Determination of the Diagnostic Performance of Laboratory Tests in the Absence of a Perfect Reference Standard: The Case of SARS-CoV-2 Tests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Patients, and Population
2.2. Study Processes and Determination of Laboratory Test
2.3. Bayesian Latent Class Modeling
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 Novel Coronavirus (2019-NCoV) by Real-Time RT-PCR. Eurosurveillance 2020, 25, 2000045. [Google Scholar] [CrossRef] [PubMed]
- Chu, D.K.W.; Pan, Y.; Cheng, S.M.S.; Hui, K.P.Y.; Krishnan, P.; Liu, Y.; Ng, D.Y.M.; Wan, C.K.C.; Yang, P.; Wang, Q.; et al. Molecular Diagnosis of a Novel Coronavirus (2019-NCoV) Causing an Outbreak of Pneumonia. Clin. Chem. 2020, 66, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Arevalo-Rodriguez, I.; Buitrago-Garcia, D.; Simancas-Racines, D.; Zambrano-Achig, P.; Del Campo, R.; Ciapponi, A.; Sued, O.; Martinez-García, L.; Rutjes, A.W.; Low, N.; et al. False-Negative Results of Initial RT-PCR Assays for COVID-19: A Systematic Review. PLoS ONE 2020, 15, e0242958. [Google Scholar] [CrossRef] [PubMed]
- Dramé, M.; Tabue Teguo, M.; Proye, E.; Hequet, F.; Hentzien, M.; Kanagaratnam, L.; Godaert, L. Should RT-PCR Be Considered a Gold Standard in the Diagnosis of COVID-19? J. Med. Virol. 2020, 92, 2312–2313. [Google Scholar] [CrossRef] [PubMed]
- Kortela, E.; Kirjavainen, V.; Ahava, M.J.; Jokiranta, S.T.; But, A.; Lindahl, A.; Jääskeläinen, A.E.; Jääskeläinen, A.J.; Järvinen, A.; Jokela, P.; et al. Real-Life Clinical Sensitivity of SARS-CoV-2 RT-PCR Test in Symptomatic Patients. PLoS ONE 2021, 16, e0251661. [Google Scholar] [CrossRef] [PubMed]
- Berkvens, D.; Speybroeck, N.; Praet, N.; Adel, A.; Lesaffre, E. Estimating Disease Prevalence in a Bayesian Framework Using Probabilistic Constraints. Epidemiology 2006, 17, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Hui, S.L.; Walter, S.D. Estimating the Error Rates of Diagnostic Tests. Biometrics 1980, 36, 167–171. [Google Scholar] [CrossRef]
- Cheung, A.; Dufour, S.; Jones, G.; Kostoulas, P.; Stevenson, M.A.; Singanallur, N.B.; Firestone, S.M. Bayesian Latent Class Analysis When the Reference Test Is Imperfect: -EN- -FR- Analyse Bayésienne à Classes Latentes Dans Les Situations Où Le Test de Référence Est Imparfait -ES- Análisis Bayesiano de Clases Latentes Cuando La Prueba de Referencia Es Imperfecta. Rev. Sci. Tech. OIE 2021, 40, 271–286. [Google Scholar] [CrossRef]
- Plummer, M. JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs Sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003), Vienna, Austria, 20–22 March 2003; Volume 124. [Google Scholar]
- Kostoulas, P.; Nielsen, S.S.; Branscum, A.J.; Johnson, W.O.; Dendukuri, N.; Dhand, N.K.; Toft, N.; Gardner, I.A. STARD-BLCM: Standards for the Reporting of Diagnostic Accuracy Studies That Use Bayesian Latent Class Models. Prev. Vet. Med. 2017, 138, 37–47. [Google Scholar] [CrossRef]
- Butler-Laporte, G.; Lawandi, A.; Schiller, I.; Yao, M.; Dendukuri, N.; McDonald, E.G.; Lee, T.C. Comparison of Saliva and Nasopharyngeal Swab Nucleic Acid Amplification Testing for Detection of SARS-CoV-2: A Systematic Review and Meta-Analysis. JAMA Intern. Med. 2021, 181, 353. [Google Scholar] [CrossRef]
