Relaxation–Diffusion T2–ADC Correlations in Breast Cancer Patients: A Spatiotemporally Encoded 3T MRI Assessment
Abstract
1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Partridge, S.C.; Nissan, N.; Rahbar, H.; Kitsch, A.E.; Sigmund, E.E. Diffusion-weighted breast MRI: Clinical applications and emerging techniques. J. Magn. Reson. Imaging 2017, 45, 337–355. [Google Scholar] [CrossRef] [PubMed]
- Baltzer, P.; Mann, R.M.; Iima, M.; Sigmund, E.E.; Clauser, P.; Gilbert, F.J.; Martincich, L.; Partridge, S.C.; Patterson, A.; Pinker, K.; et al. Diffusion-weighted imaging of the breast—A consensus and mission statement from the EUSOBI International Breast Diffusion-Weighted Imaging working group. Eur. Radiol. 2020, 30, 1436–1450. [Google Scholar] [CrossRef]
- Baltzer, P.A.T.; Schäfer, A.; Dietzel, M.; Grässel, D.; Gajda, M.; Camara, O.; Kaiser, W.A. Diffusion tensor magnetic resonance imaging of the breast: A pilot study. Eur. Radiol. 2011, 21, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Cai, Y.-Q.; Cai, Z.-L.; Gao, Y.-G.; An, N.-Y.; Ma, L.; Mahankali, S.; Gao, J.H. Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J. Magn. Reson. Imaging 2002, 16, 172–178. [Google Scholar] [CrossRef]
- Wu, J.; Yan, F.; Chai, W.; Fu, C.; Yan, X.; Zhan, Y.; Sun, K. Breast cancer recurrence risk prediction using whole-lesion histogram analysis with diffusion kurtosis imaging. Clin. Radiol. 2020, 75, 239.e1–239.e8. [Google Scholar] [CrossRef]
- Nogueira, L.; Brandão, S.; Matos, E.; Nunes, R.G.; Loureiro, J.; Ramos, I.; Ferreira, H.A. Application of the diffusion kurtosis model for the study of breast lesions. Eur. Radiol. 2014, 24, 1197–1203. [Google Scholar] [CrossRef]
- Halle, B.; Wennerström, H. Interpretation of magnetic resonance data from water nuclei in heterogeneous systems. J. Chem. Phys. 1981, 75, 1928–1943. [Google Scholar] [CrossRef]
- Kuhl, C.K.; Klaschik, S.; Mielcarek, P.; Gieseke, J.; Wardelmann, E.; Schild, H.H. Do T2-weighted pulse sequences help with the differential diagnosis of enhancing lesions in dynamic breast MRI? J. Magn. Reson. Imaging 1999, 9, 187–196. [Google Scholar] [CrossRef]
- Nissan, N.; Bauer, E.; Moss Massasa, E.E.; Sklair-Levy, M. Breast MRI during pregnancy and lactation: Clinical challenges and technical advances. Insights Imaging 2022, 13, 71. [Google Scholar] [CrossRef]
- Sharma, S.; Nwachukwu, C.; Wieseler, C.; Elsherif, S.; Letter, H.; Sharma, S. MRI virtual biopsy of T2 hyperintense breast lesions. J. Clin. Imaging Sci. 2021, 11, 18. [Google Scholar] [CrossRef]
- Westra, C.; Dialani, V.; Mehta, T.S.; Eisenberg, R.L. Using T2-weighted sequences to more accurately characterize breast masses seen on MRI. AJR Am. J. Roentgenol. 2014, 202, W183–W190. [Google Scholar] [CrossRef]
- Gibson, A.L.; Watkins, J.E.; Agrawal, A.; Tyminski, M.M.; DeBenedectis, C.M. Shedding light on T2 bright masses on breast MRI: Benign and malignant causes. J. Breast Imaging 2022, 4, 430–440. [Google Scholar] [CrossRef]
