident Parkinson’s disease in the Cardiovascular Health Study. Parkinson. Relat. Disord. 2012, 18, 274–278. [Google Scholar] [CrossRef] [PubMed]
  39. Andican, G.; Konukoglu, D.; Bozluolcay, M.; Bayülkem, K.; Firtiına, S.; Burcak, G. Plasma oxidative and inflammatory markers in patients with idiopathic Parkinson’s disease. Acta Neurol. Belg. 2012, 112, 155–159. [Google Scholar] [CrossRef]
  40. Sawada, H.; Oeda, T.; Umemura, A.; Tomita, S.; Hayashi, R.; Kohsaka, M.; Yamamoto, K.; Sudoh, S.; Sugiyama, H. Subclinical elevation of plasma C-reactive protein and illusions/hallucinations in subjects with Parkinson’s disease: Case-control study. PLoS ONE 2014, 9, e85886. [Google Scholar] [CrossRef]
  41. Qin, X.Y.; Zhang, S.P.; Cao, C.; Loh, Y.P.; Cheng, Y. Aberrations in Peripheral Inflammatory Cytokine Levels in Parkinson Disease: A Systematic Review and Meta-analysis. JAMA Neurol. 2016, 73, 1316–1324. [Google Scholar] [CrossRef]
  42. Wang, X.M.; Zhang, Y.G.; Li, A.L.; Long, Z.H.; Wang, D.; Li, X.X.; Xia, J.H.; Luo, S.Y.; Shan, Y.H. Relationship between levels of inflammatory cytokines in the peripheral blood and the severity of depression and anxiety in patients with Parkinson’s disease. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 3853–3856. [Google Scholar]
  43. Kim, R.; Kim, H.J.; Kim, A.; Jang, M.; Kim, A.; Kim, Y.; Yoo, D.; Im, J.H.; Choi, J.H.; Jeon, B. Peripheral blood inflammatory markers in early Parkinson’s disease. J. Clin. Neurosci. 2018, 58, 30–33. [Google Scholar] [CrossRef]
  44. King, E.; O’Brien, J.; Donaghy, P.; Williams-Gray, C.H.; Lawson, R.A.; Morris, C.M.; Barnett, N.; Olsen, K.; Martin-Ruiz, C.; Burn, D.; et al. Inflammation in mild cognitive impairment due to Parkinson’s disease, Lewy body disease, and Alzheimer’s disease. Int. J. Geriatr. Psychiatry 2019, 34, 1244–1250. [Google Scholar] [CrossRef] [PubMed]
  45. Santos-García, D.; de Deus Fonticoba, T.; Suárez Castro, E.; Aneiros Díaz, A.; Paz González, J.M.; Feal Panceiras, M.J.; García Sancho, C.; Jesús, S.; Mir, P.; Aguilar, M.; et al. High ultrasensitive serum C-reactive protein may be related to freezing of gait in Parkinson’s disease patients. J. Neural. Transm. 2019, 126, 1599–1608. [Google Scholar] [CrossRef] [PubMed]
  46. Baran, A.; Bulut, M.; Kaya, M.C.; Demirpençe, Ö.; Sevim, B.; Akıl, E.; Varol, S. High-sensitivity C-reactive protein and high mobility group box-1 levels in Parkinson’s disease. Neurol. Sci. 2019, 40, 167–173. [Google Scholar] [CrossRef] [PubMed]
  47. Jin, H.; Gu, H.Y.; Mao, C.J.; Chen, J.; Liu, C.F. Association of inflammatory factors and aging in Parkinson’s disease. Neurosci. Lett. 2020, 736, 135259. [Google Scholar] [CrossRef] [PubMed]
  48. Dommershuijsen, L.J.; Ruiter, R.; Erler, N.S.; Rizopoulos, D.; Ikram, M.A.; Ikram, M.K. Peripheral Immune Cell Numbers and C-Reactive Protein in Parkinson’s Disease: Results from a Population-Based Study. J. Parkinsons Dis. 2022, 12, 667–678. [Google Scholar] [CrossRef]
  49. Koziorowski, D.; Tomasiuk, R.; Szlufik, S.; Friedman, A. Inflammatory cytokines and NT-proCNP in Parkinson’s disease patients. Cytokine 2012, 60, 762–766. [Google Scholar] [CrossRef]
  50. Hu, Y.; Yu, S.Y.; Zuo, L.J.; Cao, C.J.; Wang, F.; Chen, Z.J.; Du, Y.; Lian, T.H.; Wang, Y.J.; Chan, P.; et al. Parkinson disease with REM sleep behavior disorder: Features, α-synuclein, and inflammation. Neurology 2015, 84, 888–894. [Google Scholar] [CrossRef]
  51. Milyukhina, I.V.; Karpenko, M.N.; Klimenko, V.M. Clinical parameters and the level of certain cytokines in blood and cerebrospinal fluid of patients with Parkinson’s disease. Klin. Med. 2015, 93, 51–55. [Google Scholar]
  52. Brockmann, K.; Schulte, C.; Schneiderhan-Marra, N.; Apel, A.; Pont-Sunyer, C.; Vilas, D.; Ruiz-Martinez, J.; Langkamp, M.; Corvol, J.C.; Cormier, F.; et al. Inflammatory profile in LRRK2-associated prodromal and clinical PD. Eur. J. Neurol. 2017, 24, 122. [Google Scholar] [CrossRef]
