Sex-Specific Cut-Offs of Single Point Insulin Sensitivity Estimator (SPISE) in Predicting Metabolic Syndrome in the Arab Adolescents
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants and Recruitment
2.2. Clinical and Biochemical Evaluations
2.3. MetS Components and SPISE Index Determination
- Elevated waist circumference: age-specific waist circumference of ≥90th percentile
- Elevated blood pressure: age-specific systolic or diastolic blood pressure of ≥90th percentile
- Elevated fasting glucose: fasting glucose level of ≥6.1 mmol/L
- Elevated triglycerides: circulating triglyceride levels of ≥1.24 mmol/L for age 10–15 years and ≥1.7 mmol/L for age ≥16 years
- Low HDL-cholesterol: circulating HDL-cholesterol level of ≤1.03 mmol/L
2.4. Data Analysis
3. Results
3.1. Clinical Characteristics of the Subjects
3.2. Characteristics of the Study Subjects Divided into MetS/Non-MetS Groups
3.3. Associations of SPISE Index with Other Measured Variables
3.4. Receiver Operating Characteristic (ROC) Curve of SPISE Index in Predicting MetS/Non MetS
3.5. MetS Components According to Cut-Offs in SPISE Index
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Rubeaan, K.; Bawazeer, N.; Al Farsi, Y.; Youssef, A.M.; Al-Yahya, A.A.; AlQumaidi, H.; Al-Malki, B.M.; Naji, K.A.; Al-Shehri, K.; Al Rumaih, F.I. Prevalence of metabolic syndrome in Saudi Arabia—A cross sectional study. BMC Endocr. Disord. 2018, 18, 16. [Google Scholar] [CrossRef] [PubMed]
- Guembe, M.J.; Fernandez-Lazaro, C.I.; Sayon-Orea, C.; Toledo, E.; Moreno-Iribas, C.; Cosials, J.B.; Reyero, J.B.; Martínez, J.D.; Diego, P.G.; Uche, A.M.G.; et al. Risk for cardiovascular disease associated with metabolic syndrome and its components: A 13-year prospective study in the RIVANA cohort. Cardiovasc. Diabetol. 2020, 19, 195. [Google Scholar] [CrossRef] [PubMed]
- Galassi, A.; Reynolds, K.; He, J. Metabolic Syndrome and Risk of Cardiovascular Disease: A Meta-Analysis. Am. J. Med. 2006, 119, 812–819. [Google Scholar] [CrossRef]
- Park, M.H.; Falconer, C.; Viner, R.M.; Kinra, S. The impact of childhood obesity on morbidity and mortality in adulthood: A systematic review. Obes. Rev. 2012, 13, 985–1000. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Shah, P.; Nayyar, S.; Misra, A. Childhood Obesity and the Metabolic Syndrome in Developing Countries. Indian J. Pediatr. 2013, 80, 28–37. [Google Scholar] [CrossRef]
- Al-Daghri, N.M.; Aljohani, N.J.; Al-Attas, O.S.; Al-Saleh, Y.; Alnaami, A.M.; Sabico, S.; Amer, O.E.; Alharbi, M.; Kumar, S.; Alokail, M.S. Comparisons in childhood obesity and cardiometabolic risk factors among urban Saudi Arab adolescents in 2008 and 2013. Child Care Health Dev. 2016, 42, 652–657. [Google Scholar] [CrossRef]
- Amer, O.E.; Sabico, S.; Khattak, M.N.; Alnaami, A.M.; Aljohani, N.J.; Alfawaz, H.; AlHameidi, A.; Al-Daghri, N.M. Increasing prevalence of pediatric metabolic syndrome and its components among Arab youth: A time-series study from 2010–2019. Children 2021, 8, 1129. [Google Scholar] [CrossRef]