- Kostoulas, P.; Eusebi, P.; Hartnack, S. Diagnostic Accuracy Estimates for COVID-19 Real-Time Polymerase Chain Reaction and Lateral Flow Immunoassay Tests with Bayesian Latent-Class Models. Am. J. Epidemiol. 2021, 190, 1689–1695. [Google Scholar] [CrossRef] [PubMed]
- Perkins, T.A.; Stephens, M.; Alvarez Barrios, W.; Cavany, S.; Rulli, L.; Pfrender, M.E. Performance of Three Tests for SARS-CoV-2 on a University Campus Estimated Jointly with Bayesian Latent Class Modeling. Microbiol. Spectr. 2022, 10, e01220-21. [Google Scholar] [CrossRef] [PubMed]
- Sisay, A.; Abera, A.; Dufera, B.; Endrias, T.; Tasew, G.; Tesfaye, A.; Hartnack, S.; Beyene, D.; Desta, A.F. Diagnostic Accuracy of Three Commercially Available One Step RT-PCR Assays for the Detection of SARS-CoV-2 in Resource Limited Settings. PLoS ONE 2022, 17, e0262178. [Google Scholar] [CrossRef] [PubMed]
- Jegerlehner, S.; Suter-Riniker, F.; Jent, P.; Bittel, P.; Nagler, M. Diagnostic Accuracy of a SARS-CoV-2 Rapid Antigen Test in Real-Life Clinical Settings. Int. J. Infect. Dis. 2021, 109, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Brigger, D.; Horn, M.P.; Pennington, L.F.; Powell, A.E.; Siegrist, D.; Weber, B.; Engler, O.; Piezzi, V.; Damonti, L.; Iseli, P.; et al. Accuracy of Serological Testing for SARS-CoV-2 Antibodies: First Results of a Large Mixed-method Evaluation Study. Allergy 2021, 76, 853–865. [Google Scholar] [CrossRef] [PubMed]
- Jegerlehner, S.; Suter-Riniker, F.; Jent, P.; Bittel, P.; Nagler, M. Diagnostic Accuracy of SARS-CoV-2 Saliva Antigen Testing in a Real-Life Clinical Setting. Int. J. Infect. Dis. 2022, 119, 38–40. [Google Scholar] [CrossRef] [PubMed]
- Horn, M.P.; Jonsdottir, H.R.; Brigger, D.; Damonti, L.; Suter-Riniker, F.; Endrich, O.; Froehlich, T.K.; Fiedler, M.; Largiadèr, C.R.; Marschall, J.; et al. Serological Testing for SARS-CoV-2 Antibodies in Clinical Practice: A Comparative Diagnostic Accuracy Study. Allergy 2022, 77, 2090–2103. [Google Scholar] [CrossRef] [PubMed]
- Denwood, M.J. Runjags: An R Package Providing Interface Utilities, Model Templates, Parallel Computing Methods and Additional Distributions for MCMC Models in JAGS. J. Stat. Soft. 2016, 71, 1–25. [Google Scholar] [CrossRef]
- Toft, N.; Jørgensen, E.; Højsgaard, S. Diagnosing Diagnostic Tests: Evaluating the Assumptions Underlying the Estimation of Sensitivity and Specificity in the Absence of a Gold Standard. Prev. Vet. Med. 2005, 68, 19–33. [Google Scholar] [CrossRef]
- Lewis, F.I.; Torgerson, P.R. A Tutorial in Estimating the Prevalence of Disease in Humans and Animals in the Absence of a Gold Standard Diagnostic. Emerg. Themes Epidemiol. 2012, 9, 9. [Google Scholar] [CrossRef]
- Korevaar, D.A.; Toubiana, J.; Chalumeau, M.; McInnes, M.D.F.; Cohen, J.F. Evaluating Tests for Diagnosing COVID-19 in the Absence of a Reliable Reference Standard: Pitfalls and Potential Solutions. J. Clin. Epidemiol. 2021, 138, 182–188. [Google Scholar] [CrossRef]