  53. Karpenko, M.N.; Vasilishina, A.A.; Gromova, E.A.; Muruzheva, Z.M.; Miliukhina, I.V.; Bernadotte, A. Interleukin-1β, interleukin-1 receptor antagonist, interleukin-6, interleukin-10, and tumor necrosis factor-α levels in CSF and serum in relation to the clinical diversity of Parkinson’s disease. Cell. Immunol. 2018, 327, 77–82. [Google Scholar] [CrossRef]
  54. Rocha, N.P.; Assis, F.; Scalzo, P.L.; Vieira, É.L.M.; Barbosa, I.G.; de Souza, M.S.; Christo, P.P.; Reis, H.J.; Teixeira, A.L. Reduced Activated T Lymphocytes (CD4+CD25+) and Plasma Levels of Cytokines in Parkinson’s Disease. Mol. Neurobiol. 2018, 55, 1488–1497. [Google Scholar] [CrossRef] [PubMed]
  55. Alrafiah, A.; Al-Ofi, E.; Obaid, M.T.; Alsomali, N. Assessment of the Levels of Level of Biomarkers of Bone Matrix Glycoproteins and Inflammatory Cytokines from Saudi Parkinson Patients. Biomed. Res. Int. 2019, 2019, 2690205. [Google Scholar] [CrossRef] [PubMed]
  56. Lian, T.H.; Guo, P.; Zuo, L.J.; Hu, Y.; Yu, S.Y.; Yu, Q.J.; Jin, Z.; Wang, R.D.; Li, L.X.; Zhang, W. Tremor-Dominant in Parkinson Disease: The Relevance to Iron Metabolism and Inflammation. Front. Neurosci. 2019, 13, 255. [Google Scholar] [CrossRef] [PubMed]
  57. Chatterjee, K.; Roy, A.; Banerjee, R.; Choudhury, S.; Mondal, B.; Halder, S.; Basu, P.; Shubham, S.; Dey, S.; Kumar, H. Inflammasome and α-synuclein in Parkinson’s disease: A cross-sectional study. J. Neuroimmunol. 2020, 338, 577089. [Google Scholar] [CrossRef]
  58. Fan, Z.; Pan, Y.T.; Zhang, Z.Y.; Yang, H.; Yu, S.Y.; Zheng, Y.; Ma, J.H.; Wang, X.M. Systemic activation of NLRP3 inflammasome and plasma α-synuclein levels are correlated with motor severity and progression in Parkinson’s disease. J. Neuroinflamm. 2020, 17, 11. [Google Scholar] [CrossRef] [PubMed]
  59. Mahlknecht, P.; Stemberger, S.; Sprenger, F.; Rainer, J.; Hametner, E.; Kirchmair, R.; Grabmer, C.; Scherfler, C.; Wenning, G.K.; Seppi, K.; et al. An antibody microarray analysis of serum cytokines in neurodegenerative Parkinsonian syndromes. Proteome Sci. 2012, 10, 71. [Google Scholar] [CrossRef]
  60. Schröder, J.B.; Pawlowski, M.; Meyer Zu Hörste, G.; Gross, C.C.; Wiendl, H.; Meuth, S.G.; Ruck, T.; Warnecke, T. Immune Cell Activation in the Cerebrospinal Fluid of Patients With Parkinson’s Disease. Front. Neurol. 2018, 9, 1081. [Google Scholar] [CrossRef]
  61. Tang, P.; Chong, L.; Li, X.; Liu, Y.; Liu, P.; Hou, C.; Li, R. Correlation between serum RANTES levels and the severity of Parkinson’s disease. Oxid. Med. Cell. Longev. 2014, 2014, 208408. [Google Scholar] [CrossRef]
  62. Delgado-Alvarado, M.; Gago, B.; Gorostidi, A.; Jiménez-Urbieta, H.; Dacosta-Aguayo, R.; Navalpotro-Gómez, I.; Ruiz-Martínez, J.; Bergareche, A.; Martí-Massó, J.F.; Martínez-Lage, P.; et al. Tau/α-synuclein ratio and inflammatory proteins in Parkinson’s disease: An exploratory study. Mov. Disord. 2017, 32, 1066–1073. [Google Scholar] [CrossRef] [PubMed]
  63. Kwiatek-Majkusiak, J.; Geremek, M.; Koziorowski, D.; Tomasiuk, R.; Szlufik, S.; Friedman, A. Serum levels of hepcidin and interleukin 6 in Parkinson’s disease. Acta Neurobiol. Exp. 2020, 80, 297–304. [Google Scholar] [CrossRef]
  64. Miliukhina, I.V.; Usenko, T.S.; Senkevich, K.A.; Nikolaev, M.A.; Timofeeva, A.A.; Agapova, E.A.; Semenov, A.V.; Lubimova, N.E.; Totolyan, A.A.; Pchelina, S.N. Plasma Cytokines Profile in Patients with Parkinson’s Disease Associated with Mutations in GBA Gene. Bull. Exp. Biol. Med. 2020, 168, 423–426. [Google Scholar] [CrossRef]
  65. Calvani, R.; Picca, A.; Landi, G.; Marini, F.; Biancolillo, A.; Coelho-Junior, H.J.; Gervasoni, J.; Persichilli, S.; Primiano, A.; Arcidiacono, A.; et al. A novel multi-marker discovery approach identifies new serum biomarkers for Parkinson’s disease in older people: An EXosomes in PArkiNson Disease (EXPAND) ancillary study. Geroscience 2020, 42, 1323–1334. [Google Scholar] [CrossRef]