- Tan, P.C.; Pickles, M.D.; Lowry, M.; Manton, D.J.; Turnbull, L.W. Lesion T(2) relaxation times and volumes predict the response of malignant breast lesions to neoadjuvant chemotherapy. Magn. Reson. Imaging 2008, 26, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Manton, D.J.; Chaturvedi, A.; Hubbard, A.; Lind, M.J.; Lowry, M.; Maraveyas, A.; Pickles, M.D.; Tozer, D.J.; Turnbull, L.W. Neoadjuvant chemotherapy in breast cancer: Early response prediction with quantitative MR imaging and spectroscopy. Br. J. Cancer 2006, 94, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Gao, S.; Zhao, R.; Liu, H.; Wang, Y.; Qi, X.; Li, S.; Cao, J.; Zhang, L. Contrast-free MRI quantitative parameters for early prediction of pathological response to neoadjuvant chemotherapy in breast cancer. Eur. Radiol. 2022, 32, 5759–5772. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yin, B.; Shek, K.; Geng, D.; Lu, Y.; Wen, J.; Kuai, X.; Peng, W. Role of quantitative analysis of T2 relaxation time in differentiating benign from malignant breast lesions. J. Int. Med. Res. 2018, 46, 1928–1935. [Google Scholar] [CrossRef] [PubMed]
- Hürlimann, M.D.; Burcaw, L.; Song, Y.-Q. Quantitative characterization of food products by two-dimensional D-T2 and T1-T2 distribution functions in a static gradient. J. Colloid Interface Sci. 2006, 297, 303–311. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, K.T.; Fridjonsson, E.O.; Smeed, D.; Hopper, T.A.J.; Johns, M.L. Characterising water in Lunar and Martian regolith materials using nuclear magnetic resonance. Icarus 2023, 399, 115544. [Google Scholar] [CrossRef]
- Oh, J.; Cha, S.; Aiken, A.H.; Han, E.T.; Crane, J.C.; Stainsby, J.A.; Wright, G.A.; Dillon, W.P.; Nelson, S.J. Quantitative apparent diffusion coefficients and T2 relaxation times in characterizing contrast enhancing brain tumors and regions of peritumoral edema. J. Magn. Reson. Imaging 2005, 21, 701–708. [Google Scholar] [CrossRef]
- Wang, S.; Peng, Y.; Medved, M.; Yousuf, A.N.; Ivancevic, M.K.; Karademir, I.; Jiang, Y.; Antic, T.; Sammet, S.; Oto, A.; et al. Hybrid multidimensional T(2) and diffusion-weighted MRI for prostate cancer detection. J. Magn. Reson. Imaging 2014, 39, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Sadinski, M.; Karczmar, G.; Peng, Y.; Wang, S.; Jiang, Y.; Medved, M.; Yousuf, A.; Antic, T.; Oto, A. Pilot Study of the Use of Hybrid Multidimensional T2-Weighted Imaging-DWI for the Diagnosis of Prostate Cancer and Evaluation of Gleason Score. AJR Am. J. Roentgenol. 2016, 207, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Syversen, I.F.; Elschot, M.; Sandsmark, E.; Bertilsson, H.; Bathen, T.F.; Goa, P.E. Exploring the diagnostic potential of adding T2 dependence in diffusion-weighted MR imaging of the prostate. PLoS ONE 2021, 16, e0252387. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.W.; Kuzmiak, C.M.; Kim, Y.J.; Seo, J.Y.; Jung, H.K.; Lee, M.-S. Diagnostic Usefulness of Combination of Diffusion-weighted Imaging and T2WI, Including Apparent Diffusion Coefficient in Breast Lesions: Assessment of Histologic Grade. Acad. Radiol. 2018, 25, 643–652. [Google Scholar] [CrossRef]