- Box, G.E.P. Robustness in the Strategy of Scientific Model Building. In Robustness in Statistics; Elsevier: Amsterdam, The Netherlands, 1979; pp. 201–236. ISBN 978-0-12-438150-6. [Google Scholar]
Tests | Populations | |||
---|---|---|---|---|
Antigen Test | RT-PCR | Symptoms | Exposition | Other |
− | − | 993 | 52 | 247 |
+ | − | 1 | 0 | 1 |
− | + | 35 | 4 | 10 |
+ | + | 81 | 3 | 8 |
Total: 1110 | Total: 59 | Total: 293 |
a | b | c | d | e | f | g | |
---|---|---|---|---|---|---|---|
Antigen Test | |||||||
Sensitivity | 84.4 [67.1;1] | 82.8 [66.6;1] | 84.2 [67.7;1] | 85.3 [68.0;1] | 82.7 [66.8;1] | 83.7 [67.7;1] | 83.4 [67.1;1] |
Specificity | 99.9 [99.6;1] | 99.9 [99.6;1] | 99.9 [99.6;1] | 99.9 [99.6;1] | 99.9 [99.6;1] | 99.9 [99.6;1] | 99.8 [99.6;1] |
RT-PCR | |||||||
Sensitivity | 98.5 [94.9;1] | 98.5 [95.0;1] | 98.5 [94.8;1] | 98.7 [95.9;1] | 98.6 [95.9;1] | 98.7 [95.9;1 | 98.0 [92.7;1] |
Specificity | 97.6 [96.0;99.8] | 97.7 [96.1;99.7] | 97.6 [96.0;99.6] | 97.5 [95.9;99.6] | 97.8 [96.1;99.7] | 97.7 [96.0;99.6] | 97.6 [96.0;99.5] |
Prevalence 1 | |||||||
8.6 [6.5;11.1] | 8.7 [6.6;11.1] | 8.7 [6.5;11.1] | 8.5 [6.4;10.9] | 8.8 [6.6;11.2] | 8.7 [6.6;11.0] | 8.7 [6.6;11.2] | |
Prevalence 2 | |||||||
8.7 [1.9;17.7] | 8.8 [1.8;17.9] | 8.7 [1.9;17.6] | 8.4 [1.6;6.3] | 8.9 [1.8;17.9] | 8.7 [1.8;17.7] | 8.7 [1.9;17.7] | |
Prevalence 3 | |||||||
3.9 [1.5;7.1] | 4.0 [1.6;7.2] | 3.9 [1.5;7.1] | 3.7 [1.6;6.3] | 4.0 [1.6;7.2] | 3.8 [1.7;6.5] | 3.7 [1.6;6.4] |
Median | 95% CI | |
---|---|---|
Sensitivity antigen test | 82.7 | [66.8;100] |
Specificity antigen test | 99.9 | [99.6;100] |
Sensitivity RT-PCR | 98.5 | [94.8;100] |
Specificity RT-PCR | 97.7 | [96.1;99.7] |
Prevalence 1 (symptoms) | 8.7 | [6.6;11.2] |
Prevalence 2 (exposition) | 8.9 | [1.8;17.7] |
Prevalence 3 (other) | 3.9 | [1.6;7.2] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hartnack, S.; Nilius, H.; Jegerlehner, S.; Suter-Riniker, F.; Bittel, P.; Jent, P.; Nagler, M. Determination of the Diagnostic Performance of Laboratory Tests in the Absence of a Perfect Reference Standard: The Case of SARS-CoV-2 Tests. Diagnostics 2023, 13, 2892. https://doi.org/10.3390/diagnostics13182892
Hartnack S, Nilius H, Jegerlehner S, Suter-Riniker F, Bittel P, Jent P, Nagler M. Determination of the Diagnostic Performance of Laboratory Tests in the Absence of a Perfect Reference Standard: The Case of SARS-CoV-2 Tests. Diagnostics. 2023; 13(18):2892. https://doi.org/10.3390/diagnostics13182892
Chicago/Turabian StyleHartnack, Sonja, Henning Nilius, Sabrina Jegerlehner, Franziska Suter-Riniker, Pascal Bittel, Philipp Jent, and Michael Nagler. 2023. "Determination of the Diagnostic Performance of Laboratory Tests in the Absence of a Perfect Reference Standard: The Case of SARS-CoV-2 Tests" Diagnostics 13, no. 18: 2892. https://doi.org/10.3390/diagnostics13182892
APA StyleHartnack, S., Nilius, H., Jegerlehner, S., Suter-Riniker, F., Bittel, P., Jent, P., & Nagler, M. (2023). Determination of the Diagnostic Performance of Laboratory Tests in the Absence of a Perfect Reference Standard: The Case of SARS-CoV-2 Tests. Diagnostics, 13(18), 2892. https://doi.org/10.3390/diagnostics13182892