  66. Lin, C.H.; Chen, C.C.; Chiang, H.L.; Liou, J.M.; Chang, C.M.; Lu, T.P.; Chuang, E.Y.; Tai, Y.C.; Cheng, C.; Lin, H.Y.; et al. Altered gut microbiota and inflammatory cytokine responses in patients with Parkinson’s disease. J. Neuroinflamm. 2019, 16, 129. [Google Scholar] [CrossRef] [PubMed]
  67. Rathnayake, D.; Chang, T.; Udagama, P. Selected serum cytokines and nitric oxide as potential multi-marker biosignature panels for Parkinson disease of varying durations: A case-control study. BMC Neurol. 2019, 19, 56. [Google Scholar] [CrossRef] [PubMed]
  68. Usenko, T.S.; Nikolaev, M.A.; Miliukhina, I.V.; Bezrukova, A.I.; Senkevich, K.A.; Gomzyakova, N.A.; Beltceva, Y.A.; Zalutskaya, N.M.; Gracheva, E.V.; Timofeeva, A.A.; et al. Plasma cytokine profile in synucleinophaties with dementia. J. Clin. Neurosci. 2020, 78, 323–326. [Google Scholar] [CrossRef]
  69. Eidson, L.N.; Kannarkat, G.T.; Barnum, C.J.; Chang, J.; Chung, J.; Caspell-Garcia, C.; Taylor, P.; Mollenhauer, B.; Schlossmacher, M.G.; Ereshefsky, L.; et al. Candidate inflammatory biomarkers display unique relationships with alpha-synuclein and correlate with measures of disease severity in subjects with Parkinson’s disease. J. Neuroinflamm. 2017, 14, 164. [Google Scholar] [CrossRef]
  70. Martin-Ruiz, C.; Williams-Gray, C.H.; Yarnall, A.J.; Boucher, J.J.; Lawson, R.A.; Wijeyekoon, R.S.; Barker, R.A.; Kolenda, C.; Parker, C.; Burn, D.J.; et al. Senescence and Inflammatory Markers for Predicting Clinical Progression in Parkinson’s Disease: The ICICLE-PD Study. J. Parkinsons Dis. 2020, 10, 193–206. [Google Scholar] [CrossRef]
  71. Csencsits-Smith, K.; Suescun, J.; Li, K.; Luo, S.; Bick, D.L.; Schiess, M. Serum Lymphocyte-Associated Cytokine Concentrations Change More Rapidly over Time in Multiple System Atrophy Compared to Parkinson Disease. Neuroimmunomodulation 2016, 23, 301–308. [Google Scholar] [CrossRef] [PubMed]
  72. Kouchaki, E.; Kakhaki, R.D.; Tamtaji, O.R.; Dadgostar, E.; Behnam, M.; Nikoueinejad, H.; Akbari, H. Increased serum levels of TNF-α and decreased serum levels of IL-27 in patients with Parkinson disease and their correlation with disease severity. Clin. Neurol. Neurosurg. 2018, 166, 76–79. [Google Scholar] [CrossRef] [PubMed]
  73. Bagheri, V.; Khorramdelazad, H.; Hassanshahi, G.; Moghadam-Ahmadi, A.; Vakilian, A. CXCL12 and CXCR4 in the Peripheral Blood of Patients with Parkinson’s Disease. Neuroimmunomodulation 2018, 25, 201–205. [Google Scholar] [CrossRef] [PubMed]
  74. Carvalho, D.Z.; Schönwald, S.V.; Schumacher-Schuh, A.F.; Braga, C.W.; Souza, D.O.; Oses, J.P.; Donis, K.C.; Rieder, C.R. Overnight S100B in Parkinson’s Disease: A glimpse into sleep-related neuroinflammation. Neurosci Lett. 2015, 608, 57–63. [Google Scholar] [CrossRef]
  75. Dufek, M.; Rektorova, I.; Thon, V.; Lokaj, J.; Rektor, I. Interleukin-6 May Contribute to Mortality in Parkinson’s Disease Patients: A 4-Year Prospective Study. Parkinsons Dis. 2015, 2015, 898192. [Google Scholar] [CrossRef] [PubMed]
  76. Dumitrescu, L.; Marta, D.; Dănău, A.; Lefter, A.; Tulbă, D.; Cozma, L.; Manole, E.; Gherghiceanu, M.; Ceafalan, L.C.; Popescu, B.O. Serum and Fecal Markers of Intestinal Inflammation and Intestinal Barrier Permeability Are Elevated in Parkinson’s Disease. Front. Neurosci. 2021, 15, 689723. [Google Scholar] [CrossRef]
  77. Green, H.F.; Khosousi, S.; Svenningsson, P. Plasma IL-6 and IL-17A Correlate with Severity of Motor and Non-Motor Symptoms in Parkinson’s Disease. J. Parkinsons Dis. 2019, 9, 705–709. [Google Scholar] [CrossRef]
  78. Gupta, M.; Paliwal, V.K.; Babu, G.N. Serum fractalkine and 3-nitrotyrosine levels correlate with disease severity in Parkinson’s disease: A pilot study. Metab. Brain Dis. 2022, 37, 209–217. [Google Scholar] [CrossRef] [PubMed]
  79. Herlofson, K.; Heijnen, C.J.; Lange, J.; Alves, G.; Tysnes, O.B.; Friedman, J.H.; Fagundes, C.P. Inflammation and fatigue in early, untreated Parkinson’s Disease. Acta Neurol. Scand. 2018, 138, 394–399. [Google Scholar] [CrossRef]
