A Similarity Measure-Based Approach Using RS-fMRI Data for Autism Spectrum Disorder Diagnosis
Abstract
:1. Introduction
2. Problem Formulation
3. Materials and Methods
3.1. Materials
3.2. Constructing Dynamic FCN
3.3. Siamese Network Framework
3.4. Few-Shot Training Strategy
3.5. Experimental Setup
4. Results
4.1. Classification Performance on Meta-Test Sets
4.2. Generalization Performance on Target Sites
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ecker, C.; Marquand, A.; Mourão-Miranda, J.; Johnston, P.; Daly, E.M.; Brammer, M.J.; Maltezos, S.; Murphy, C.M.; Robertson, D.; Williams, S.C.; et al. Describing the brain in autism in five dimensions—Magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach. J. Neurosci. 2010, 30, 10612–10623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Qiao, L.; Zhang, L.; Wang, Z.; Shen, D. Functional Brain Network Estimation With Time Series Self-Scrubbing. IEEE J. Biomed. Health Inform. 2019, 23, 2494–2504. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhu, X.; Adeli, E.; Zhu, Y.; Nie, F.; Munsell, B.; Wu, G. Multi-modal classification of neurodegenerative disease by progressive graph-based transductive learning. Med. Image Anal. 2017, 39, 218–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, F.; Han, Z.; Cheng, D.; Mao, N.; Chen, X.; Li, Y.; Fan, D.; Liu, P. Hierarchical Synchronization Estimation of Low-and High-Order Functional Connectivity Based on Sub-Network Division for the Diagnosis of Autism Spectrum Disorder. Front. Neurosci. 2021, 15, 810431. [Google Scholar] [CrossRef]
- Zhang, X.; Shams, S.P.; Yu, H.; Wang, Z.; Zhang, Q. A pairwise functional connectivity similarity measure method based on few-shot learning for early MCI detection. Front. Neurosci. 2022, 16, 1081788. [Google Scholar] [CrossRef]
- Li, W.; Wang, Z.; Zhang, L.; Qiao, L.; Shen, D. Remodeling pearson’s correlation for functional brain network estimation and autism spectrum disorder identification. Front. Neuroinform. 2017, 11, 55. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, Q.; Zhang, H.; Chen, J.; Wang, S.; Shen, D. Sparse Multiview Task-Centralized Ensemble Learning for ASD Diagnosis Based on Age- and Sex-Related Functional Connectivity Patterns. IEEE Trans. Cybern. 2019, 49, 3141–3154. [Google Scholar] [CrossRef]
- Zhao, F.; Li, N.; Pan, H.; Chen, X.; Li, Y.; Zhang, H.; Mao, N.; Cheng, D. Multi-View Feature Enhancement Based on Self-Attention Mechanism Graph Convolutional Network for Autism Spectrum Disorder Diagnosis. Front. Hum. Neurosci. 2022, 16, 918969. [Google Scholar] [CrossRef]
- Zhao, F.; Chen, Z.; Rekik, I.; Lee, S.W.; Shen, D. Diagnosis of autism spectrum disorder using central-moment features from low-and high-order dynamic resting-state functional connectivity networks. Front. Neurosci. 2020, 14, 258. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, H.; Rekik, I.; An, Z.; Shen, D. Diagnosis of autism spectrum disorders using multi-level high-order functional networks derived from resting-state functional mri. Front. Hum. Neurosci. 2018, 12, 184. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Cai, B.; Zhang, A.; Stephen, J.M.; Wilson, T.W.; Calhoun, V.D.; Wang, Y.P. Estimating Dynamic Functional Brain Connectivity With a Sparse Hidden Markov Model. IEEE Trans. Med. Imaging 2020, 39, 488–498. [Google Scholar] [CrossRef] [PubMed]