- Farrag, N.S.; Cheskin, L.J.; Farag, M.K. A systematic review of childhood obesity in the Middle East and North Africa (MENA) region: Health impact and management. Adv. Pediatr. Res. 2017, 4, 6. [Google Scholar]
- Bleich, S.N.; Vercammen, K.A.; Zatz, L.Y.; Frelier, J.M.; Ebbeling, C.B.; Peeters, A. Interventions to prevent global childhood overweight and obesity: A systematic review. Lancet Diabetes Endocrinol. 2018, 6, 332–346. [Google Scholar] [CrossRef]
- Al-Daghri, N.M.; Alkharfy, K.M.; Alokail, M.S.; Alenad, A.M.; Al-Attas, O.S.; Mohammed, A.K.; Sabico, S.; Albagha, O.M. Assessing the contribution of 38 genetic loci to the risk of type 2 diabetes in the Saudi Arabian Population. Clin. Endocrinol. 2014, 80, 532–537. [Google Scholar] [CrossRef]
- Balkau, B.; Charles, M.A. Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR). Diabet. Med. 1999, 16, 442–443. [Google Scholar] [CrossRef]
- Petersen, M.C.; Shulman, G.I. Mechanisms of Insulin Action and Insulin Resistance. Physiol. Rev. 2018, 98, 2133–2223. [Google Scholar] [CrossRef]
- Auger, C.; Kajimura, S. Adipose tissue remodeling in pathophysiology. Annu. Rev. Pathol. 2023, 18. [Google Scholar] [CrossRef] [PubMed]
- Scheja, L.; Heeren, J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat. Rev. Endocrinol. 2019, 15, 507–524. [Google Scholar] [CrossRef]
- Zhang, Y.; Xue, Y.; Zhang, D.; Liu, Y.; Xu, Z.; Gao, J.; Li, W.; Li, X. Effect of Vitamin D Supplementation on Glycemic Control in Prediabetes: A Meta-Analysis. Nutrients 2021, 13, 4464. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Saxena, A. Surrogate markers of insulin resistance: A review. World J. Diabetes 2010, 1, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Placzkowska, S.; Pawlik-Sobecka, L.; Kokot, I.; Piwowar, A. Indirect insulin resistance detection: Current clinical trends and laboratory limitations. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czechoslov. Repub. 2019, 163, 187–199. [Google Scholar] [CrossRef]
- Tam, C.S.; Xie, W.; Johnson, W.D.; Cefalu, W.T.; Redman, L.M.; Ravussin, E. Defining insulin resistance from hyperin-sulinemic-euglycemic clamps. Diabetes Care 2012, 35, 1605–1610. [Google Scholar] [CrossRef]
- Samaras, K.; McElduff, A.; Twigg, S.M.; Proietto, J.; Prins, J.B.; Welborn, T.A.; Zimmet, P.; Chisholm, D.J.; Campbell, L.V. Insulin levels in insulin resistance: Phantom of the metabolic opera? Med. J. Aust. 2006, 185, 159–161. [Google Scholar] [CrossRef]
- Giannini, C.; Santoro, N.; Caprio, S.; Kim, G.; Lartaud, D.; Shaw, M.; Pierpont, B.; Weiss, R. The triglyceride-to-HDL cholesterol ratio: Association with insulin resistance in obese youths of different ethnic backgrounds. Diabetes Care 2011, 34, 1869–1874. [Google Scholar] [CrossRef]