  80. Lerche, S.; Zimmermann, M.; Wurster, I.; Roeben, B.; Fries, F.L.; Deuschle, C.; Waniek, K.; Lachmann, I.; Gasser, T.; Jakobi, M.; et al. CSF and Serum Levels of Inflammatory Markers in PD: Sparse Correlation, Sex Differences and Association With Neurodegenerative Biomarkers. Front. Neurol. 2022, 13, 834580. [Google Scholar] [CrossRef]
  81. Pereira, J.R.; Santos, L.V.D.; Santos, R.M.S.; Campos, A.L.F.; Pimenta, A.L.; de Oliveira, M.S.; Bacheti, G.G.; Rocha, N.P.; Teixeira, A.L.; Christo, P.P.; et al. IL-6 serum levels are elevated in Parkinson’s disease patients with fatigue compared to patients without fatigue. J. Neurol. Sci. 2016, 370, 153–156. [Google Scholar] [CrossRef] [PubMed]
  82. Perner, C.; Perner, F.; Gaur, N.; Zimmermann, S.; Witte, O.W.; Heidel, F.H.; Grosskreutz, J.; Prell, T. Plasma VCAM1 levels correlate with disease severity in Parkinson’s disease. J. Neuroinflamm. 2019, 16, 94. [Google Scholar] [CrossRef] [PubMed]
  83. Rocha, N.P.; Teixeira, A.L.; Scalzo, P.L.; Barbosa, I.G.; de Sousa, M.S.; Morato, I.B.; Vieira, E.L.; Christo, P.P.; Palotás, A.; Reis, H.J. Plasma levels of soluble tumor necrosis factor receptors are associated with cognitive performance in Parkinson’s disease. Mov. Disord. 2014, 29, 527–531. [Google Scholar] [CrossRef] [PubMed]
  84. Roy, A.; Choudhury, S.; Banerjee, R.; Basu, P.; Kumar, H. Soluble LAG-3 and Toll-interacting protein: Novel upstream neuro-inflammatory markers in Parkinson’s disease. Parkinsonism Relat. Disord. 2021, 91, 121–123. [Google Scholar] [CrossRef] [PubMed]
  85. Sawada, M.; Imamura, K.; Nagatsu, T. Role of cytokines in inflammatory processes in Parkinson’s disease. J. Neural Transm. Suppl. 2006, 70, 373–381. [Google Scholar]
  86. Sun, C.; Yu, W.; Zhao, Z.; Song, C.; Liu, Y.; Jia, G.; Wang, X.; Liu, Y. Peripheral humoral immune response is associated with the non-motor symptoms of Parkinson’s disease. Front. Neurosci. 2019, 13, 1057. [Google Scholar] [CrossRef] [PubMed]
  87. Umemura, A.; Oeda, T.; Yamamoto, K.; Tomita, S.; Kohsaka, M.; Park, K.; Sugiyama, H.; Sawada, H. Baseline Plasma C-Reactive Protein Concentrations and Motor Prognosis in Parkinson Disease. PLoS ONE 2015, 10, e0136722. [Google Scholar] [CrossRef]
  88. Veselý, B.; Koriťáková, E.; Bohnen, N.I.; Viszlayová, D.; Királová, S.; Valkovič, P.; Kurča, E.; Rektor, I. The contribution of cerebrovascular risk factors, metabolic and inflammatory changes to cognitive decline in Parkinson’s disease: Preliminary observations. J. Neural. Transm. 2019, 126, 1303–1312. [Google Scholar] [CrossRef]
  89. Yang, F.; Li, B.; Li, L.; Zhang, H. The clinical significance of the imbalance of Th17 and Treg cells and their related cytokines in peripheral blood of Parkinson’s disease patients. Int. J. Clin. Exp. Med. 2016, 9, 17946–17951. [Google Scholar]
  90. Yilmaz, R.; Strafella, A.P.; Bernard, A.; Schulte, C.; van den Heuvel, L.; Schneiderhan-Marra, N.; Knorpp, T.; Joos, T.O.; Leypoldt, F.; Geritz, J.; et al. Serum Inflammatory Profile for the Discrimination of Clinical Subtypes in Parkinson’s Disease. Front. Neurol. 2018, 9, 1123. [Google Scholar] [CrossRef]
  91. Dantzer, R. Cytokine-induced sickness behaviour: A neuroimmune response to activation of innate immunity. Eur. J. Pharmacol. 2004, 500, 399–411. [Google Scholar] [CrossRef]
  92. Lord, J.M.; Midwinter, M.J.; Chen, Y.F.; Belli, A.; Brohi, K.; Kovacs, E.J.; Koenderman, L.; Kubes, P.; Lilford, R.J. The systemic immune response to trauma: An overview of pathophysiology and treatment. Lancet 2014, 384, 1455–1465. [Google Scholar] [CrossRef] [PubMed]
  93. Nathan, C.; Ding, A. Nonresolving inflammation. Cell 2010, 140, 871–882. [Google Scholar] [CrossRef]
  94. Steinman, L. Inflammatory cytokines at the summits of pathological signal cascades in brain diseases. Sci. Signal. 2013, 6, pe3. [Google Scholar] [CrossRef] [PubMed]