- Ali, R.; Li, H.; Dillman, J.R.; Altaye, M.; Wang, H.; Parikh, N.A.; He, L. A self-training deep neural network for early prediction of cognitive deficits in very preterm infants using brain functional connectome data. Pediatr. Radiol. 2022, 52, 2227–2240. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Chen, Z.; Rekik, I.; Liu, P.; Mao, N.; Lee, S.W.; Shen, D. A novel unit-based personalized fingerprint feature selection strategy for dynamic functional connectivity networks. Front. Neurosci. 2021, 15, 651574. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Zhang, X.; Thung, K.H.; Mao, N.; Lee, S.W.; Shen, D. Constructing Multi-View High-Order Functional Connectivity Networks for Diagnosis of Autism Spectrum Disorder. IEEE Trans. Biomed. Eng. 2022, 69, 1237–1250. [Google Scholar] [CrossRef]
- Xie, Q.; Zhang, X.; Rekik, I.; Chen, X.; Mao, N.; Shen, D.; Zhao, F. Constructing high-order functional connectivity network based on central moment features for diagnosis of autism spectrum disorder. PeerJ 2021, 9, e11692. [Google Scholar] [CrossRef]
- Kong, Y.; Gao, J.; Xu, Y.; Pan, Y.; Wang, J.; Liu, J. Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier. Neurocomputing 2019, 324, 63–68. [Google Scholar] [CrossRef]
- Liu, X.; Huang, H. Alterations of functional connectivities associated with autism spectrum disorder symptom severity: A multi-site study using multivariate pattern analysis. Sci. Rep. 2020, 10, 4330. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Qiao, L.; Shi, F.; Yap, P.T.; Shen, D. Feature fusion via hierarchical supervised local CCA for diagnosis of autism spectrum disorder. Brain Imaging Behav. 2017, 11, 1050–1060. [Google Scholar] [CrossRef]
- Huang, H.; Liu, X.; Jin, Y.; Lee, S.W.; Wee, C.Y.; Shen, D. Enhancing the representation of functional connectivity networks by fusing multi-view information for autism spectrum disorder diagnosis. Hum. Brain Mapp. 2019, 40, 833–854. [Google Scholar] [CrossRef] [Green Version]
- Heinsfeld, A.S.; Franco, A.R.; Craddock, R.C.; Buchweitz, A.; Meneguzzi, F. Identification of autism spectrum disorder using deep learning and the ABIDE dataset. NeuroImage Clin. 2018, 17, 16–23. [Google Scholar] [CrossRef]
- Brown, C.J.; Kawahara, J.; Hamarneh, G. Connectome priors in deep neural networks to predict autism. In Proceedings of the 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; pp. 110–113. [Google Scholar]
- Niu, K.; Guo, J.; Pan, Y.; Gao, X.; Peng, X.; Li, N.; Li, H. Multichannel deep attention neural networks for the classification of autism spectrum disorder using neuroimaging and personal characteristic data. Complexity 2020, 2020, 1357853. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, D.; Huang, J.; Yap, P.T.; Shen, D.; Liu, M. Identifying Autism Spectrum Disorder With Multi-Site fMRI via Low-Rank Domain Adaptation. IEEE Trans. Med. Imaging 2020, 39, 644–655. [Google Scholar] [CrossRef] [PubMed]
- Eslami, T.; Mirjalili, V.; Fong, A.; Laird, A.R.; Saeed, F. ASD-DiagNet: A hybrid learning approach for detection of autism spectrum disorder using fMRI data. Front. Neuroinformatics 2019, 13, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Zhao, S.; Wang, W.; Li, Y.; King, I. Multimodality in meta-learning: A comprehensive survey. Knowl.-Based Syst. 2022, 250, 108976. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, Q.; Kwok, J.T.; Ni, L.M. Generalizing from a few examples: A survey on few-shot learning. ACM Comput. Surv. 2020, 53, 63. [Google Scholar] [CrossRef]
