High-Frequency (30 MHz–6 GHz) Breast Tissue Characterization Stabilized by Suction Force for Intraoperative Tumor Margin Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement and Data Processing
2.2. Mouse and Model Test
2.3. GHz Response Classification in Breast Tissue Samples
2.4. Statistical Analysis
2.5. Ethics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maloney, B.W.; McClatchy, D.M.; Pogue, B.W.; Paulsen, K.D.; Wells, W.A.; Barth, R.J. Review of Methods for Intraoperative Margin Detection for Breast Conserving Surgery. J. Biomed. Opt. 2018, 23, 100901. [Google Scholar] [CrossRef]
- Tummers, Q.R.J.G.; Verbeek, F.P.R.; Schaafsma, B.E.; Boonstra, M.C.; Van Der Vorst, J.R.; Liefers, G.J.; Van De Velde, C.J.H.; Frangioni, J.V.; Vahrmeijer, A.L. Real-Time Intraoperative Detection of Breast Cancer Using near-Infrared Fluorescence Imaging and Methylene Blue. Eur. J. Surg. Oncol. 2014, 40, 850–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaafar, H. Intra-Operative Frozen Section Consultation: Concepts, Applications and Limitations. Malays. J. Med. Sci. 2006, 13, 4–12. [Google Scholar]
- Taxy, J.B. Frozen Section and the Surgical Pathologist a Point of View. Arch. Pathol. Lab. Med. 2009, 133, 1135–1138. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Wan, H.; Chen, Y.; Pu, Y.; Wang, X. Bioimpedance Spectroscopy Can Precisely Discriminate Human Breast Carcinoma from Benign Tumors. Medicine 2017, 96, e5970. [Google Scholar] [CrossRef]
- Namdar, Z.M.; Omidifar, N.; Arasteh, P.; Akrami, M.; Tahmasebi, S.; Nobandegani, A.S.; Sedighi, S.; Zangouri, V.; Talei, A. How Accurate Is Frozen Section Pathology Compared to Permanent Pathology in Detecting Involved Margins and Lymph Nodes in Breast Cancer? World J. Surg. Oncol. 2021, 19, 261. [Google Scholar] [CrossRef] [PubMed]
- Miripour, Z.S.; Abbasvandi, F.; Aghaee, P.; Shojaeian, F.; Faramarzpour, M.; Mohaghegh, P.; Hoseinpour, P.; Namdar, N.; Amiri, M.H.; Ghafari, H.; et al. Human Study on Cancer Diagnostic Probe (CDP) for Real-Time Excising of Breast Positive Cavity Side Margins Based on Tracing Hypoxia Glycolysis; Checking Diagnostic Accuracy in Non-Neoadjuvant Cases. Cancer Med. 2022, 11, 1630–1645. [Google Scholar] [CrossRef]
- Baghani, H.R.; Robatjazi, M.; Mahdavi, S.R.; Nafissi, N.; Akbari, M.E. Breast Intraoperative Electron Radiotherapy: Image-Based Setup Verification and in-Vivo Dosimetry. Phys. Med. 2019, 60, 37–43. [Google Scholar] [CrossRef]
- O’Halloran, M.; Conceicao, R.C.; Byrne, D.; Glavin, M.E.J. FDTD Modeling of the Breast: A Review. Prog. Electromagn. Res. B 2009, 18, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Lazebnik, M.; Popovic, D.; McCartney, L.; Watkins, C.B.; Lindstrom, M.J.; Harter, J.; Sewall, S.; Ogilvie, T.; Magliocco, A.; Breslin, T.M.; et al. A Large-Scale Study of the Ultrawideband Microwave Dielectric Properties of Normal, Benign and Malignant Breast Tissues Obtained from Cancer Surgeries. Phys. Med. Biol. 2007, 52, 6093–6115. [Google Scholar] [CrossRef]
- Lazebnik, M.; Okoniewski, M.; Booske, J.H.; Hagness, S.C. Highly Accurate Debye Models for Normal and Malignant Breast Tissue Dielectric Properties at Microwave Frequencies. IEEE Microw. Wirel. Compon. Lett. 2007, 17, 822–824. [Google Scholar] [CrossRef]
- Cheng, Y.; Fu, M. Dielectric Properties for Non-Invasive Detection of Normal, Benign, and Malignant Breast Tissues Using Microwave Theories. Thorac. Cancer 2018, 9, 459–465. [Google Scholar] [CrossRef]
- Shamoon, D.; Lasquellec, S.; Brosseau, C. Perspective: Towards Understanding the Multiscale Description of Cells and Tissues by Electromechanobiology. J. Appl. Phys. 2018, 123, 240902. [Google Scholar] [CrossRef]
- Abdolahad, M.; Shashaani, H.; Janmaleki, M.; Mohajerzadeh, S. Silicon Nanograss Based Impedance Biosensor for Label Free Detection of Rare Metastatic Cells among Primary Cancerous Colon Cells, Suitable for More Accurate Cancer Staging. Biosens. Bioelectron. 2014, 59, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Dean, D.A.; Ramanathan, T.; Machado, D.; Sundararajan, R. Electrical Impedance Spectroscopy Study of Biological Tissues. J. Electrostat. 2008, 66, 165–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dos Anjos, I.F.; Barbin, S.E. Measurement of the Dielectric Properties of Micaceous Minerals Using Scattering Parameters. In Proceedings of the Progress in Electromagnetics Research Symposium, Prague, Czech Republic, 6–9 July 2015; pp. 2195–2198. [Google Scholar]
- John, C. Scattering Parameters: Concept, Theory, and Applications; Course Notes; University of Southern California: Los Angeles, CA, USA, 2009. [Google Scholar]
- Schepps, J.L.; Foster, K.R. The UHF and Microwave Dielectric Properties of Normal and Tumour Tissues: Variation in Dielectric Properties with Tissue Water Content. Phys. Med. Biol. 1980, 25, 1149–1159. [Google Scholar] [CrossRef]
- Hussein, M.; Awwad, F.; Jithin, D.; El Hasasna, H.; Athamneh, K.; Iratni, R. Breast Cancer Cells Exhibits Specific Dielectric Signature in Vitro Using the Open-Ended Coaxial Probe Technique from 200 MHz to 13.6 GHz. Sci. Rep. 2019, 9, 4681. [Google Scholar] [CrossRef] [Green Version]
- Martellosio, A.; Bellomi, M.; Pasian, M.; Bozzi, M.; Perregrini, L.; Mazzanti, A.; Svelto, F.; Summers, P.E.; Renne, G.; Preda, L. Dielectric Properties Characterization from 0.5 to 50 GHz of Breast Cancer Tissues. IEEE Trans. Microw. Theory Tech. 2017, 65, 998–1011. [Google Scholar] [CrossRef]
- Kumar, N.N.; Srikanth, B.; Gurung, S.B.; Manu, S.; Gowthami, G.; Ali, T.; Pathan, S. A Slotted UWB Monopole Antenna with Truncated Ground Plane for Breast Cancer Detection. Alex. Eng. J. 2020, 59, 3767–3780. [Google Scholar] [CrossRef]
- Mahmud, M.Z.; Islam, M.T.; Misran, N.; Kibria, S.; Samsuzzaman, M. Microwave Imaging for Breast Tumor Detection Using Uniplanar AMC Based CPW-Fed Microstrip Antenna. IEEE Access 2018, 6, 44763–44775. [Google Scholar] [CrossRef]
- O’Rourke, A.P.; Lazebnik, M.; Bertram, J.M.; Converse, M.C.; Hagness, S.C.; Webster, J.G.; Mahvi, D.M. Dielectric Properties of Human Normal, Malignant and Cirrhotic Liver Tissue: In Vivo and Ex Vivo Measurements from 0.5 to 20 GHz Using a Precision Open-Ended Coaxial Probe. Phys. Med. Biol. 2007, 52, 4707–4719. [Google Scholar] [CrossRef] [PubMed]
- Fornes-Leal, A.; Garcia-Pardo, C.; Frasson, M.; Beltrán, V.P.; Cardona, N. Dielectric Characterization of Healthy and Malignant Colon Tissues in the 0.5–18 GHz Frequency Band. Phys. Med. Biol. 2016, 61, 7334–7346. [Google Scholar] [CrossRef] [PubMed]
- Guardiola, M.; Buitrago, S.; Fernández-Esparrach, G.; O’Callaghan, J.M.; Romeu, J.; Cuatrecasas, M.; Córdova, H.; Ángel González Ballester, M.; Camara, O. Dielectric Properties of Colon Polyps, Cancer, and Normal Mucosa: Ex Vivo Measurements from 0.5 to 20 GHz. Med. Phys. 2018, 45, 3768–3782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reimann, C.H.N.; Bazrafshan, B.; Hubner, F.; Schmidt, S.; Schuler, M.; Panahi, B.; Kaltenbach, B.; Polkowski, C.; Vogl, T.J.; Jakoby, R. Dielectric Contrast between Normal and Tumor Ex-Vivo Human Liver Tissue. IEEE Access 2019, 7, 164113–164119. [Google Scholar] [CrossRef]
- Search, H.; Journals, C.; Contact, A.; Iopscience, M.; Address, I.P. RF Magnetic Field Penetration, Phase Shift and Power for NMR Dissipation in Biological Tissue: Implications Imaging. Phys. Med. Biol. 1978, 23, 630. [Google Scholar]
- Gu, D.; Jargon, J.A.; Ryan, M.J.; Hubrechsen, A. Influence of Noise on Scattering-Parameter Measurements. IEEE Trans. Microw. Theory Tech. 2020, 68, 4925–4939. [Google Scholar] [CrossRef]
- Miripour, Z.S.; Abbasvandi, F.; Aghaee, P.; NajafiKhoshnoo, S.; Faramarzpour, M.; Mohaghegh, P.; Hoseinpour, P.; Namdar, N.; Amiri, M.H.; Ghafari, H.; et al. Electrochemical tracing of hypoxia glycolysis by carbon nanotube sensors, a new hallmark for intraoperative detection of suspicious margins to breast neoplasia. Bioeng. Transl. Med. 2022, 7, e10236. [Google Scholar] [CrossRef]
- Mahdavi, R.; Yousefpour, N.; Abbasvandi, F.; Ataee, H.; Hoseinpour, P.; Akbari, M.E.; Parniani, M.; Delshad, B.; Avatefi, M.; Nourinejad, Z.; et al. Intraoperative pathologically-calibrated diagnosis of lymph nodes involved by breast cancer cells based on electrical impedance spectroscopy; a prospective diagnostic human model study. Int. J. Surg. 2021, 96, 106166. [Google Scholar] [CrossRef]
- Mahdavi, M.; Amouzegar, A.; Mehran, L.; Madreseh, E.; Tohidi, M.; Azizi, F. Investigating the prevalence of primary thyroid dysfunction in obese and overweight individuals: Tehran thyroid study. BMC Endocr. Disord. 2021, 21, 89. [Google Scholar] [CrossRef]
- Shinde, G.; Desai, P.; Shelke, S.; Patel, R.; Bangale, G.; Kulkarni, D. Mometasone furoate-loaded aspasomal gel for topical treatment of psoriasis: Formulation, optimization, in vitro and in vivo performance. J. Dermatol. Treat. 2020, 33, 885–896. [Google Scholar] [CrossRef]
- Shinde, G.; Shiyani, S.; Shelke, S.; Chouthe, R.; Kulkarni, D.; Marvaniya, K. Enhanced brain targeting efficiency using 5-FU (fluorouracil) lipid–drug conjugated nanoparticles in brain cancer therapy. Prog. Biomater. 2020, 9, 259–275. [Google Scholar] [CrossRef] [PubMed]
- Mehrotra, P.; Chatterjee, B.; Sen, S. EM-wave biosensors: A review of RF, microwave, mm-wave and optical sensing. Sensors 2019, 19, 1013. [Google Scholar] [CrossRef]
- Egot-Lemaire, S.; Pijanka, J.; Sulé-Suso, J.; Semenov, S. Dielectric Spectroscopy of Normal and Malignant Human Lung Cells at Ultra-High Frequencies. Phys. Med. Biol. 2009, 54, 2341–2357. [Google Scholar] [CrossRef] [PubMed]
- Geiger, T.; Cox, J.; Mann, M. Proteomic Changes Resulting from Gene Copy Number Variations in Cancer Cells. PLoS Genet. 2010, 6, e1001090. [Google Scholar] [CrossRef] [PubMed]
- Bellorofonte, C.; Vedruccio, C.; Tombolini, P.; Ruoppolo, M.; Tubaro, A. Non-Invasive Detection of Prostate Cancer by Electromagnetic Interaction. Eur. Urol. 2005, 47, 29–37. [Google Scholar] [CrossRef]
- Mccune, J.A.; Scherman, O.A. Cucurbit [n] Urils, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 1, ISBN 9780124095472. [Google Scholar]
- Bah, M.; Hong, J.; Jamro, D. Study of Breast Tissues Dielectric Properties in UWB Range for Microwave Breast Cancer Imaging. Proc. Int. Conf. Comput. Inf. Syst. Ind. Appl. 2015, 18, 473–475. [Google Scholar]
- Romanenko, S.; Begley, R.; Harvey, A.R.; Hool, L.; Wallace, V.P. The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: Risks and potential. J. R. Soc. Interface 2017, 14, 20170585. [Google Scholar] [CrossRef] [Green Version]
- Boyd, N.F.; Martin, L.J.; Bronskill, M.; Yaffe, M.J.; Duric, N.; Minkin, S. Breast Tissue Composition and Susceptibility to Breast Cancer. J. Natl. Cancer Inst. 2010, 102, 1224–1237. [Google Scholar] [CrossRef]
Cut-Off | AUC | p-Value | Sensitivity | Specificity | Accuracy |
---|---|---|---|---|---|
Cut-off = −6.75 dB | 0.743 | 0.00002 | %94.3 | %54.3 | %65.3 |
Cut-off = −7 dB | 0.776 | 0.000001 | %94.3 | %60.8 | %70 |
Cut-off = −7.25 dB | 0.874 | 0.0000000001 | %94.7 | %83.1 | %86.6 |
Cut-off = −7.5 dB | 0.759 | 0.000006 | %71.4 | %80.4 | %77.9 |
Cut-off = −7.75 dB | 0.620 | 0.03 | %37.1 | %86.9 | %73.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mokhtari Dowlatabad, H.; Mamdouh, A.; Yousefpour, N.; Mahdavi, R.; Zandi, A.; Hoseinpour, P.; Moosavi-Kiasari, S.M.S.; Abbasvandi, F.; Kordehlachin, Y.; Parniani, M.; et al. High-Frequency (30 MHz–6 GHz) Breast Tissue Characterization Stabilized by Suction Force for Intraoperative Tumor Margin Assessment. Diagnostics 2023, 13, 179. https://doi.org/10.3390/diagnostics13020179
Mokhtari Dowlatabad H, Mamdouh A, Yousefpour N, Mahdavi R, Zandi A, Hoseinpour P, Moosavi-Kiasari SMS, Abbasvandi F, Kordehlachin Y, Parniani M, et al. High-Frequency (30 MHz–6 GHz) Breast Tissue Characterization Stabilized by Suction Force for Intraoperative Tumor Margin Assessment. Diagnostics. 2023; 13(2):179. https://doi.org/10.3390/diagnostics13020179
Chicago/Turabian StyleMokhtari Dowlatabad, Hadi, Amir Mamdouh, Narges Yousefpour, Reihane Mahdavi, Ashkan Zandi, Parisa Hoseinpour, Seyed Mohammad Sadegh Moosavi-Kiasari, Fereshte Abbasvandi, Yasin Kordehlachin, Mohammad Parniani, and et al. 2023. "High-Frequency (30 MHz–6 GHz) Breast Tissue Characterization Stabilized by Suction Force for Intraoperative Tumor Margin Assessment" Diagnostics 13, no. 2: 179. https://doi.org/10.3390/diagnostics13020179