  95. Mrak, R.E.; Griffin, W.S. Glia and their cytokines in progression of neurodegeneration. Neurobiol. Aging 2005, 26, 349–354. [Google Scholar] [CrossRef] [PubMed]
  96. Villeda, S.A.; Luo, J.; Mosher, K.I.; Zou, B.; Britschgi, M.; Bieri, G.; Stan, T.M.; Fainberg, N.; Ding, Z.; Eggel, A.; et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 2011, 477, 90–94. [Google Scholar] [CrossRef]
  97. Villeda, S.A.; Plambeck, K.E.; Middeldorp, J.; Castellano, J.M.; Mosher, K.I.; Luo, J.; Smith, L.K.; Bieri, G.; Lin, K.; Berdnik, D.; et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat. Med. 2014, 20, 659–663. [Google Scholar] [CrossRef]
  98. Abbott, N.J.; Rönnbäck, L.; Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 2006, 7, 41–53. [Google Scholar] [CrossRef]
  99. Abbott, N.J.; Patabendige, A.A.; Dolman, D.E.; Yusof, S.R.; Begley, D.J. Structure and function of the blood-brain barrier. Neurobiol. Dis. 2010, 37, 13–25. [Google Scholar] [CrossRef]
  100. Daneman, R. The blood-brain barrier in health and disease. Ann. Neurol. 2012, 72, 648–672. [Google Scholar] [CrossRef]
  101. Bi, J.; Shan, W.; Luo, A.; Zuo, Z. Critical role of matrix metallopeptidase 9 in postoperative cognitive dysfunction and age-dependent cognitive decline. Oncotarget. 2017, 8, 51817–51829. [Google Scholar] [CrossRef] [PubMed]
  102. He, H.J.; Wang, Y.; Le, Y.; Duan, K.M.; Yan, X.B.; Liao, Q.; Liao, Y.; Tong, J.B.; Terrando, N.; Ouyang, W. Surgery upregulates high mobility group box-1 and disrupts the blood-brain barrier causing cognitive dysfunction in aged rats. CNS Neurosci. Ther. 2012, 18, 994–1002. [Google Scholar] [CrossRef] [PubMed]
  103. Hu, J.; Feng, X.; Valdearcos, M.; Lutrin, D.; Uchida, Y.; Koliwad, S.K.; Maze, M. Interleukin-6 is both necessary and sufficient to produce perioperative neurocognitive disorder in mice. Br. J. Anaesth. 2018, 120, 537–545. [Google Scholar] [CrossRef] [PubMed]
  104. Yang, S.; Gu, C.; Mandeville, E.T.; Dong, Y.; Esposito, E.; Zhang, Y.; Yang, G.; Shen, Y.; Fu, X.; Lo, E.H.; et al. Anesthesia and Surgery Impair Blood-Brain Barrier and Cognitive Function in Mice. Front. Immunol. 2017, 8, 902. [Google Scholar] [CrossRef] [PubMed]
  105. Terrando, N.; Eriksson, L.I.; Ryu, J.K.; Yang, T.; Monaco, C.; Feldmann, M.; Jonsson Fagerlund, M.; Charo, I.F.; Akassoglou, K.; Maze, M. Resolving postoperative neuroinflammation and cognitive decline. Ann. Neurol. 2011, 70, 986–995. [Google Scholar] [CrossRef] [Green Version]
  106. Li, Z.; Mo, N.; Li, L.; Cao, Y.; Wang, W.; Liang, Y.; Deng, H.; Xing, R.; Yang, L.; Ni, C.; et al. Surgery-Induced Hippocampal Angiotensin II Elevation Causes Blood-Brain Barrier Disruption via MMP/TIMP in Aged Rats. Front. Cell. Neurosci. 2016, 10, 105. [Google Scholar] [CrossRef]
  107. Terrando, N.; Monaco, C.; Ma, D.; Foxwell, B.M.; Feldmann, M.; Maze, M. Tumor necrosis factor-alpha triggers a cytokine cascade yielding postoperative cognitive decline. Proc. Natl. Acad. Sci. USA 2010, 107, 20518–20522. [Google Scholar] [CrossRef] [PubMed]
  108. Hu, N.; Guo, D.; Wang, H.; Xie, K.; Wang, C.; Li, Y.; Wang, C.; Wang, C.; Yu, Y.; Wang, G. Involvement of the blood-brain barrier opening in cognitive decline in aged rats following orthopedic surgery and high concentration of sevoflurane inhalation. Brain Res. 2014, 1551, 13–24. [Google Scholar] [CrossRef]
  109. Phillipson, M.; Kubes, P. The neutrophil in vascular inflammation. Nature Med. 2011, 17, 1381–1390. [Google Scholar] [CrossRef]
  110. Rossaint, J.; Zarbock, A. Pathogenesis of multiple organ failure in sepsis. Crit. Rev. Immunol. 2015, 35, 277–291. [Google Scholar] [CrossRef]
  111. Fudulu, D.; Angelini, G. Oxidative stress after surgery on the immature heart. Oxid. Med. Cell Longev. 2016, 2016, 1971452. [Google Scholar] [CrossRef] [PubMed]
  112. Mokart, D.; Leone, M.; Sannini, A.; Brun, J.P.; Tison, A.; Delpero, J.R.; Houvenaeghel, G.; Blache, J.L.; Martin, C. Predictive perioperative factors for developing severe sepsis after major surgery. Br. J. Anaesth. 2005, 95, 776–781. [Google Scholar] [CrossRef]