- Craddock, C.; Benhajali, Y.; Chu, C.; Chouinard, F.; Evans, A.; Jakab, A.; Khundrakpam, B.S.; Lewis, J.D.; Li, Q.; Milham, M.; et al. The neuro bureau preprocessing initiative: Open sharing of preprocessed neuroimaging data and derivatives. Front. Neuroinform. 2013, 7, 27. [Google Scholar]
- Tzourio-Mazoyer, N.; Landeau, B.; Papathanassiou, D.; Crivello, F.; Etard, O.; Delcroix, N.; Mazoyer, B.; Joliot, M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002, 15, 273–289. [Google Scholar] [CrossRef] [PubMed]
- Shuai, X.X.; Kong, X.C.; Zou, Y.; Wang, S.Q.; Wang, Y.H. Global Functional Network Connectivity Disturbances in Parkinson’s Disease with Mild Cognitive Impairment by Resting-State Functional MRI. Curr. Med. Sci. 2020, 40, 1057–1066. [Google Scholar] [CrossRef]
- Dai, L.; Yu, Y.; Zhao, H.; Zhang, X.; Su, Y.; Wang, X.; Hu, S.; Dai, H.; Hu, C.; Ke, J. Altered local and distant functional connectivity density in chronic migraine: A resting-state functional MRI study. Neuroradiology 2021, 63, 555–562. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, X.; Sun, Y.; Wang, H.; Guo, H.; Sui, J. Investigating Neural Substrates of Individual Independence and Interdependence Orientations via Efficiency-Based Dynamic Functional Connectivity: A Machine Learning Approach. IEEE Trans. Cogn. Dev. Syst. 2022, 14, 761–771. [Google Scholar] [CrossRef]
- Dai, M.; Zhang, Z.; Srivastava, A. Analyzing Dynamical Brain Functional Connectivity as Trajectories on Space of Covariance Matrices. IEEE Trans. Med. Imaging 2020, 39, 611–620. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Qiao, L.; Li, W.; Zhang, L.; Shen, D. Simultaneous estimation of low-and high-order functional connectivity for identifying mild cognitive impairment. Front. Neuroinformatics 2018, 12, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, X.; Ding, X.; Bai, D.; Zhang, Q. A Compressed Model-Agnostic Meta-Learning Model Based on Pruning for Disease Diagnosis. J. Circuits Syst. Comput. 2022, 32, 2350022. [Google Scholar] [CrossRef]
- Zhu, R.; Jiang, Q.; Huang, X.; Li, D.; Yang, Q. A Reinforcement-Learning-Based Opportunistic Routing Protocol for Energy-Efficient and Void-Avoided UASNs. IEEE Sens. J. 2022, 22, 13589–13601. [Google Scholar] [CrossRef]
- Yu, H.; Yang, L.T.; Zhang, Q.; Armstrong, D.; Deen, M.J. Convolutional neural networks for medical image analysis: State-of-the-art, comparisons, improvement and perspectives. Neurocomputing 2021, 444, 92–110. [Google Scholar] [CrossRef]
- Yu, H.; Yang, L.T.; Fan, X.; Zhang, Q. A deep residual computation model for heterogeneous data learning in smart Internet of Things. Appl. Soft Comput. 2021, 107, 107361. [Google Scholar] [CrossRef]
- Wang, S.; Wang, S.; Liu, Z.; Zhang, Q. A role distinguishing Bert model for medical dialogue system in sustainable smart city. Sustain. Energy Technol. Assess. 2023, 55, 102896. [Google Scholar] [CrossRef]
- Bromley, J.; Guyon, I.; LeCun, Y.; Säckinger, E.; Shah, R. Signature verification using a “siamese” time delay neural network. In Proceedings of the Advances in Neural Information Processing Systems, Denver, CO, USA; 1993; Volume 6, pp. 669–688. [Google Scholar]
- Chicco, D. Siamese neural networks: An overview. In Artificial Neural Networks; Humana: New York, NY, USA, 2021; pp. 73–94. [Google Scholar]