- Kim-Dorner, S.-J.; Deuster, P.A.; Zeno, S.A.; Remaley, A.T.; Poth, M. Should triglycerides and the triglycerides to high-density lipoprotein cholesterol ratio be used as surrogates for insulin resistance? Metabolism 2010, 59, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Paulmichl, K.; Hatunic, M.; Højlund, K.; Jotic, A.; Krebs, M.; Mitrakou, A.; Porcellati, F.; Tura, A.; Bergsten, P.; Forslund, A. Modification and Validation of the Triglyceride-to–HDL Cholesterol Ratio as a Surrogate of Insulin Sensitivity in White Juveniles and Adults without Diabetes Mellitus: The Single Point Insulin Sensitivity Estimator (SPISE). Clin. Chem. 2016, 62, 1211–1219. [Google Scholar] [CrossRef]
- Ha, J.; Oh, Y.-R.; Kang, E.; Nam, H.-K.; Rhie, Y.-J.; Lee, K.-H. Single Point Insulin Sensitivity Estimator for predicting type 2 diabetes mellitus in obese adolescents. Ann. Pediatr. Endocrinol. Metab. 2022, 27, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Correa-Burrows, P.; Blanco, E.; Gahagan, S.; Burrows, R. Validity assessment of the single-point insulin sensitivity estimator (spise) for diagnosis of cardiometabolic risk in post-pubertal hispanic adolescents. Sci. Rep. 2020, 10, 14399. [Google Scholar] [CrossRef]
- Dudi, P.; Goyal, B.; Saxena, V.; Rabari, K.; Mirza, A.A.; Naithani, M.; Kumar, T.; Goyal, R. Single point insulin sensitivity estimator as an index for insulin sensitivity for metabolic syndrome: A study in North Indian population. J. Lab. Physicians 2019, 11, 244–248. [Google Scholar] [CrossRef]
- Al-Daghri, N.M. Extremely high prevalence of metabolic syndrome manifestations among Arab youth: A call for early intervention. Eur. J. Clin. Investig. 2010, 40, 1063–1066. [Google Scholar] [CrossRef]
- Al-Daghri, N.M.; Wani, K.; Khattak, M.N.K.; Alnaami, A.M.; Amer, O.E.; Aljohani, N.J.; Hameidi, A.; Alfawaz, H.; Alharbi, M.; Sabico, S. Cardiometabolic Effects of a 12-Month, COVID-19 Lockdown-Interrupted Lifestyle Education Program for Arab Adolescents. Front. Pediatr. 2022, 10, 887138. [Google Scholar] [CrossRef]
- Al-Daghri, N.M.; Rahman, S.; Sabico, S.; Yakout, S.; Wani, K.; Al-Attas, O.S.; Saravanan, P.; Tripathi, G.; McTernan, P.G.; Alokail, M.S. Association of Vitamin B12 with Pro-Inflammatory Cytokines and Biochemical Markers Related to Cardiometabolic Risk in Saudi Subjects. Nutrients 2016, 8, 460. [Google Scholar] [CrossRef]
- Cook, S.; Weitzman, M.; Auinger, P.; Nguyen, M.; Dietz, W.H. Prevalence of a metabolic syndrome phenotype in ado-lescents: Findings from the third National Health and Nutrition Examination Survey, 1988–1994. Arch. Pediatr. Adolesc. Med. 2003, 157, 821–827. [Google Scholar] [CrossRef]
- Tang, Q.; Li, X.; Song, P.; Xu, L. Optimal cut-off values for the homeostasis model assessment of insulin resistance (HOMA-IR) and pre-diabetes screening: Developments in research and prospects for the future. Drug Discov. Ther. 2015, 9, 380–385. [Google Scholar] [CrossRef]
- Gluvic, Z.; Zaric, B.; Resanovic, I.; Obradovic, M.; Mitrovic, A.; Radak, D.; R Isenovic, E. Link between metabolic syn-drome and insulin resistance. Curr. Vasc. Pharmacol. 2017, 15, 30–39. [Google Scholar] [CrossRef]
- Al-Daghri, N.M.; Al-Attas, O.S.; Alokail, M.; Alkharfy, K.; Wani, K.; Amer, O.E.; Haq, S.U.; Rahman, S.; Alnaami, A.M.; Livadas, S.; et al. Does visceral adiposity index signify early metabolic risk in children and adolescents?: Association with insulin resistance, adipokines, and subclinical inflammation. Pediatr. Res. 2014, 75, 459–463. [Google Scholar] [CrossRef]
- Hernandez-Baixauli, J.; Quesada-Vázquez, S.; Mariné-Casadó, R.; Gil Cardoso, K.; Caimari, A.; Del Bas, J.M.; Escoté, X.; Baselga-Escudero, L. Detection of Early Disease Risk Factors Associated with Metabolic Syndrome: A New Era with the NMR Metabolomics Assessment. Nutrients 2020, 12, 806. [Google Scholar] [CrossRef] [PubMed]
- DeFronzo, R.A.; Tobin, J.D.; Andres, R. Glucose clamp technique: A method for quantifying insulin secretion and resistance. Am. J. Physiol. Endocrinol. Metab. 1979, 237, E214–E223. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.; Rudenski, A.; Naylor, B.; Treacher, D.; Turner, R. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Katz, A.; Nambi, S.S.; Mather, K.; Baron, A.D.; Follmann, D.A.; Sullivan, G.; Quon, M.J. Quantitative insulin sensitivity check index: A simple, accurate method for assessing insulin sensitivity in humans. J. Clin. Endocrinol. Metab. 2000, 85, 2402–2410. [Google Scholar] [CrossRef]
- Henderson, M.; Rabasa-Lhoret, R.; Bastard, J.-P.; Chiasson, J.-L.; Baillargeon, J.-P.; Hanley, J.; Lambert, M. Measuring insulin sensitivity in youth: How do the different indices compare with the gold-standard method? Diabetes Metab. 2011, 37, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Vega, G.L.; Barlow, C.E.; Grundy, S.M.; Leonard, D.; DeFina, L.F. Triglyceride-To-High-Density-Lipoprotein-Cholesterol Ratio Is an Index of Heart Disease Mortality and of Incidence of Type 2 Diabetes Mellitus in Men. J. Investig. Med. 2014, 62, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Newgard, C.B. Interplay between Lipids and Branched-Chain Amino Acids in Development of Insulin Resistance. Cell Metab. 2012, 15, 606–614. [Google Scholar] [CrossRef]
- Garvey, W.T.; Kwon, S.; Zheng, D.; Shaughnessy, S.; Wallace, P.; Hutto, A.; Pugh, K.; Jenkins, A.J.; Klein, R.L.; Liao, Y. Effects of Insulin Resistance and Type 2 Diabetes on Lipoprotein Subclass Particle Size and Concentration Determined by Nuclear Magnetic Resonance. Diabetes 2003, 52, 453–462. [Google Scholar] [CrossRef]
- Festa, A.; Williams, K.; Hanley, A.J.; Otvos, J.D.; Goff, D.C.; Wagenknecht, L.E.; Haffner, S.M. Nuclear magnetic resonance lipoprotein abnormalities in prediabetic subjects in the Insulin Resistance Atherosclerosis Study. Circulation 2005, 111, 3465–3472. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, H.N.; Zhang, Y.-L.; Hernandez-Ono, A. Regulation of Plasma Triglycerides in Insulin Resistance and Diabetes. Arch. Med. Res. 2005, 36, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Eckel, R.H. Lipoprotein lipase: From gene to obesity. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E271–E288. [Google Scholar] [CrossRef]
- Al-Daghri, N.M.; Wani, K.; Sabico, S.; Garbis, S.D.; Chrousos, G.P.; Amer, O.E.; Ansari, M.G.A.; Al-Saleh, Y.; Aljohani, N.J.; Al-Attas, O.S.; et al. Sex-specific expression of apolipoprotein levels following replenishment of vitamin D. J. Steroid Biochem. Mol. Biol. 2018, 180, 129–136. [Google Scholar] [CrossRef]
- Sumner, A.E.; Vega, G.L.; Genovese, D.J.; Finley, K.B.; Bergman, R.N.; Boston, R.C. Normal triglyceride levels despite insulin resistance in African Americans: Role of lipoprotein lipase. Metabolism 2005, 54, 902–909. [Google Scholar] [CrossRef]
- Kodama, K.; Tojjar, D.; Yamada, S.; Toda, K.; Patel, C.J.; Butte, A.J. Ethnic differences in the relationship between insulin sensitivity and insulin response: A systematic review and meta-analysis. Diabetes Care 2013, 36, 1789–1796. [Google Scholar] [CrossRef]
- Chen, Y.; Chang, Z.; Liu, Y.; Zhao, Y.; Fu, J.; Zhang, Y.; Liu, Y.; Fan, Z. Triglyceride to high-density lipoprotein cholesterol ratio and cardiovascular events in the general population: A systematic review and meta-analysis of cohort studies. Nutr. Metab. Cardiovasc. Dis. NMCD 2021, 32, 318–329. [Google Scholar] [CrossRef]
- Barnes, K.M.; Miner, J.L. Role of Resistin in Insulin Sensitivity in Rodents and Humans. Curr. Protein Pept. Sci. 2009, 10, 96–107. [Google Scholar] [CrossRef]
- Denroche, H.; Huynh, F.; Kieffer, T.J. The role of leptin in glucose homeostasis. J. Diabetes Investig. 2012, 3, 115–129. [Google Scholar] [CrossRef]
- Frühbeck, G.; Busetto, L.; Dicker, D.; Yumuk, V.; Goossens, G.H.; Hebebrand, J.; Halford, J.G.; Farpour-Lambert, N.J.; Blaak, E.E.; Woodward, E.; et al. The ABCD of Obesity: An EASO Position Statement on a Diagnostic Term with Clinical and Scientific Implications. Obes. Facts 2019, 12, 131–136. [Google Scholar] [CrossRef]
- Frühbeck, G.; Gómez-Ambrosi, J.; Salvador, J. Leptin-induced lipolysis opposes the tonic inhibition of endogenous adenosine in white adipocytes. FASEB J. 2001, 15, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, A.; Gomez-Ambrosi, J.; Catalan, V.; Rotellar, F.; Valentí, V.; Silva, C.; Mugueta, M.D.C.; Pulido, M.R.; Vázquez, R.; Salvador, J.; et al. The ghrelin O-acyltransferase—ghrelin system reduces TNF-α-induced apoptosis and autophagy in human visceral adipocytes. Diabetologia 2012, 55, 3038–3050. [Google Scholar] [CrossRef]
- Sjöholm, Å.; Nyström, T. Endothelial inflammation in insulin resistance. Lancet 2005, 365, 610–612. [Google Scholar] [CrossRef] [PubMed]
- Ndumele, C.E.; Pradhan, A.D.; Ridker, P.M. Interrelationships between inflammation, C-reactive protein, and insulin resistance. J. Cardiometabolic Syndr. 2006, 1, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Ye, R.; Scherer, P.E. Adiponectin, driver or passenger on the road to insulin sensitivity? Mol. Metab. 2013, 2, 133–141. [Google Scholar] [CrossRef]
- Teegarden, D.; Donkin, S.S. Vitamin D: Emerging new roles in insulin sensitivity. Nutr. Res. Rev. 2009, 22, 82–92. [Google Scholar] [CrossRef]
- Frühbeck, G.; Catalán, V.; Rodríguez, A.; Ramírez, B.; Becerril, S.; Salvador, J.; Colina, I.; Gómez-Ambrosi, J. Adiponectin-leptin ratio is a functional biomarker of adipose tissue inflammation. Nutrients 2019, 11, 454. [Google Scholar] [CrossRef]
- Link, J.C.; Reue, K. Genetic Basis for Sex Differences in Obesity and Lipid Metabolism. Annu. Rev. Nutr. 2017, 37, 225–245. [Google Scholar] [CrossRef]
- Kim, C.; Halter, J.B. Endogenous sex hormones, metabolic syndrome, and diabetes in men and women. Curr. Cardiol. Rep. 2014, 16, 467. [Google Scholar] [CrossRef]
- Pinyerd, B.; Zipf, W.B. Puberty—Timing is everything! J. Pediatr. Nurs. 2005, 20, 75–82. [Google Scholar] [CrossRef]
Parameters | All Subjects (951) | Boys (503) | Girls (448) | p-Value |
---|---|---|---|---|
Anthropometric Characteristics | ||||
Age (years) | 13.8 ± 2.3 | 13.9 ± 2.2 | 13.7 ± 2.3 | 0.14 |
BMI (kg/m2) | 22.1 ± 6.3 | 21.4 ± 6.2 | 22.8 ± 6.3 | 0.001 |
Waist (cm) | 75 ± 16 | 76 ± 17 | 74 ± 15 | 0.06 |
Hip (cm) | 87 ± 17 | 86 ± 18 | 89 ± 16 | 0.001 |
WHR | 0.88 ± 0.3 | 0.92 ± 0.4 | 0.84 ± 0.1 | <0.001 |
Systolic BP | 107 ± 10 | 107 ± 10 | 106 ± 10 | 0.35 |
Diastolic BP | 69 ± 7 | 69 ± 8 | 69 ± 7 | 0.96 |
Lipid Profile | ||||
Total Cholesterol (mmol/L) | 4.2 ± 0.8 | 4.2 ± 0.8 | 4.2 ± 0.8 | 0.35 |
HDL-Cholesterol (mmol/L) | 1.02 ± 0.4 | 0.99 ± 0.3 | 1.1 ± 0.3 | 0.007 |
Triglycerides (mmol/L) | 0.9(0.7–1.3) | 0.96(0.7–1.3) | 0.94(0.7–1.3) | 0.69 |
Adipocytokines and Inflammatory Markers | ||||
Adiponectin (µg/mL) | 18.9(12.5–28.5) | 17.8(11–27.7) | 20.1(12.8–29.7) | 0.001 |
Resistin (ng/mL) | 18.6(13.5–25.6) | 17.6(12.1–23.8) | 19.9(14.8–27.9) | <0.001 |
Leptin (ng/mL) | 11.4(2.5–31.4) | 6.3(1.8–22.2) | 19.5(5.4–38.1) | <0.001 |
Adiponectin/Leptin | 1.82(0.5–8.9) | 2.99(0.7–13.3) | 1.17(0.4–4.2) | <0.001 |
TNF-Alpha (pg/mL) | 8.4(5.7–12.1) | 9.1(6.0–13.2) | 7.7(5.3–10.6) | <0.001 |
CRP (µg/mL) | 0.99(0.3–3.9) | 0.99(0.3–3.7) | 1.01(0.3–4.1) | 0.89 |
APAI-1 (ng/mL) | 24.2(14.5–34.5) | 23.7(12.9–34.3) | 24.3(15.3–34.7) | 0.35 |
25(OH) D (nmmol/L) | 33.4(22.7–48.0) | 40.9(29.5–57.5) | 26.4(17.6–37.3) | <0.001 |
Glycemic Profile | ||||
Glucose (mmol/L) | 5.1 ± 1.1 | 5.1 ± 1.0 | 5.1 ± 1.2 | 0.79 |
Insulin (miU/mL) | 11.8(6.9–21.3) | 10.9(6.3–21.3) | 12.5(7.7–21.4) | 0.027 |
HOMA-IR | 2.6(1.5–4.9) | 2.4(1.3–5.0) | 2.8(1.7–4.9) | 0.052 |
SPISE | 8.67 ± 3.3 | 8.95 ± 3.3 | 8.37 ± 3.4 | 0.010 |
Parameters | All (951) | Boys (503) | Girls (448) | ||||||
---|---|---|---|---|---|---|---|---|---|
Non-MetS 869 | MetS 82 | p-Value | Non-MetS 449 | MetS 54 | p-Value | Non-MetS 420 | MetS 28 | p-Value | |
Age (years) | 13.7 ± 2.3 | 14.9 ± 1.9 | <0.001 | 13.8 ± 2.2 | 14.7 ± 2.1 | 0.003 | 13.6 ± 2.3 | 15.2 ± 1.8 | <0.001 |
BMI (kg/m2) | 21.4 ± 5.7 | 28.9 ± 7.8 | <0.001 | 20.7 ± 5.6 | 27.6 ± 7.9 | <0.001 | 22.2 ± 5.7 | 31.9 ± 7.0 | <0.001 |
Adiponectin (µg/mL) | 19.6 (13.1–29.5) | 13.4 (9.9–17.5) | <0.001 | 18.5 (11–28.4) | 13.1 (9.5–18.5) | <0.001 | 20.3 (14–29.0) | 14.8 (10.2–18.6) | 0.002 |
Resistin (ng/mL) | 18.6 (13.4–25.6) | 18.9 (13.9–24.7) | 0.79 | 17.5 (12.1–24.0) | 18.4 (12.9–22.9) | 0.96 | 19.8 (14.7–27.7) | 22.8 (15.9–32.6) | 0.32 |
Leptin (ng/mL) | 10.6 (2.4–29.9) | 22.7 (6.9–48.9) | <0.001 | 5.2 (1.7–20.2) | 15.7 (5.6–42.2) | <0.001 | 18.4 (5.3–36.6) | 38.8 (20.5–69.1) | 0.004 |
Adiponectin/Leptin | 1.96 (0.6–9.7) | 0.55 (0.3–2.6) | <0.001 | 3.95 (0.8–14.4) | 0.74 (0.3–2.9) | <0.001 | 1.28 (0.5–4.5) | 0.31 (0.2–0.6) | 0.001 |
TNF-Alpha (pg/mL) | 8.3 (5.6–11.7) | 10.4 (6.1–15.1) | 0.005 | 8.9 (6.0–13.0) | 10.9 (6.3–14.7) | 0.09 | 7.6 (5.3–10.2) | 9.8 (5.4–15.2) | 0.06 |
CRP (µg/mL) | 0.97 (0.3–3.8) | 3.2 (0.5–10.2) | <0.001 | 0.97 (0.3–3.7) | 2.03 (0.3–14.7) | <0.001 | 0.98 (0.3–3.9) | 5.2 (3.2–10.2) | <0.001 |
APAI-1 (ng/mL) | 24.2 (14.6–34.5) | 24.9 (11.1–38.4) | 0.94 | 23.8 (14–34.4) | 22.4 (96.4–32.5) | 0.33 | 24.2 (15.3–34.4) | 29.3 (19.4–42.5) | 0.10 |
Vitamin D (nmmol/L) | 33.5 (22.7–48.0) | 33.1 (20.5–57.9) | 0.94 | 40.8 (29.5–55.7) | 40.9 (30.6–62.3) | 0.35 | 27.2 (18.3–38.0) | 19.0 (8.6–25.5) | 0.006 |
Insulin (miU/mL) | 11.1 (6.6–19.7) | 26.4 (14.1–46.5) | <0.001 | 10.1 (5.8–18.5) | 28.5 (12.9–44.4) | <0.001 | 12.1 (7.6–20.2) | 23.9 (14.5–60.7) | <0.001 |
HOMA-IR | 2.5 (1.4–4.5) | 6.1 (3.2–13.5) | <0.001 | 2.2 (1.3–4.3) | 5.9 (3.2–13.5) | <0.001 | 2.7 (1.6–4.6) | 6.2 (2.9–13.7) | <0.001 |
SPISE | 9.04 ± 3.2 | 5.17 ± 2.3 | <0.001 | 9.41 ± 3.2 | 5.53 ± 2.5 | <0.001 | 8.64 ± 3.2 | 4.44 ± 1.4 | <0.001 |
Parameters | All Subjects | Boys | Girls | |||
---|---|---|---|---|---|---|
Correlation Coefficient | p | Correlation Coefficient | p | Correlation Coefficient | p | |
Adiponectin | 0.27 | <0.001 | 0.22 | <0.001 | 0.36 | <0.001 |
Resistin | −0.14 | <0.001 | −0.17 | <0.001 | −0.08 | 0.098 |
Leptin | −0.41 | <0.001 | −0.39 | <0.001 | −0.43 | <0.001 |
Adiponectin/Leptin | 0.49 | <0.001 | 0.45 | <0.001 | 0.51 | <0.001 |
TNF-Alpha | 0.06 | 0.08 | −0.03 | 0.60 | 0.14 | 0.005 |
CRP | −0.19 | 0.001 | −0.24 | 0.001 | −0.13 | 0.12 |
APAI-1 | −0.04 | 0.25 | −0.02 | 0.63 | −0.05 | 0.31 |
Vitamin D | 0.22 | <0.001 | 0.13 | 0.027 | 0.27 | <0.001 |
Insulin | −0.40 | <0.001 | −0.42 | <0.001 | −0.37 | <0.001 |
HOMA-IR | −0.38 | <0.001 | −0.41 | <0.001 | −0.35 | <0.001 |
Boys (503) | |||||||
MetS Components | Present | SPISE ≤ 6.14 (103) | SPISE > 6.14 (349) | OR (95% CI) | p-Value | OR (95% CI) * | p-Value * |
Elevated waist circumference | 62 (12.3) | 52 (50.5) | 10 (2.9) | 34.56 (16.5, 72.3) | <0.001 | 29.72 (14.1, 62.7) | <0.001 |
Elevated blood pressure | 61 (12.1) | 27 (26.2) | 34 (9.7) | 3.29 (1.9, 5.8) | <0.001 | 2.93 (1.6, 5.2) | <0.001 |
Elevated fasting glucose | 55 (10.9) | 20 (19.4) | 35 (10.0) | 2.16 (1.2, 3.9) | 0.012 | 1.81 (1.0, 3.4) | 0.07 |
Elevated triglycerides | 113 (22.5) | 45 (43.7) | 68 (19.5) | 3.21 (2.1, 5.1) | <0.001 | 3.51 (2.2, 5.7) | <0.001 |
Low HDL-Cholesterol | 270 (53.7) | 91 (88.3) | 179 (51.3) | 2.51 (1.5, 3.6) | <0.001 | 2.29 (1.2, 2.6) | <0.001 |
MetS | 54 (10.7) | 39 (37.9) | 15 (4.3) | 13.56 (7.1, 26.1) | <0.001 | 12.37 (6.3, 24.1) | <0.001 |
Girls (448) | |||||||
MetS Components | Present | SPISE ≤ 6.46 (128) | SPISE > 6.46 (282) | OR (95% CI) | p-Value | OR (95% CI) * | p-Value * |
Elevated waist circumference | 59 (13.2) | 44 (34.4) | 15 (5.3) | 9.32 (4.9, 17.6) | <0.001 | 7.25 (3.7, 14.2) | <0.001 |
Elevated blood pressure | 61 (13.6) | 29 (28.2) | 32 (9.2) | 2.29 (1.3, 3.9) | 0.004 | 2.31 (1.3, 4.1) | 0.004 |
Elevated fasting glucose | 43 (9.6) | 24 (18.8) | 19 (6.7) | 3.19 (1.7, 6.1) | <0.001 | 2.68 (1.4, 5.2) | 0.004 |
Elevated triglycerides | 94 (21) | 50 (48.5) | 44 (12.6) | 3.47 (2.1, 5.6) | <0.001 | 4.33 (2.6, 7.2) | <0.001 |
Low HDL-Cholesterol | 212 (47.3) | 83 (80.6) | 129 (37.0) | 2.19 (1.4, 3.4) | <0.001 | 1.81 (1.2, 2.8) | 0.009 |
MetS | 28 (6.3) | 26 (20.3) | 0 (0.0) | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wani, K.; Khattak, M.N.K.; Saadawy, G.M.; Al-Attas, O.S.; Alokail, M.S.; Al-Daghri, N.M. Sex-Specific Cut-Offs of Single Point Insulin Sensitivity Estimator (SPISE) in Predicting Metabolic Syndrome in the Arab Adolescents. Diagnostics 2023, 13, 324. https://doi.org/10.3390/diagnostics13020324
Wani K, Khattak MNK, Saadawy GM, Al-Attas OS, Alokail MS, Al-Daghri NM. Sex-Specific Cut-Offs of Single Point Insulin Sensitivity Estimator (SPISE) in Predicting Metabolic Syndrome in the Arab Adolescents. Diagnostics. 2023; 13(2):324. https://doi.org/10.3390/diagnostics13020324
Chicago/Turabian StyleWani, Kaiser, Malak N. K. Khattak, Gamal M. Saadawy, Omar S. Al-Attas, Majed S. Alokail, and Nasser M. Al-Daghri. 2023. "Sex-Specific Cut-Offs of Single Point Insulin Sensitivity Estimator (SPISE) in Predicting Metabolic Syndrome in the Arab Adolescents" Diagnostics 13, no. 2: 324. https://doi.org/10.3390/diagnostics13020324
APA StyleWani, K., Khattak, M. N. K., Saadawy, G. M., Al-Attas, O. S., Alokail, M. S., & Al-Daghri, N. M. (2023). Sex-Specific Cut-Offs of Single Point Insulin Sensitivity Estimator (SPISE) in Predicting Metabolic Syndrome in the Arab Adolescents. Diagnostics, 13(2), 324. https://doi.org/10.3390/diagnostics13020324