  113. Giannoudis, P.V.; Smith, R.M.; Perry, S.L.; Windsor, A.J.; Dickson, R.A.; Bellamy, M.C. Immediate IL-10 expression following major orthopaedic trauma: Relationship to anti-inflammatory response and subsequent development of sepsis. Int. Care Med. 2000, 26, 1076–1081. [Google Scholar] [CrossRef]
  114. Baigrie, R.J.; Lamont, P.M.; Kwiatkowski, D.; Dallman, M.J.; Morris, P.J. Systemic cytokine response after major surgery. Br. J. Surg. 1992, 79, 757–760. [Google Scholar] [CrossRef]
  115. Diehl, S.; Rincón, M. The two faces of IL-6 on Th1/Th2 differentiation. Mol. Immunol. 2002, 39, 531–536. [Google Scholar] [CrossRef]
  116. Welden, B.; Gates, G.; Mallari, R.; Garrett, N. Effects of anesthetics and analgesics on natural killer cell activity. AANA J. 2009, 77, 287–292. [Google Scholar] [PubMed]
  117. Schneemilch, C.E.; Schilling, T.; Bank, U. Effects of general anaesthesia on inflammation. Best Pract. Res. Clin. Anaesthesiol. 2004, 18, 493–507. [Google Scholar] [CrossRef] [PubMed]
  118. Yuki, K.; Eckenhoff, R.G. Mechanisms of the immunological effects of volatile anesthetics: A review. Anesth. Analg. 2016, 123, 329–335. [Google Scholar] [CrossRef] [PubMed]
  119. Matsuoka, H.; Kurosawa, S.; Horinouchi, T.; Kato, M.; Hashimoto, Y. Inhalation anesthetics induce apoptosis in normal peripheral lymphocytes in vitro. Anesthesiology 2001, 95, 1467–1472. [Google Scholar] [CrossRef]
  120. Picq, C.A.; Clarençon, D.; Sinniger, V.E.; Bonaz, B.L.; Mayol, J.F. Impact of anesthetics on immune functions in a rat model of vagus nerve stimulation. PLoS ONE 2013, 8, e67086. [Google Scholar] [CrossRef] [PubMed]
  121. Schneemilch, C.E.; Ittenson, A.; Ansorge, S.; Hachenberg, T.; Bank, U. Effect of 2 anesthetic techniques on the postoperative proinflammatory and anti-inflammatory cytokine response and cellular immune function to minor surgery. J. Clin. Anesth. 2005, 17, 517–527. [Google Scholar] [CrossRef] [PubMed]
  122. Kushida, A.; Inada, T.; Shingu, K. Enhancement of antitumor immunity after propofol treatment in mice. Immunopharmacol. Immunotoxicol. 2007, 29, 477–486. [Google Scholar] [CrossRef] [PubMed]
  123. Ren, X.F.; Li, W.Z.; Meng, F.Y.; Lin, C.F. Differential effects of propofol and isoflurane on the activation of T-helper cells in lung cancer patients. Anaesthesia 2010, 65, 478–482. [Google Scholar] [CrossRef] [PubMed]
  124. Mitsuhata, H.; Shimizu, R.; Yokoyama, M.M. Suppressive effects of volatile anesthetics on cytokine release in human peripheral blood mononuclear cells. Int. J. Immunopharmacol. 1995, 17, 529–534. [Google Scholar] [CrossRef] [PubMed]
  125. Bani Hani, D.A.; Aleshawi, A.J.; Al Shalakhti, M.H.; Alhowary, A.; Al-Jararahih, O.; Al-Mistarehi, A.H.; Yassin, A. Spinal versus general anesthesia for patients with Parkinson’s disease. Int. J. Gen. Med. 2020, 13, 9–15. [Google Scholar] [CrossRef] [Green Version]
  126. Milosavljevic, S.B.; Pavlovic, A.P.; Trpkovic, S.V.; Ilić, A.N.; Sekulic, A.D. Influence of spinal and general anesthesia on the metabolic, hormonal, and hemodynamic response in elective surgical patients. Med. Sci. Monit. 2014, 20, 1833–1840. [Google Scholar] [PubMed]
  127. Liu, J.; Ma, C.; Elkassabany, N.; Fleisher, L.A.; Neuman, M.D. Neuraxial anesthesia decreases postoperative systemic infection risk compared with general anesthesia in knee arthroplasty. Anesth. Analg. 2013, 117, 1010–1016. [Google Scholar] [CrossRef]
  128. Yeager, M.P.; Lunt, P.; Arruda, J.; Whalen, K.; Rose, R.; DeLeo, J.A. Cerebrospinal fluid cytokine levels after surgery with spinal or general anesthesia. Reg. Anesth. Pain Med. 1999, 24, 557–562. [Google Scholar] [CrossRef] [PubMed]
  129. Ramirez, M.F.; Cata, J.P. Anesthetic care influences long-term outcomes: What is the evidence? Best Pract. Res. Clin. Anaesthesiol. 2021, 35, 491–505. [Google Scholar] [CrossRef] [PubMed]