- Kanao, S.; Kataoka, M.; Iima, M.; Ikeda, D.M.; Toi, M.; Togashi, K. Differentiating benign and malignant inflammatory breast lesions: Value of T2 weighted and diffusion weighted MR images. Magn. Reson. Imaging 2018, 50, 38–44. [Google Scholar] [CrossRef]
- Ke, Z.; Yan, X.; Min, X.; Cai, W.; Zhang, P.; You, H.; Fan, C.; Wang, L. Validation of SE-EPI-based T2 mapping for characterization of prostate cancer: A new method compared with the traditional CPMG method. Abdom. Radiol. 2019, 44, 3432–3440. [Google Scholar] [CrossRef]
- Jezzard, P.; Balaban, R.S. Correction for geometric distortion in echo planar images from B0 field variations. Magn. Reson. Med. 1995, 34, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, L.; Brandão, S.; Nunes, R.G.; Ferreira, H.A.; Loureiro, J.; Ramos, I. Breast DWI at 3 T: Influence of the fat-suppression technique on image quality and diagnostic performance. Clin. Radiol. 2015, 70, 286–294. [Google Scholar] [CrossRef]
- Shrot, Y.; Frydman, L. Spatially encoded NMR and the acquisition of 2D magnetic resonance images within a single scan. J. Magn. Reson. 2005, 172, 179–190. [Google Scholar] [CrossRef]
- Tal, A.; Frydman, L. Single-scan multidimensional magnetic resonance. Prog. Nucl. Magn. Reson. Spectrosc. 2010, 57, 241–292. [Google Scholar] [CrossRef]
- Ben-Eliezer, N.; Shrot, Y.; Frydman, L. High-definition, single-scan 2D MRI in inhomogeneous fields using spatial encoding methods. Magn. Reson. Imaging 2010, 28, 77–86. [Google Scholar] [CrossRef]
- Ben-Eliezer, N.; Solomon, E.; Harel, E.; Nevo, N.; Frydman, L. Fully refocused multi-shot spatiotemporally encoded MRI: Robust imaging in the presence of metallic implants. Magn. Reson. Mater. Phys. Biol. Med. 2012, 25, 433–442. [Google Scholar] [CrossRef]
- Schmidt, R.; Frydman, L. New spatiotemporal approaches for fully refocused, multislice ultrafast 2D MRI. Magn. Reson. Med. 2014, 71, 711–722. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.; Seginer, A.; Frydman, L. Interleaved multishot imaging by spatiotemporal encoding: A fast, self-referenced method for high-definition diffusion and functional MRI. Magn. Reson. Med. 2016, 75, 1935–1948. [Google Scholar] [CrossRef]
- Cousin, S.F.; Liberman, G.; Solomon, E.; Otikovs, M.; Frydman, L. A regularized reconstruction pipeline for high-definition diffusion MRI in challenging regions incorporating a per-shot image correction. Magn. Reson. Med. 2019, 82, 1322–1330. [Google Scholar] [CrossRef] [PubMed]
- Otikovs, M.; Nissan, N.; Furman-Haran, E.; Anaby, D.; Allweis, T.M.; Agassi, R.; Sklair-Levy, M.; Frydman, L. Diffusivity in breast malignancies analyzed for b > 1000 s/mm2 at 1 mm in-plane resolutions: Insight from Gaussian and non-Gaussian behaviors. J. Magn. Reson. Imaging 2021, 53, 1913–1925. [Google Scholar] [CrossRef]
- Solomon, E.; Liberman, G.; Nissan, N.; Furman-Haran, E.; Sklair-Levy, M.; Frydman, L. Diffusion-weighted breast MRI of malignancies with submillimeter resolution and immunity to artifacts by spatiotemporal encoding at 3T. Magn. Reson. Med. 2020, 84, 1391–1403. [Google Scholar] [CrossRef]
