Dysregulated Levels of Circulating Autoantibodies against Neuronal and Nervous System Autoantigens in COVID-19 Patients
Abstract
:1. Introduction
2. Results
3. Discussion
4. Methods
4.1. Patient Recruitment
4.2. Detection of Autoantibodies
4.3. Antigens
4.4. Measurement of IgG and IgA against Different Antigens
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Halpert, G.; Shoenfeld, Y. SARS-CoV-2, the autoimmune virus. Autoimmun. Rev. 2020, 19, 102695. [Google Scholar] [CrossRef]
- Dotan, A.; Muller, S.; Kanduc, D.; David, P.; Halpert, G.; Shoenfeld, Y. The SARS-CoV-2 as an instrumental trigger of autoimmunity. Autoimmun. Rev. 2021, 20, 102792. [Google Scholar] [CrossRef]
- Ehrenfeld, M. COVID-19 and autoimmunity. Autoimmun. Rev. 2020, 19, 102597. [Google Scholar] [CrossRef]
- Gomes, C.; Zuniga, M.; A Crotty, K.; Qian, K.; Tovar, N.C.; Lin, L.H.; Argyropoulos, K.V.; Clancy, R.; Izmirly, P.; Buyon, J.; et al. Autoimmune anti-DNA and anti-phosphatidylserine antibodies predict development of severe COVID-19. Life Sci. Alliance 2021, 4, e202101180. [Google Scholar] [CrossRef]
- Abers, M.S.; Rosen, L.B.; Delmonte, O.M.; Shaw, E.; Bastard, P.; Imberti, L.; Quaresima, V.; Biondi, A.; Bonfanti, P.; Castagnoli, R.; et al. Neutralizing type-I interferon autoantibodies are associated with delayed viral clearance and intensive care unit admission in patients with COVID-19. Immunol. Cell Biol. 2021, 99, 917–921. [Google Scholar] [CrossRef]
- Vojdani, A.; Vojdani, E.; Rosenberg, A.Z.; Shoenfeld, Y. The Role of Exposomes in the Pathophysiology of Autoimmune Diseases II: Pathogens. Pathophysiology 2022, 29, 243–280. [Google Scholar] [CrossRef]
- Novelli, L.; Motta, F.; De Santis, M.; Ansari, A.A.; Gershwin, M.E.; Selmi, C. The JANUS of chronic inflammatory and autoimmune diseases onset during COVID-19—A systematic review of the literature. J. Autoimmun. 2020, 117, 102592. [Google Scholar] [CrossRef]
- Tancheva, L.; Petralia, M.C.; Miteva, S.; Dragomanova, S.; Solak, A.; Kalfin, R.; Lazarova, M.; Yarkov, D.; Ciurleo, R.; Cavalli, E.; et al. Emerging Neurological and Psychobiological Aspects of COVID-19 Infection. Brain Sci. 2020, 10, 852. [Google Scholar] [CrossRef]
- Wallukat, G.; Hohberger, B.; Wenzel, K.; Fürst, J.; Schulze-Rothe, S.; Wallukat, A.; Hönicke, A.-S.; Müller, J. Functional autoantibodies against G-protein coupled receptors in patients with persistent Long-COVID-19 symptoms. J. Transl. Autoimmun. 2021, 4, 100100. [Google Scholar] [CrossRef]
- Vojdani, A.; Vojdani, E.; Kharrazian, D. Reaction of Human Monoclonal Antibodies to SARS-CoV-2 Proteins with Tissue Antigens: Implications for Autoimmune Diseases. Front. Immunol. 2020, 11, 617089. [Google Scholar] [CrossRef]