  130. Lu, Y.; Liu, T.; Wang, P.; Chen, Y.; Ji, F.; Hernanz, F.; Zucca-Matthes, G.; Youssif, S.; Peng, S.; Xu, D. Can anesthetic effects and pain treatment influence the long-term prognosis of early-stage lymph node-negative breast cancer after breast-conserving surgery? Ann. Transl. Med. 2021, 9, 1467. [Google Scholar] [CrossRef]
  131. Hu, C.; Iwasaki, M.; Liu, Z.; Wang, B.; Li, X.; Lin, H.; Li, J.; Li, J.V.; Lian, Q.; Ma, D. Lung but not brain cancer cell malignancy inhibited by commonly used anesthetic propofol during surgery: Implication of reducing cancer recurrence risk. J. Adv. Res. 2021, 31, 1–12. [Google Scholar] [CrossRef]
  132. Jackson, A.; Forsyth, C.B.; Shaikh, M.; Voigt, R.M.; Engen, P.A.; Ramirez, V.; Keshavarzian, A. Diet in Parkinson’s Disease: Critical Role for the Microbiome. Front. Neurol. 2019, 10, 1245. [Google Scholar] [CrossRef] [PubMed]
  133. Dodiya, H.B.; Forsyth, C.B.; Voigt, R.M.; Engen, P.A.; Patel, J.; Shaikh, M.; Green, S.J.; Naqib, A.; Roy, A.; Kordower, J.H.; et al. Chronic stress-induced gut dysfunction exacerbates Parkinson’s disease phenotype and pathology in a rotenone-induced mouse model of Parkinson’s disease. Neurobiol. Dis. 2020, 135, 104352. [Google Scholar] [CrossRef] [PubMed]
  134. Martin-Jiménez, C.A.; Gaitán-Vaca, D.M.; Echeverria, V.; González, J.; Barreto, G.E. Relationship Between Obesity, Alzheimer’s Disease, and Parkinson’s Disease: An Astrocentric View. Mol. Neurobiol. 2017, 54, 7096–7115. [Google Scholar] [CrossRef] [PubMed]
  135. De Iuliis, A.; Montinaro, E.; Fatati, G.; Plebani, M.; Colosimo, C. Diabetes mellitus and Parkinson’s disease: Dangerous liaisons between insulin and dopamine. Neural. Regen. Res. 2022, 17, 523–533. [Google Scholar]
  136. Malek, N.; Lawton, M.A.; Swallow, D.M.A.; Grosset, K.A.; Marrinan, S.L.; Bajaj, N.; Barker, R.A.; Burn, D.J.; Hardy, J.; Morris, H.R.; et al. Vascular disease and vascular risk factors in relation to motor features and cognition in early Parkinson’s disease. Mov. Disord. 2016, 87, 1518–1526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  137. Tuon, T.; Souza, P.S.; Santos, M.F.; Pereira, F.T.; Pedroso, G.S.; Luciano, T.F.; De Souza, C.T.; Dutra, R.C.; Silveira, P.C.; Pinho, R.A. Physical training regulates mitochondrial parameters and neuroinflammatory mechanisms in an experimental model of Parkinson’s disease. Oxid. Med. Cell Longev. 2015, 2015, 261809. [Google Scholar] [CrossRef]
  138. Hwang, W.J.; Joo, M.A.; Joo, J. Effects of anesthetic method on inflammatory response in patients with Parkinson’s disease: A randomized controlled study. BMC Anesthesiol. 2020, 20, 187. [Google Scholar] [CrossRef]
Figure 1. 7 Most reported blood biomarkers and their value relative to healthy controls.
Figure 1. 7 Most reported blood biomarkers and their value relative to healthy controls.
Diagnostics 13 00693 g001
Table 1. Blood biomarkers and their related symptoms.
Table 1. Blood biomarkers and their related symptoms.
Clinical TrialsBlood MarkersRelated Symptoms
Alrafiah et al. [55]IL-1β, IL-6, TNF-α
Andican et al. [39]CRP, ICAM-1
Bagheri et al. [73]CXCL 12, CXCR4
Baran et al. [46]CRP, HMGB1
Brockmann et al. [52]FABP, IL-10, IL-12p40, SCF, BDNF
Calvani et al. [65]MIP-1α, MIP-1β, IL-8, IL-9
Carvalho et al. [74]S100B *nonmotor
Chatterjee et al. [57]IL-1β, NLRP3
Csencsits-Smith et al. [71]MCP-1, IP-10, TNF-α
Delgado-Alvarado et al. [62]IL-6 *motor, nonmotor
Dommershuijsen et al. [48]CRP
Dufek et al. [75]IL-6 *mortality
Dumitrescu et al. [76]calprotectin
Eidson et al. [69]IL-8 *, IFN-γ, NGAL, TNF-αmotor, nonmotor
Fan et al. [58]IL-1β *, NLRP3motor, nonmotor
Green et al. [77]IL-6 *, IL-17A *, TNF-α, TGF-β motor, nonmotor
Gupta et al. [78]Fractakine *, 3-NT *motor
Gupta et al. [27]IL-8, TNF- α
Herlofson et al. [79]IL1-Ra *, VCAM-1 *nonmotor
Hu et al. [50]IL-1β, TNF-α
Jin et al. [47]CRP
Karpenko et al. [53]IL-1β, IL-1Ra, IL-6, IL-10 *, TNF-α *nonmotor