- Snell, J.; Swersky, K.; Zemel, R. Prototypical networks for few-shot learning. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30. [Google Scholar]
- Yu, M.; Linn, K.A.; Cook, P.A.; Phillips, M.L.; McInnis, M.; Fava, M.; Trivedi, M.H.; Weissman, M.M.; Shinohara, R.T.; Sheline, Y.I. Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data. Hum. Brain Mapp. 2018, 39, 4213–4227. [Google Scholar] [CrossRef]
ASD | NC | |||
---|---|---|---|---|
Site | Age Avg (SD) | Count: M/F | Age Avg (SD) | Count: M/F |
KKI | 10.2 (1.5) | 12 / 3 | 10.1 (1.2) | 18 / 7 |
OHSU | 11.4 (2.2) | 12 / 0 | 10.1 (1.1) | 14 / 0 |
OLIN | 16.5 (3.4) | 16 / 3 | 16.7 (3.6) | 13 / 2 |
TRINITY | 16.8 (3.2) | 22 / 0 | 17.0 (3.8) | 24 / 0 |
MAXMUN | 26.1 (14.9) | 21 / 3 | 24.5 (9.1) | 25 / 1 |
LEUVEN | 17.8 (5.0) | 26 / 3 | 18.3 (5.1) | 28 / 5 |
PITT | 19.8 (8.5) | 16 / 3 | 18.0 (6.7) | 14 / 5 |
UCLA | 13.0 (2.5) | 48 / 6 | 13.0 (1.9) | 38 / 6 |
UM | 13.0 (2.3) | 55 / 9 | 14.9 (3.6) | 56 / 17 |
USM | 23.0 (7.4) | 44 / 0 | 21.3 (8.4) | 25 / 0 |
NYU | 14.4 (6.9) | 62 / 10 | 15.6 (6.1) | 72 / 25 |
YALE | 12.7 (3.0) | 20 / 8 | 12.7 (2.8) | 20 / 8 |
Baseline Site | Accuracy (%) | Precision (%) | F1 Score (%) |
---|---|---|---|
UCLA | 61.30 ± 1.61 | 60.87 ± 1.60 | 62.00 ± 3.76 |
UM | 68.83 ± 4.75 | 67.35 ± 5.49 | 70.51 ± 3.27 |
USM | 65.82 ± 3.84 | 66.41 ± 4.43 | 65.25 ± 4.08 |
NYU | 65.19 ± 6.12 | 63.27 ± 6.73 | 69.00 ± 4.67 |
YALE | 69.59 ± 1.44 | 72.16 ± 7.00 | 68.42 ± 3.51 |
Site | Method | Accuracy (%) | Precision (%) | F1 Score (%) |
---|---|---|---|---|
TRINITY | RF | 61.36 | 64.71 | 56.41 |
SVM | 68.18 | 70.00 | 66.67 | |
SAE | 68.18 | 72.22 | 65.00 | |
Ours | 73.68 | 84.21 | 80.00 | |
OLIN | RF | 73.33 | 73.33 | 73.33 |
SVM | 73.33 | 70.59 | 75.00 | |
SAE | 73.33 | 73.33 | 73.33 | |
Ours | 80.76 | 76.92 | 78.57 | |
OHSU | RF | 33.33 | 33.33 | 33.33 |
SVM | 54.17 | 53.33 | 59.26 | |
SAE | 41.67 | 40.00 | 36.36 | |
Ours | 57.14 | 57.14 | 57.14 | |
PITT | RF | 52.63 | 54.55 | 40.00 |
SVM | 50.00 | 50.00 | 34.48 | |
SAE | 55.26 | 57.14 | 48.48 | |
Ours | 57.69 | 92.30 | 75.00 | |
LEUVEN | RF | 53.45 | 62.50 | 27.03 |
SVM | 58.62 | 85.71 | 33.33 | |
SAE | 65.52 | 84.62 | 52.38 | |
Ours | 71.15 | 88.46 | 82.35 | |
MAXMUN | RF | 47.91 | 47.62 | 44.44 |
SVM | 56.25 | 57.89 | 51.16 | |
SAE | 60.42 | 64.71 | 53.66 | |
Ours | 61.90 | 76.19 | 66.66 | |
KKI | RF | 60.00 | 61.53 | 57.14 |
SVM | 66.66 | 64.71 | 68.75 | |
SAE | 63.33 | 64.29 | 62.07 | |
Ours | 66.66 | 75.00 | 70.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Shams, S.P.; Yu, H.; Wang, Z.; Zhang, Q. A Similarity Measure-Based Approach Using RS-fMRI Data for Autism Spectrum Disorder Diagnosis. Diagnostics 2023, 13, 218. https://doi.org/10.3390/diagnostics13020218
Zhang X, Shams SP, Yu H, Wang Z, Zhang Q. A Similarity Measure-Based Approach Using RS-fMRI Data for Autism Spectrum Disorder Diagnosis. Diagnostics. 2023; 13(2):218. https://doi.org/10.3390/diagnostics13020218
Chicago/Turabian StyleZhang, Xiangfei, Shayel Parvez Shams, Hang Yu, Zhengxia Wang, and Qingchen Zhang. 2023. "A Similarity Measure-Based Approach Using RS-fMRI Data for Autism Spectrum Disorder Diagnosis" Diagnostics 13, no. 2: 218. https://doi.org/10.3390/diagnostics13020218
APA StyleZhang, X., Shams, S. P., Yu, H., Wang, Z., & Zhang, Q. (2023). A Similarity Measure-Based Approach Using RS-fMRI Data for Autism Spectrum Disorder Diagnosis. Diagnostics, 13(2), 218. https://doi.org/10.3390/diagnostics13020218