- Vojdani, A.; Kharrazian, D. Potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases. Clin. Immunol. 2020, 217, 108480. [Google Scholar] [CrossRef]
- Vojdani, A.; Vojdani, E. Amyloid-Beta 1-42 Cross-Reactive Antibody Prevalent in Human Sera May Contribute to Intraneuronal Deposition of A-Beta-P-42. Int. J. Alzheimer’s Dis. 2018, 2018, 1672568. [Google Scholar] [CrossRef]
- Vojdani, A.; Vojdani, E.; Saidara, E.; Kharrazian, D. Reaction of Amyloid-β Peptide Antibody with Different Infectious Agents Involved in Alzheimer’s Disease. J. Alzheimer’s Dis. 2018, 63, 847–860. [Google Scholar] [CrossRef]
- Omdal, R.; Brokstad, K.; Waterloo, K.; Koldingsnes, W.; Jonsson, R.; Mellgren, S.I. Neuropsychiatric disturbances in SLE are associated with antibodies against NMDA receptors. Eur. J. Neurol. 2005, 12, 392–398. [Google Scholar] [CrossRef]
- Shoenfeld, Y.; Ryabkova, V.A.; Scheibenbogen, C.; Brinth, L.; Martinez-Lavin, M.; Ikeda, S.; Heidecke, H.; Watad, A.; Bragazzi, N.L.; Chapman, J.; et al. Complex syndromes of chronic pain, fatigue and cognitive impairment linked to autoimmune dysautonomia and small fiber neuropathy. Clin. Immunol. 2020, 214, 108384. [Google Scholar] [CrossRef]
- Blackburn, K.M.; Wang, C. Post-infectious neurological disorders. Ther. Adv. Neurol. Disord. 2020, 13, 1756286420952901. [Google Scholar] [CrossRef]
- Cabral-Marques, O.; Halpert, G.; Schimke, L.F.; Ostrinski, Y.; Vojdani, A.; Baiocchi, G.C.; Freire, P.P.; Filgueiras, I.S.; Zyskind, I.; Lattin, M.T.; et al. Autoantibodies targeting GPCRs and RAS-related molecules associate with COVID-19 severity. Nat. Commun. 2022, 13, 1220. [Google Scholar] [CrossRef]
- Mason, B.L.; Lobo, M.K.; Parada, L.F.; Lutter, M. Trk B signaling in dopamine 1 receptor neurons regulates food intake and body weight. Obesity 2013, 21, 2372–2376. [Google Scholar] [CrossRef]
- Girgis, R.R.; Van Snellenberg, J.X.; Glass, A.; Kegeles, L.S.; Thompson, J.L.; Wall, M.; Cho, R.Y.; Carter, C.S.; Slifstein, M.; Abi-Dargham, A.; et al. A proof-of-concept, randomized controlled trial of DAR-0100A, a dopamine-1 receptor agonist, for cognitive enhancement in schizophrenia. J. Psychopharmacol. 2016, 30, 428–435. [Google Scholar] [CrossRef]
- Hagena, H.; Manahan-Vaughan, D. Dopamine D1/D5, But not D2/D3, Receptor Dependency of Synaptic Plasticity at Hippocampal Mossy Fiber Synapses that Is Enabled by Patterned Afferent Stimulation, or Spatial Learning. Front. Synaptic Neurosci. 2016, 8, 31. [Google Scholar] [CrossRef]
- Li, F.; Tsien, J.Z. Memory and the NMDA Receptors. N. Engl. J. Med. 2009, 361, 302–303. [Google Scholar] [CrossRef] [PubMed]
- Vasilevska, V.; Guest, P.C.; Bernstein, H.-G.; Schroeter, M.L.; Geis, C.; Steiner, J. Molecular mimicry of NMDA receptors may contribute to neuropsychiatric symptoms in severe COVID-19 cases. J. Neuroinflammation 2021, 18, 245. [Google Scholar] [CrossRef] [PubMed]
- Bekinschtein, P.; Cammarota, M.; Katche, C.; Slipczuk, L.; Rossato, J.I.; Goldin, A.; Izquierdo, I.; Medina, J.H. BDNF is essential to promote persistence of long-term memory storage. Proc. Natl. Acad. Sci. USA 2008, 105, 2711–2716. [Google Scholar] [CrossRef] [PubMed]
- Miranda, M.; Morici, J.F.; Zanoni, M.B.; Bekinschtein, P. Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Front. Cell. Neurosci. 2019, 13, 363. [Google Scholar] [CrossRef]
- Fernandes, B.S.; Molendijk, M.L.; Köhler, C.A.; Soares, J.C.; Leite, C.M.G.S.; Machado-Vieira, R.; Ribeiro, T.L.; Silva, J.C.; Sales, P.M.G.; Quevedo, J.; et al. Peripheral brain-derived neurotrophic factor (BDNF) as a biomarker in bipolar disorder: A meta-analysis of 52 studies. BMC Med. 2015, 13, 289. [Google Scholar] [CrossRef]
- Peschl, P.; Bradl, M.; Höftberger, R.; Berger, T.; Reindl, M. Myelin Oligodendrocyte Glycoprotein: Deciphering a Target in Inflammatory Demyelinating Diseases. Front. Immunol. 2017, 8, 529. [Google Scholar] [CrossRef]
- Bouali-Benazzouz, R.; Benazzouz, A. COVID-19 Infection and Parkinsonism: Is There a Link? Mov. Disord. 2021, 36, 1737–1743. [Google Scholar] [CrossRef]
- Baizabal-Carvallo, J.F.; Jankovic, J. Autoimmune and paraneoplastic movement disorders: An update. J. Neurol. Sci. 2018, 385, 175–184. [Google Scholar] [CrossRef]
- Marinas, J.E.; Matveychuk, D.; Dursun, S.M.; Baker, G.B. Neuroimmunological antibody-mediated encephalitis and implications for diagnosis and therapy in neuropsychiatry. Acta Neuropsychiatr. 2019, 32, 177–185. [Google Scholar] [CrossRef]
- Lamers, M.M.; Beumer, J.; Van Der Vaart, J.; Knoops, K.; Puschhof, J.; Breugem, T.I.; Ravelli, R.B.; Paul van Schayck, J.; Mykytyn, A.Z.; Duimel, H.Q.; et al. SARS-CoV-2 productively infects human gut enterocytes. Science 2020, 369, 50–54. [Google Scholar] [CrossRef]
- Vojdani, A.; Turnpaugh, C.C. Antibodies against Group A Streptococcus, dopamine receptors, and ganglioside GM1 cross-react with a variety of food antigens, potentially interfering with biomarkers for PANS and PANDAS. Biomark. Neuropsychiatry 2020, 3, 100023. [Google Scholar] [CrossRef]
- Maftei, M.; Thurm, F.; Schnack, C.; Tumani, H.; Otto, M.; Elbert, T.; Kolassa, I.-T.; Przybylski, M.; Manea, M.; Von Arnim, C.A.F. Increased Levels of Antigen-Bound β-Amyloid Autoantibodies in Serum and Cerebrospinal Fluid of Alzheimer’s Disease Patients. PLoS ONE 2013, 8, e68996. [Google Scholar] [CrossRef] [PubMed]
- Bartos, A.; Fialová, L.; Švarcová, J. Lower Serum Antibodies Against Tau Protein and Heavy Neurofilament in Alzheimer’s Disease. J. Alzheimer’s Dis. 2018, 64, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Zyskind, I.; Rosenberg, A.Z.; Zimmerman, J.; Naiditch, H.; Glatt, A.E.; Pinter, A.; Theel, E.S.; Joyner, M.J.; Hill, D.A.; Lieberman, M.R.; et al. SARS-CoV-2 Seroprevalence and Symptom Onset in Culturally Linked Orthodox Jewish Communities Across Multiple Regions in the United States. JAMA Netw. Open 2021, 4, e212816. [Google Scholar] [CrossRef] [PubMed]
Antibody | Severity | Covid | Mild | Severe | Oxygen | Covid | Mild | Severe | Oxygen | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Glutamic Acid Decarboxylase (GAD-65) | Control | IgA | 0.05 | 0.05 | 0.11 | 0.14 | IgG | 0.28 | 0.38 | 0.30 | 0.05 |
Mild | - | - | 0.17 | 0.18 | - | - | 0.13 | 0.31 | |||
Severe | - | - | - | 0.03 | - | - | - | 0.22 | |||
Acetycholine Receptor | Control | IgA | 0.24 | 0.21 | 0.28 | 0.22 | IgG | 0.01 | 0.01 | 0.03 | 0.01 |
Mild | - | - | 0.10 | 0.04 | - | - | 0.03 | 0.01 | |||
Severe | - | - | - | 0.05 | - | - | - | 0.06 | |||
α-Synucleins | Control | IgA | 0.31 | 0.34 | 0.33 | 0.24 | IgG | 0.04 | 0.12 | 0.06 | 0.06 |
Mild | - | - | 0.07 | 0.01 | - | - | 0.16 | 0.01 | |||
Severe | - | - | - | 0.05 | - | - | - | 0.11 | |||
Amyloid β Peptide | Control | IgA | 0.29 | 0.35 | 0.28 | 0.18 | IgG | 0.21 | 0.22 | 0.29 | 0.09 |
Mild | - | - | 0.00 | 0.07 | - | - | 0.13 | 0.10 | |||
Severe | - | - | - | 0.06 | - | - | - | 0.20 | |||
Brain Derived Neurotrophic Factor | Control | IgA | 0.10 | 0.07 | 0.13 | 0.05 | IgG | 0.25 | 0.16 | 0.29 | 0.45 |
Mild | - | - | 0.05 | 0.00 | - | - | 0.14 | 0.32 | |||
Severe | - | - | - | 0.04 | - | - | - | 0.20 | |||
Cerebellar | Control | IgA | 0.01 | 0.05 | 0.01 | 0.12 | IgG | 0.17 | 0.11 | 0.27 | 0.13 |
Mild | - | - | 0.05 | 0.15 | - | - | 0.20 | 0.05 | |||
Severe | - | - | - | 0.08 | - | - | - | 0.14 | |||
D1 Receptor | Control | IgA | 0.12 | 0.11 | 0.16 | 0.07 | IgG | 0.02 | 0.12 | 0.08 | 0.27 |
Mild | - | - | 0.06 | 0.01 | - | - | 0.20 | 0.41 | |||
Severe | - | - | - | 0.06 | - | - | - | 0.22 | |||
D2 Receptor | Control | IgA | 0.23 | 0.26 | 0.22 | 0.16 | IgG | 0.14 | 0.22 | 0.13 | 0.01 |
Mild | - | - | 0.00 | 0.06 | - | - | 0.10 | 0.23 | |||
Severe | - | - | - | 0.04 | - | - | - | 0.15 | |||
Enteric Nerve | Control | IgA | 0.10 | 0.10 | 0.11 | 0.04 | IgG | 0.23 | 0.25 | 0.28 | 0.14 |
Mild | - | - | 0.02 | 0.03 | - | - | 0.07 | 0.08 | |||
Severe | - | - | - | 0.04 | - | - | - | 0.14 | |||
Ganglioside | Control | IgA | 0.02 | 0.02 | 0.05 | 0.09 | IgG | 0.13 | 0.25 | 0.05 | 0.05 |
Mild | - | - | 0.03 | 0.12 | - | - | 0.21 | 0.20 | |||
Severe | - | - | - | 0.12 | - | - | - | 0.00 | |||
Myelin Basic Protein | Control | IgA | 0.23 | 0.22 | 0.25 | 0.22 | IgG | 0.05 | 0.01 | 0.02 | 0.14 |
Mild | - | - | 0.04 | 0.02 | - | - | 0.02 | 0.14 | |||
Severe | - | - | - | 0.02 | - | - | - | 0.14 | |||
Myelin Oligodendrocyte Glycoprotein | Control | IgA | 0.09 | 0.00 | 0.14 | 0.15 | IgG | 0.04 | 0.08 | 0.04 | 0.32 |
Mild | - | - | 0.15 | 0.18 | - | - | 0.14 | 0.40 | |||
Severe | - | - | - | 0.04 | - | - | - | 0.30 | |||
NMDA Receptor | Control | IgA | 0.22 | 0.28 | 0.23 | 0.20 | IgG | 0.46 | 0.39 | 0.51 | 0.63 |
Mild | - | - | 0.01 | 0.01 | - | - | 0.18 | 0.46 | |||
Severe | - | - | - | 0.02 | - | - | - | 0.30 | |||
S100-B | Control | IgA | 0.03 | 0.02 | 0.06 | 0.08 | IgG | 0.31 | 0.28 | 0.38 | 0.31 |
Mild | - | - | 0.05 | 0.09 | - | - | 0.16 | 0.05 | |||
Severe | - | - | - | 0.11 | - | - | - | 0.09 | |||
Tau Protein | Control | IgA | 0.15 | 0.22 | 0.13 | 0.01 | IgG | 0.28 | 0.36 | 0.30 | 0.17 |
Mild | - | - | 0.05 | 0.17 | - | - | 0.04 | 0.19 | |||
Severe | - | - | - | 0.11 | - | - | - | 0.15 | |||
Key: Effect Size |
Acetycholine Receptor | AmyloidβPeptide | α-Synucleins | BDNF | Cerebellar | D1 Receptor | D2 Receptor | Enteric nerve | Ganglioside | Myelin Basic Protein | Myelin Oligodendrocyte Glycoprotein | NMDA Receptor | S100B | Tau Protein | GAD65 | |
SARS CoV 2 IgG | 0.033 | −0.118 | 0.064 | 0.341 ** | −0.121 | 0.164 * | −0.001 | −0.108 | 0.077 | 0.098 | 0.173 ** | 0.504 ** | −0.223 ** | −0.133 * | −0.093 |
Acetycholine receptor | 1 | 0.801 ** | 0.795 ** | 0.713 ** | 0.809 ** | 0.762 ** | 0.808 ** | 0.793 ** | 0.787 ** | 0.582 ** | 0.762 ** | 0.571 ** | 0.721 ** | 0.731 ** | 0.757 ** |
Amyloidβpeptide | 0.943 ** | 1 | 0.811 ** | 0.644 ** | 0.882 ** | 0.823 ** | 0.849 ** | 0.836 ** | 0.755 ** | 0.546 ** | 0.739 ** | 0.552 ** | 0.758 ** | 0.765 ** | 0.845 ** |
α-synucleins | 0.954 ** | 0.953 ** | 1 | 0.721 ** | 0.874 ** | 0.775 ** | 0.819 ** | 0.754 ** | 0.844 ** | 0.572 ** | 0.744 ** | 0.643 ** | 0.648 ** | 0.671 ** | 0.724 ** |
BDNF | 0.930 ** | 0.896 ** | 0.912 ** | 1 | 0.659 ** | 0.762 ** | 0.702 ** | 0.608 ** | 0.689 ** | 0.540 ** | 0.711 ** | 0.714 ** | 0.487 ** | 0.555 ** | 0.629 ** |
Cerebellar | 0.894 ** | 0.891 ** | 0.894 ** | 0.916 ** | 1 | 0.765 ** | 0.818 ** | 0.816 ** | 0.815 ** | 0.521 ** | 0.735 ** | 0.522 ** | 0.736 ** | 0.724 ** | 0.828 ** |
D1 Receptor | 0.934 ** | 0.922 ** | 0.907 ** | 0.934 ** | 0.915 ** | 1 | 0.836 ** | 0.788 ** | 0.729 ** | 0.616 ** | 0.822 ** | 0.686 ** | 0.685 ** | 0.748 ** | 0.806 ** |
D2 Receptor | 0.959 ** | 0.949 ** | 0.960 ** | 0.931 ** | 0.918 ** | 0.923 ** | 1 | 0.834 ** | 0.744 ** | 0.606 ** | 0.776 ** | 0.582 ** | 0.693 ** | 0.797 ** | 0.853 ** |
Enteric nerve | 0.918 ** | 0.893 ** | 0.891 ** | 0.893 ** | 0.900 ** | 0.907 ** | 0.903 ** | 1 | 0.705 ** | 0.541 ** | 0.729 ** | 0.536 ** | 0.728 ** | 0.762 ** | 0.801 ** |
Ganglioside | 0.895 ** | 0.874 ** | 0.891 ** | 0.932 ** | 0.934 ** | 0.917 ** | 0.915 ** | 0.884 ** | 1 | 0.593 ** | 0.719 ** | 0.673 ** | 0.647 ** | 0.620 ** | 0.631 ** |
Myelin Basic Protein | 0.796 ** | 0.772 ** | 0.777 ** | 0.765 ** | 0.743 ** | 0.721 ** | 0.768 ** | 0.721 ** | 0.708 ** | 1 | 0.711 ** | 0.556 ** | 0.650 ** | 0.742 ** | 0.479 ** |
Myelin Oligodendrocyte Glycoprotein | 0.850 ** | 0.835 ** | 0.820 ** | 0.842 ** | 0.832 ** | 0.842 ** | 0.833 ** | 0.831 ** | 0.837 ** | 0.819 ** | 1 | 0.721 ** | 0.720 ** | 0.751 ** | 0.723 ** |
NMDA Receptor | 0.792 ** | 0.741 ** | 0.738 ** | 0.824 ** | 0.869 ** | 0.799 ** | 0.787 ** | 0.816 ** | 0.868 ** | 0.732 ** | 0.844 ** | 1 | 0.392 ** | 0.478 ** | 0.442 ** |
S100B | 0.835 ** | 0.833 ** | 0.802 ** | 0.852 ** | 0.856 ** | 0.855 ** | 0.816 ** | 0.830 ** | 0.833 ** | 0.849 ** | 0.896 ** | 0.847 ** | 1 | 0.804 ** | 0.673 ** |
Tau Protein | 0.866 ** | 0.872 ** | 0.848 ** | 0.851 ** | 0.877 ** | 0.829 ** | 0.859 ** | 0.833 ** | 0.834 ** | 0.900 ** | 0.874 ** | 0.836 ** | 0.920 ** | 1 | 0.761 ** |
GAD65 | 0.913 ** | 0.883 ** | 0.885 ** | 0.906 ** | 0.897 ** | 0.917 ** | 0.902 ** | 0.910 ** | 0.898 ** | 0.730 ** | 0.885 ** | 0.866 ** | 0.836 ** | 0.826 ** | 1 |
Key: |
Mean Age | Female | Male | ||||
---|---|---|---|---|---|---|
Control | 40.18 | 26/77 | 33.77% | 51/77 | 66.23% | |
COVID-19 | 43.8 | 55/169 | 32.54% | 113/169 | 66.86% | |
Severity | Mean interval * | Mean Age | Female | Male | ||
Mild | 54 | 32.4 | 28/73 | 38.36% | 45/73 | 61.64% |
Severe | 60 | 51.49 | 20/64 | 31.25% | 44/64 | 68.75% |
Oxygen | 59 | 53.84 | 8/32 | 25.00% | 24/32 | 75.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lavi, Y.; Vojdani, A.; Halpert, G.; Sharif, K.; Ostrinski, Y.; Zyskind, I.; Lattin, M.T.; Zimmerman, J.; Silverberg, J.I.; Rosenberg, A.Z.; et al. Dysregulated Levels of Circulating Autoantibodies against Neuronal and Nervous System Autoantigens in COVID-19 Patients. Diagnostics 2023, 13, 687. https://doi.org/10.3390/diagnostics13040687
Lavi Y, Vojdani A, Halpert G, Sharif K, Ostrinski Y, Zyskind I, Lattin MT, Zimmerman J, Silverberg JI, Rosenberg AZ, et al. Dysregulated Levels of Circulating Autoantibodies against Neuronal and Nervous System Autoantigens in COVID-19 Patients. Diagnostics. 2023; 13(4):687. https://doi.org/10.3390/diagnostics13040687
Chicago/Turabian StyleLavi, Yael, Aristo Vojdani, Gilad Halpert, Kassem Sharif, Yuri Ostrinski, Israel Zyskind, Miriam T Lattin, Jason Zimmerman, Jonathan I Silverberg, Avi Z Rosenberg, and et al. 2023. "Dysregulated Levels of Circulating Autoantibodies against Neuronal and Nervous System Autoantigens in COVID-19 Patients" Diagnostics 13, no. 4: 687. https://doi.org/10.3390/diagnostics13040687
APA StyleLavi, Y., Vojdani, A., Halpert, G., Sharif, K., Ostrinski, Y., Zyskind, I., Lattin, M. T., Zimmerman, J., Silverberg, J. I., Rosenberg, A. Z., Shoenfeld, Y., & Amital, H. (2023). Dysregulated Levels of Circulating Autoantibodies against Neuronal and Nervous System Autoantigens in COVID-19 Patients. Diagnostics, 13(4), 687. https://doi.org/10.3390/diagnostics13040687