Kim et al. [43]CRP, IL-1β, IL-2, IL-6, IL-10 *, TNF-αnonmotor
King et al. [44]CRP, IL-2 *, IL-4, IL-6, IL-8, IL-10, IFN-γ, TNF-α motor
Kouchaki et al. [72]IL-27 *, TNF-α *motor
Koziorowski et al. [49]IL-1β, IL-6 *, IL-10, IL-12, TNF-α, NT-proCNPmotor
Kwiatek-Majkusiak et al. [63]IL-6
Lerche et al. [80]FABP *, TNF-α *, CA-125 *, BDNF*motor, nonmotor
Lian et al. [56]IL-1β, IL-6 *motor
Lin et al. [66]IL-1β, IL-2, IL-4, IL-6, IL-13, IL-18, IFN-γ, TNF-α
Lindqvist et al. [26]CRP, IL-6 *, sIL-2R, TNF-anonmotor
Mahlknecht et al. [59] MCP-4, ICAM-1, IL-2, IL-6, Leptin, PDGF-BB, prolactin, RANTES
Martin-Ruiz et al. [70]CRP *, IL-6 *, IL-10, TNF-αnonmotor
Miliukhina et al. [64]MCP-1, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12, IL-13, IL-21, IL-23, INF-γ, TNF-α
Milyukhina et al. [51]IL-1β *, IL-6, IL-10 *, TNF-α *nonmotor
Pereira et al. [81]IL-6 *nonmotor
Perner et al. [82]VCAM-1 *motor
Rathnayake et al. [67]IL-10, IFN-γ, TNF-α
Rocha et al. [54]IL-1β, IL-2, IL-4, IL-6, IL-10, IL-17A, IFN-γ, TNF-α
Rocha et al. [83]sTNFR1 *, sTNFR2 *nonmotor
Roy et al. [84]NLRP3
Santos-Garcia et al. [45]CRP*motor
Sawada et al. [85]CRP*nonmotor
Schroder et al. [60]IL-2, IL-4, IL-5, IL-6, IL-9, IL10, IL-13, IL-17A, IL-17F, IL-21, IL-22, IFN-γ, TNF-α, 1111, CCL17, CCL20, CXCL1, CXCL5, CXCL9,
CXCL11, IL-8, IP-10, MCP-1, MIP-1α, MIP-1β, RANTES
Sun et al. [86]C3 *, C4nonmotor
Tang et al. [61]RANTES *, IL-6 *motor
Ton et al. [38]CRP, IL-6
Umemura et al. [87]CRP *motor
Usenko et al. [68]MCP-1, IL-4, IL-6, IL-10*, INF-γ, TNF-α *nonmotor
Vesely et al. [23]C3 *, C4*, IL-6 *nonmotor
Vesely et al. [88]C3 *nonmotor
Wang et al. [42]CRP *, IL-1β, sIL-2R *, IL-6, IFN-γ, TNF-α*nonmotor
Yang et al. [89]IL-6, IL-10, IL-17, IL-23, TGF-β
Yilmaz et al. [90]IL-12p40 *motor, nonmotor
BDNF, brain-derived neurotrophic factor; C, complement; CA-125, cancer antigen 125; CCL, C-C motif chemokine; CRP, C-reactive protein; CXCL 12, C-X-C motif chemokine ligand 12; CXCR4, C-X-C chemokine receptor type 4; FABP, fatty acid-binding protein; HMGB1, high-mobility group box 1 protein; ICAM-1, intercellular adhesion molecule 1; IL1-Ra, interleukin-1 receptor antagonist; IP-10, interferon gamma-induced protein 10; IFN-γ, interferon gamma; MCP, monocyte chemoattractant protein-1; 3-NT, 3-nitrotyrosine; MIP, macrophage inflammatory protein; NGAL, neutrophil gelatinase associated lipocalin; NLRP3, NLR family pyrin domain containing 3; NT-proCNP, N-terminal pro c-type natriuretic peptide; PDGF-BB, platelet-derived growth factor-BB; RANTES, regulated upon activation, normal T-cell expressed and presumably secreted; S100B, S100 calcium binding protein B; SCF, stem cell factor; sIL-2R, soluble interleukin-2 receptors; sTNFR, soluble tumor necrosis factor receptors; TGF-β, transforming growth factor-beta; TNF-α, tumor necrosis factor alpha; VCAM-1, vascular cell adhesion protein 1; red colored, increased in Parkinson’s disease patients relative to healthy controls; blue colored, decreased in Parkinson’s disease patients relative to healthy controls; green colored, positively correlated with symptom; orange colored, negatively correlated with the symptom; *, significantly correlated with the symptom.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Joo, J.; Jeong, J.; Park, H.J. Blood Biomarkers in Patients with Parkinson’s Disease: A Review in Context of Anesthetic Care. Diagnostics 2023, 13, 693. https://doi.org/10.3390/diagnostics13040693

AMA Style

Joo J, Jeong J, Park HJ. Blood Biomarkers in Patients with Parkinson’s Disease: A Review in Context of Anesthetic Care. Diagnostics. 2023; 13(4):693. https://doi.org/10.3390/diagnostics13040693

Chicago/Turabian Style

Joo, Jin, Jongmin Jeong, and Hue Jung Park. 2023. "Blood Biomarkers in Patients with Parkinson’s Disease: A Review in Context of Anesthetic Care" Diagnostics 13, no. 4: 693. https://doi.org/10.3390/diagnostics13040693

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop