Automated Assessment of Digital Images of Uterine Cervix Captured Using Transvaginal Device—A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device (Smart Scope®)
2.2. Methods
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IARC Factsheet Globocan 2020. Available online: https://gco.iarc.fr/today/data/factsheets/cancers/23-Cervix-uteri-fact-sheet.pdf (accessed on 13 June 2023).
- IARC-Cancer Today. Estimated Number of Cervix Uteri Cases, Low Middle Income, Females. 2020. Available online: https://gco.iarc.fr/today/online-analysis-multi-bars?v=2020&mode=cancer&mode_population=countries&population=900&populations=988&key=total&sex=2&cancer=39&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_items=10&group_cancer=1&include_nmsc=0&include_nmsc_other=1&type_multiple=%257B%2522inc%2522%253Atrue%252C%2522mort%2522%253Atrue%252C%2522prev%2522%253Afalse%257D&orientation=horizontal&type_sort=0&type_nb_items=%257B%2522top%2522%253Atrue%252C%2522bottom%2522%253Afalse%257D#collapse-group-1-4 (accessed on 13 June 2023).
- Globocan 2020 India. India Fact Sheet. IARC. 2020. Available online: https://gco.iarc.fr/today/data/factsheets/populations/356-india-fact-sheets.pdf (accessed on 13 June 2023).
- World Health Organization. Cervical Cancer Country Profiles. 2021. Available online: https://www.who.int/publications/c?healthtopics=5ef7075a-0b59-4ad7-9ef8-cb591bf0f634®ionscountries=8026b51f-a65f-4cec-8287-408360c62493 (accessed on 22 May 2023).
- World Health Organization. WHO Guideline for Screening and Treatment of Cervical Pre-Cancer Lesions for Cervical Cancer Prevention, Second Edition: Use of mRNA Tests for Human Papillomavirus (HPV). 2021. Available online: https://www.who.int/publications/i/item/9789240040434 (accessed on 22 May 2023).
- World Health Organization. WHO Guidelines for Screening and Treatment of Precancerous Lesions for Cervical Cancer Prevention. 2013. Available online: https://apps.who.int/iris/bitstream/handle/10665/94830/9789241548694_eng.pdf;jsessionid=132C8250ACF436E4C0E06EB39D1EFB77?sequence=1 (accessed on 22 May 2023).
- Rahatgaonkar, V.; Uchale, P.; Oka, G. Comparative Study of Smart Scope® Visual Screening Test with Naked Eye Visual Screening and Pap Test. Asian Pac. J. Cancer Prev. 2020, 21, 3509–3515. [Google Scholar] [CrossRef] [PubMed]
- Sankaranarayanan, R.; Wesley, R.; World Health Organization-International Agency for Research on Cancer (IARC); World Health Organization Regional Office for Africa (AFRO); International Network for Cancer Treatment and Research (INCTR). A Practical Manual on Visual Screening for Cervical Neoplasia; IARC Press: Lyon, France, 2003. [Google Scholar]
- Papanicolaou, G.; Traut, H.; Utiversity, C. The Diagnostic Value of Vaginal Smears in Carcinoma of the Uterus. Am. J. Obstet. Gynecol. 1941, 42, 193–206. [Google Scholar] [CrossRef]
- Akazawa, M.; Hashimoto, K. Artificial intelligence in gynecologic cancers: Current status and future challenges—A systematic review. Artif. Intell. Med. 2021, 120, 102164. [Google Scholar] [CrossRef] [PubMed]
- Conceição, T.; Braga, C.; Rosado, L.; Vasconcelos, M.J.M. A Review of Computational Methods for Cervical Cells Segmentation and Abnormality Classification. Int. J. Mol. Sci. 2019, 20, 5114. [Google Scholar] [CrossRef] [PubMed]
- Shanthi, P.B.; Hareesha, K.; Ranjini, K. Automated Detection and Classification of Cervical Cancer Using Pap Smear Microscopic Images: A Comprehensive Review and Future Perspectives. Eng. Sci. 2022, 19, 20–41. [Google Scholar]
- Karasu Benyes, Y.; Welch, E.C.; Singhal, A.; Ou, J.; Tripathi, A. A Comparative Analysis of Deep Learning Models for Automated Cross-Preparation Diagnosis of Multi-Cell Liquid Pap Smear Images. Diagnostics 2022, 12, 1838. [Google Scholar] [CrossRef] [PubMed]
- Bao, H.; Sun, X.; Zhang, Y.; Pang, B.; Li, H.; Zhou, L.; Wu, F.; Cao, D.; Wang, J.; Turic, B.; et al. The artificial intelligence-assisted cytology diagnostic system in large-scale cervical cancer screening: A population-based cohort study of 0.7 million women. Cancer Med. 2020, 9, 6896–6906. [Google Scholar] [CrossRef]
- Wentzensen, N.; Lahrmann, B.; Clarke, M.A.; Kinney, W.; Tokugawa, D.; Poitras, N.; Locke, A.; Bartels, L.; Krauthoff, A.; Walker, J.; et al. Accuracy and Efficiency of Deep-Learning–Based Automation of Dual Stain Cytology in Cervical Cancer Screening. JNCI J. Natl. Cancer Inst. 2020, 113, 72–79. [Google Scholar] [CrossRef]
- Ngonzi, J.; Bajunirwe, F.; Wistrand, C.; Mayanja, R.; Altman, D.; Thorsell, M.; Shemer, E.A.W. Agreement of Colposcope and Gynocular in Assessment of Cervical Lesions by Swede Score: A Randomised, Crossover Pilot Trial. J. Low. Genit. Tract Dis. 2013, 17, 372–377. [Google Scholar] [CrossRef]
- Nessa, A.; Wistrand, C.; Begum, S.A.; Thuresson, M.; Shemer, I.; Thorsell, M.; Shemer, E.A.W. Evaluation of Stationary Colposcope and the Gynocular, by the Swede Score Systematic Colposcopic System in VIA Positive Women: A Crossover Randomized Trial. Int. J. Gynecol. Cancer 2014, 24, 339–345. [Google Scholar] [CrossRef]
- Basu, P.; Banerjee, D.; Mittal, S.; Mandal, R.; Ghosh, I.; Das, P.; Muwonge, R.; Biswas, J. Evaluation of a compact, rechargeable, magnifying device to triage VIA and HPV positive women in a cervical cancer screening program in rural India. Cancer Causes Control 2016, 27, 1253–1259. [Google Scholar] [CrossRef] [PubMed]
- Mueller, J.; Lam, C.; Dahl, D.; Asiedu, M.; Krieger, M.S.; Bellido-Fuentes, Y.; Kellish, M.; Peters, J.; Erkanli, A.; Ortiz, E.J.; et al. Portable Pocket colposcopy performs comparably to standardof-care clinical colposcopy using acetic acid and Lugol’s iodine as contrast mediators—An investigational study in Perú. BJOG 2018, 125, 1321–1329. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Bell, D.; Antani, S.; Xue, Z.; Yu, K.; Horning, M.P.; Gachuhi, N.; Wilson, B.; Jaiswal, M.S.; Befano, B.; et al. An Observational Study of Deep Learning and Automated Evaluation of Cervical Images for Cancer Screening. JNCI J. Natl. Cancer Inst. 2019, 111, 923–932. [Google Scholar] [CrossRef] [PubMed]
- Asiedu, M.; Simhal, A.; Chaudhary, U.; Mueller, J.; Lam, C.; Schmitt, J.; Venegas, G.; Sapiro, G.; Ramanujam, N. Development of Algorithms for Automated Detection of Cervical Pre-Cancers with a Low-Cost, Point-of-Care, Pocket Colposcope. IEEE Trans. Biomed. Eng. 2019, 66, 2306–2318. [Google Scholar] [CrossRef] [PubMed]