- Solomon, E.; Nissan, N.; Furman-Haran, E.; Seginer, A.; Shapiro-Feinberg, M.; Degani, H.; Frydman, L. Overcoming limitations in diffusion-weighted MRI of breast by spatio-temporal encoding. Magn. Reson. Med. 2015, 73, 2163–2173. [Google Scholar] [CrossRef]
- Solomon, E.; Nissan, N.; Schmidt, R.; Furman-Haran, E.; Ben-Aharon, U.; Frydman, L. Removing silicone artifacts in diffusion-weighted breast MRI by means of shift-resolved spatiotemporally encoding. Magn. Reson. Med. 2016, 75, 2064–2071. [Google Scholar] [CrossRef]
- Schmidt, R.; Baishya, B.; Ben-Eliezer, N.; Seginer, A.; Frydman, L. Super-resolved parallel MRI by spatiotemporal encoding. Magn. Reson. Imaging 2014, 32, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Liberman, G.; Solomon, E.; Lustig, M.; Frydman, L. Multiple-coil k-space interpolation enhances resolution in single-shot spatiotemporal MRI. Magn. Reson. Med. 2018, 79, 796–805. [Google Scholar] [CrossRef] [PubMed]
- Hors, P.J. A new method for water suppression in the proton NMR spectra of aqueous solutions. J. Magn. Reson. 1983, 54, 539–542. [Google Scholar] [CrossRef]
- Reese, T.G.; Heid, O.; Weisskoff, R.M.; Wedeen, V.J. Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn. Reson. Med. 2003, 49, 177–182. [Google Scholar] [CrossRef]
- Ben-Eliezer, N.; Irani, M.; Frydman, L. Super-resolved spatially encoded single-scan 2D MRI. Magn. Reson. Med. 2010, 63, 1594–1600. [Google Scholar] [CrossRef] [PubMed]
- Porter, D.A.; Heidemann, R.M. High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition. Magn. Reson. Med. 2009, 62, 468–475. [Google Scholar] [CrossRef]
- Bao, Q.; Ma, L.; Liberman, G.; Solomon, E.; Martinho, R.P.; Frydman, L. Dynamic T2 mapping by multi-spin-echo spatiotemporal encoding. Magn. Reson. Med. 2020, 84, 895–907. [Google Scholar] [CrossRef]
- Ma, L.; Otikovs, M.; Cousin, S.F.; Liberman, G.; Bao, Q.; Frydman, L. Simultaneous multi-banding and multi-echo phase encoding for the accelerated acquisition of high-resolution volumetric diffusivity maps by spatiotemporally encoded MRI. Magn. Reson. Imaging 2021, 79, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Veraart, J.; Novikov, D.S.; Christiaens, D.; Ades-Aron, B.; Sijbers, J.; Fieremans, E. Denoising of diffusion MRI using random matrix theory. Neuroimage 2016, 142, 394–406. [Google Scholar] [CrossRef]
- Rakow-Penner, R.; Daniel, B.; Yu, H.; Sawyer-Glover, A.; Glover, G.H. Relaxation times of breast tissue at 1.5T and 3T measured using IDEAL. J. Magn. Reson. Imaging 2006, 23, 87–91. [Google Scholar] [CrossRef]
- Sardanelli, F.; Boetes, C.; Borisch, B.; Decker, T.; Federico, M.; Gilbert, F.J.; Helbich, T.; Heywang-Köbrunner, S.H.; Kaiser, W.A.; Kerin, M.J.; et al. Magnetic resonance imaging of the breast: Recommendations from the EUSOMA working group. Eur. J. Cancer 2010, 46, 1296–1316. [Google Scholar] [CrossRef] [PubMed]
- Iima, M.; Honda, M.; Sigmund, E.E.; Ohno Kishimoto, A.; Kataoka, M.; Togashi, K. Diffusion MRI of the breast: Current status and future directions. J. Magn. Reson. Imaging 2020, 52, 70–90. [Google Scholar] [CrossRef]
- Shi, R.-Y.; Yao, Q.-Y.; Wu, L.-M.; Xu, J.-R. Breast Lesions: Diagnosis Using Diffusion Weighted Imaging at 1.5T and 3.0T-Systematic Review and Meta-analysis. Clin. Breast Cancer 2018, 18, e305–e320. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, P.; Liney, G.P.; Pickles, M.D.; Zelhof, B.; Rodrigues, G.; Turnbull, L.W. Correlation of ADC and T2 measurements with cell density in prostate cancer at 3.0 Tesla. Investig. Radiol. 2009, 44, 572–576. [Google Scholar] [CrossRef]
- Edden, R.A.E.; Smith, S.A.; Barker, P.B. Longitudinal and multi-echo transverse relaxation times of normal breast tissue at 3 Tesla. J. Magn. Reson. Imaging 2010, 32, 982–987. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.; Gho, S.M.; Back, S.N.; Ha, T.; Kang, D.K.; Kim, T.H. The feasibility of synthetic MRI in breast cancer patients: Comparison of T2 relaxation time with multiecho spin echo T2 mapping method. Br. J. Radiol. 2018, 92, 20180479. [Google Scholar] [CrossRef] [PubMed]
- Tamura, T.; Murakami, S.; Naito, K.; Yamada, T.; Fujimoto, T.; Kikkawa, T. Investigation of the optimal b-value to detect breast tumors with diffusion weighted imaging by 1.5-T MRI. Cancer Imaging. 2014, 14, 11. [Google Scholar] [CrossRef][Green Version]
Patient | Age | Size on DCE Images (Largest Diameter), cm | Pathology |
---|---|---|---|
1 | 33 | 3.5 | IDC triple negative |
2 | 45 | 2.5 | IDC triple negative |
3 | 46 | 1 | IDC ER+ PR+ HER2− |
4 | 48 | 1 | ILC ER+ PR+ HER2− |
5 | 27 | 1.7 | IDC+ DCIS ER+ PR+ HER2− |
6 | 66 | 1.4 | IDC ER+ PR+ HER+ |
7 | 34 | 4.6 | IDC ER+ PR+ HER2− |
8 | 39 | 0.9 | DCIS ER+ PR+ HER2− |
9 | 52 | 3.1 | IDC triple negative |
10 | 41 | 1.5 | DCIS ER− PR− HER2+ |
11 | 46 | 1.3 | IDC ER+ PR+ HER2− |
12 | 46 | 3.2 | IDC triple negative |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otikovs, M.; Nissan, N.; Furman-Haran, E.; Anaby, D.; Agassi, R.; Sklair-Levy, M.; Frydman, L. Relaxation–Diffusion T2–ADC Correlations in Breast Cancer Patients: A Spatiotemporally Encoded 3T MRI Assessment. Diagnostics 2023, 13, 3516. https://doi.org/10.3390/diagnostics13233516
Otikovs M, Nissan N, Furman-Haran E, Anaby D, Agassi R, Sklair-Levy M, Frydman L. Relaxation–Diffusion T2–ADC Correlations in Breast Cancer Patients: A Spatiotemporally Encoded 3T MRI Assessment. Diagnostics. 2023; 13(23):3516. https://doi.org/10.3390/diagnostics13233516
Chicago/Turabian StyleOtikovs, Martins, Noam Nissan, Edna Furman-Haran, Debbie Anaby, Ravit Agassi, Miri Sklair-Levy, and Lucio Frydman. 2023. "Relaxation–Diffusion T2–ADC Correlations in Breast Cancer Patients: A Spatiotemporally Encoded 3T MRI Assessment" Diagnostics 13, no. 23: 3516. https://doi.org/10.3390/diagnostics13233516
APA StyleOtikovs, M., Nissan, N., Furman-Haran, E., Anaby, D., Agassi, R., Sklair-Levy, M., & Frydman, L. (2023). Relaxation–Diffusion T2–ADC Correlations in Breast Cancer Patients: A Spatiotemporally Encoded 3T MRI Assessment. Diagnostics, 13(23), 3516. https://doi.org/10.3390/diagnostics13233516