- Xue, P.; Man Tat Alexander, N.; Qiao, Y. The challenges of colposcopy for cervical cancer screening in LMICs and solutions by artificial intelligence. BMC Med. 2020, 18, 169. [Google Scholar] [CrossRef] [PubMed]
- Cho, B.J.; Choi, Y.J.; Lee, M.J.; Kim, J.H.; Son, G.H.; Park, S.H.; Kim, H.-B.; Joo, Y.-J.; Cho, H.-Y.; Kyung, M.S.; et al. Classification of cervical neoplasms on colposcopic photography using deep learning. Sci. Rep. 2020, 10, 13652. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, Y.; Xing, L.; Lei, H.; Chen, D.; Tang, C.; Li, X. The Performance of Artificial Intelligence in Cervical Colposcopy: A Retrospective Data Analysis. J. Oncol. 2022, 2022, 4370851. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Liu, X.; Han, S.; Jia, L.; Meng, L.; Yang, Z.; Chen, W.; Zhang, Y.; Qiao, X. Computer-aided diagnostic system based on deep learning for classifying colposcopy images. Ann. Transl. Med. 2021, 9, 1045. [Google Scholar] [CrossRef]
- Allahqoli, L.; Laganà, A.S.; Mazidimoradi, A.; Salehiniya, H.; Günther, V.; Chiantera, V.; Goghari, S.K.; Ghiasvand, M.M.; Rahmani, A.; Momenimovahed, Z.; et al. Diagnosis of Cervical Cancer and Pre-Cancerous Lesions by Artificial Intelligence: A Systematic Review. Diagnostics 2022, 12, 2771. [Google Scholar] [CrossRef]
- Kudva, V.; Prasad, K. Pattern Classification of Images from Acetic Acid–Based Cervical Cancer Screening: A Review. Crit. Rev. Biomed. Eng. 2018, 46, 117–133. [Google Scholar] [CrossRef]
- Kudva, V.; Prasad, K.; Guruvare, S. Automation of Detection of Cervical Cancer Using Convolutional Neural Networks. Crit. Rev. Biomed. Eng. 2018, 46, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Kudva, V.; Prasad, K.; Guruvare, S. Hybrid Transfer Learning for Classification of Uterine Cervix Images for Cervical Cancer Screening. J. Digit. Imaging 2019, 33, 619–631. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, A.; Bedell, S.; Lipson, R.; Sebag, C.; Lobel, L.; Levitz, D. Performance of Automated Visual Evaluation as a Triage Test for HPV+ Patients from a Screening Camp in Rural China. Poster Presentation in ASCCP Annual Scientific Sessions. 2020. Available online: https://www.mobileodt.com/medical-research/performance-of-automated-visual-evaluation-as-a-triage-test-for-hpv-patients-from-a-screening-camp-in-rural-china/ (accessed on 13 June 2023).
- Thay, S.; Goldstein, A.; Goldstein, L.S.; Govind, V.; Lim, K.; Seang, C. Prospective cohort study examining cervical cancer screening methods in HIV-positive and HIV-negative Cambodian Women: A comparison of human papilloma virus testing, visualization with acetic acid and digital colposcopy. BMJ Open 2019, 9, e026887. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Shintani, D.; Hanaoka, M.; Sato, S.; Miwa, M.; Ogasawara, A.; Yabuno, A.; Kurosaki, A.; Yoshida, H.; Fujiwara, K.; et al. A pilot study of mobile digital colposcopy in Japanese patients with cervical intraepithelial neoplasm. Mol. Clin. Oncol. 2021, 15, 207. [Google Scholar] [CrossRef] [PubMed]
- Matti, R.; Gupta, V.; D’Sa, D.; Sebag, C.; Peterson, C.; Levitz, D. Introduction of Mobile Colposcopy as a Primary Screening Tool for Different Socioeconomic Populations in Urban India. Pan Asian J. Obs. Gyn. 2019, 2, 4–11. [Google Scholar]
- Viñals, R.; Vassilakos, P.; Rad, M.S.; Undurraga, M.; Petignat, P.; Thiran, J.-P. Using Dynamic Features for Automatic Cervical Precancer Detection. Diagnostics 2021, 11, 716. [Google Scholar] [CrossRef] [PubMed]
- Kudva, V.; Prasad, K.; Guruvare, S. Andriod Device-Based Cervical Cancer Screening for Resource-Poor Settings. J. Digit. Imaging 2018, 31, 646–654. [Google Scholar] [CrossRef]
Demographic Characteristics | No. of Women | Percentage | Demographics Characteristic | No. of Women | Percentage |
---|---|---|---|---|---|
Age (Years) | Family Income P.M.(Rs.) | ||||
25–35 | 446 | 50.85 | ≤10,000 | 307 | 35 |
36–45 | 306 | 34.89 | 11,000–20,000 | 422 | 48.12 |
46–55 | 101 | 11.51 | 21,000–50,000 | 129 | 14.56 |
56–65 | 24 | 2.73 | 51,000≤ | 19 | 2.1 |
Education | Age at Marriage | ||||
None | 289 | 32.95 | below 18 years | 236 | 26.9 |
Primary | 82 | 9.35 | 18 years | 206 | 23.48 |
Middle | 177 | 20.18 | above 18 years | 435 | 49.6 |
Highschool | 179 | 20.41 | Number of Deliveries | ||
Graduate | 80 | 9.12 | 0 | 47 | 5.35 |
Postgraduate | 70 | 7.98 | 1 | 106 | 12.08 |
Occupation | 2 | 353 | 40.25 | ||
Housewife | 859 | 97.94 | 3 | 240 | 27.37 |
Formal employment | 18 | 2.05 | 4≤ | 131 | 14.94 |
Histopathology | SS-AI | |||
---|---|---|---|---|
Green | Amber | HRA | Red | |
Normal (48) | 14 | 24 | 5 | 5 |
Benign * (41) | 2 | 27 | 1 | 11 |
CIN I (89) | 2 | 6 | 30 | 51 |
CIN II (22) | 0 | 2 | 10 | 10 |
CIN III (9) | 0 | 0 | 7 | 2 |
Carcinoma (4) | 0 | 2 | 2 | 0 |
Total (213) | 18 | 61 | 55 | 79 |
Histopathology | Colposcopy | |||
---|---|---|---|---|
Benign * | Swede Score 1–4 | Swede Score 5–10 | Carcinoma | |
Normal (48) | 0 | 28 | 20 | 0 |
Benign * (41) | 2 | 27 | 12 | 0 |
CIN I (89) | 0 | 51 | 38 | 0 |
CIN II (22) | 0 | 9 | 13 | 0 |
CIN III (9) | 0 | 4 | 5 | 0 |
Carcinoma (4) | 0 | 0 | 2 | 2 |
Total (213) | 2 | 119 | 90 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shamsunder, S.; Mishra, A.; Kumar, A.; Kolte, S. Automated Assessment of Digital Images of Uterine Cervix Captured Using Transvaginal Device—A Pilot Study. Diagnostics 2023, 13, 3085. https://doi.org/10.3390/diagnostics13193085
Shamsunder S, Mishra A, Kumar A, Kolte S. Automated Assessment of Digital Images of Uterine Cervix Captured Using Transvaginal Device—A Pilot Study. Diagnostics. 2023; 13(19):3085. https://doi.org/10.3390/diagnostics13193085
Chicago/Turabian StyleShamsunder, Saritha, Archana Mishra, Anita Kumar, and Sachin Kolte. 2023. "Automated Assessment of Digital Images of Uterine Cervix Captured Using Transvaginal Device—A Pilot Study" Diagnostics 13, no. 19: 3085. https://doi.org/10.3390/diagnostics13193085
APA StyleShamsunder, S., Mishra, A., Kumar, A., & Kolte, S. (2023). Automated Assessment of Digital Images of Uterine Cervix Captured Using Transvaginal Device—A Pilot Study. Diagnostics, 13(19), 3085. https://doi.org/10.3390/diagnostics13193085