Marfan Syndrome: Enhanced Diagnostic Tools and Follow-up Management Strategies
Abstract
:1. Introduction
1.1. Clinical Diagnosis
1.2. Genetic and Molecular Relevance
1.2.1. The Genetic Basis of MFS
1.2.2. The Molecular Basis of MFS
2. Genetically Related Disorders in MFS Differential Diagnosis
3. Management and Treatment of MFS Patients
3.1. Cardiovascular System
3.2. Assessment of Aortic Distensibility
3.3. Aortic Surgical Treatment
3.4. Ocular System
3.5. Skeletal System
3.6. Respiratory System
3.7. Psychological Support Activities
3.8. Pharmacological Treatment
4. Specific Precautions for MFS Patients: Physical Activities and Pregnancy
4.1. Physical Activity
4.2. Pregnancy
4.2.1. Medical Therapy during Pregnancy
4.2.2. Prenatal Testing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Collod-Béroud, G.; Le Bourdelles, S.; Ades, L.; Ala-Kokko, L.; Booms, P.; Boxer, M.; Child, A.; Comeglio, P.; De Paepe, A.; Hyland, J.C.; et al. Update of the UMD-FBN1 mutation database and creation of an FBN1 polymorphism database. Hum. Mutat. 2003, 22, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Dietz, H. Marfan Syndrome; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Vanem, T.T.; Geiran, O.R.; Krohg-Sørensen, K.; Røe, C.; Paus, B.; Rand-Hendriksen, S. Survival, causes of death, and cardiovascular events in patients with Marfan syndrome. Mol. Genet. Genom. Med. 2018, 6, 1114–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loeys, B.L.; Dietz, H.C.; Braverman, A.C.; Callewaert, B.L.; De Backer, J.; Devereux, R.B.; Hilhorst-Hofstee, Y.; Jondeau, G.; Faivre, L.; Milewicz, D.M.; et al. The revised Ghent nosology for the Marfan syndrome. J. Med. Genet. 2010, 47, 476–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mueller, G.C.; Stark, V.; Steiner, K.; Weil, J.; Von Kodolitsch, Y.; Mir, T.S. The Kid-Short Marfan Score (Kid-SMS)—An easy executable risk score for suspected paediatric patients with Marfan syndrome. Acta Paediatr. Int. J. Paediatr. 2013, 102, e84–e89. [Google Scholar] [CrossRef] [PubMed]
- Stark, V.C.; Arndt, F.; Harring, G.; Von Kodolitsch, Y.; Kozlik-Feldmann, R.; Mueller, G.C.; Steiner, K.J.; Mir, T.S. Kid-Short Marfan Score (Kid-SMS) Is a Useful Diagnostic Tool for Stratifying the Pre-Test Probability of Marfan Syndrome in Childhood. Diseases 2015, 3, 24–33. [Google Scholar] [CrossRef] [Green Version]
- De Bie, S.; De Paepe, A.; Delvaux, I.; Davies, S.; Hennekam, R.C.M. Marfan syndrome in Europe: A questionnaire study on patient perceptions. Community Genet. 2005, 7, 216–225. [Google Scholar]
- Isselbacher, E.; Bonaca, M.; Di Eusanio, M. Recurrent Aortic Dissection: Observations from the International Registry of Aortic Dissection. Circulation 2016, 134, 1013–1024. [Google Scholar] [CrossRef]
- Erbel, R.; Eggebrecht, H. Aortic dimensions and the risk of dissection. Heart 2006, 92, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Nollen, G.J.; Mulder, B.J.M. What is new in the Marfan syndrome? Int. J. Cardiol. 2004, 97, 103–108. [Google Scholar] [CrossRef]
- Kim, S.T.; Brinjikji, W.; Kallmes, D.F. Prevalence of intracranial aneurysms in patients with connective tissue diseases: A retrospective study. Am. J. Neuroradiol. 2016, 37, 1422–1426. [Google Scholar] [CrossRef] [Green Version]
- Nemet, A.Y.; Assia, E.I.; Apple, D.J.; Barequet, I.S. Current Concepts of Ocular Manifestations in Marfan Syndrome. Surv. Ophthalmol. 2006, 51, 561–575. [Google Scholar] [CrossRef]
- Drolsum, L.; Rand-Hendriksen, S.; Paus, B.; Geiran, O.R.; Semb, S.O. Ocular findings in 87 adults with Ghent-1 verified Marfan syndrome. Acta Ophthalmol. 2015, 93, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Pyeritz, R.E.; Mckusick, V.A. The Marfan Syndrome: Diagnosis and Management. N. Engl. J. Med. 1979, 300, 772–777. [Google Scholar] [CrossRef] [Green Version]
- Dolci, C.; Pucciarelli, V.; Gibelli, D.M.; Codari, M.; Marelli, S.; Trifirò, G.; Pini, A.; Sforza, C. The face in marfan syndrome: A 3D quantitative approach for a better definition of dysmorphic features. Clin. Anat. 2018, 31, 380–386. [Google Scholar] [CrossRef]
- De Maio, F.; Fichera, A.; De Luna, V.; Mancini, F.; Caterini, R. Orthopaedic Aspects of Marfan Syndrome: The Experience of a Referral Center for Diagnosis of Rare Diseases. Adv. Orthop. 2016, 2016, 8275391. [Google Scholar] [CrossRef] [Green Version]
- Pyeritz, R.E.; Francke, U. The Second International Symposium on the Marfan Syndrome. Am. J. Med. Genet. 1993, 47, 127–135. [Google Scholar] [CrossRef]
- Moura, B.; Tubach, F.; Sulpice, M.; Boileau, C.; Jondeau, G.; Muti, C.; Chevallier, B.; Ounnoughene, Y.; Le Parc, J.-M.; Multidisciplinary Marfan Syndrome Clinic Group. Bone mineral density in Marfan syndrome. A large case-control study. Jt. Bone Spine 2006, 73, 733–735. [Google Scholar] [CrossRef]
- Trifirò, G.; Marelli, S.; Viecca, M.; Mora, S.; Pini, A. Areal bone mineral density in children and adolescents with Marfan syndrome: Evidence of an evolving problem. Bone 2015, 73, 176–180. [Google Scholar] [CrossRef]
- Haine, E.; Salles, J.-P.; Van Kien, P.K.; Conte-Auriol, F.; Gennero, I.; Plancke, A.; Julia, S.; Dulac, Y.; Tauber, M.; Edouard, T. Muscle and Bone Impairment in Children with Marfan Syndrome: Correlation with Age and FBN1 Genotype. J. Bone Miner. Res. 2015, 30, 1369–1376. [Google Scholar] [CrossRef]
- Trifirò, G.; Mora, S.; Marelli, S.; Luzi, L.; Pini, A. Increased fracture rate in children and adolescents with Marfan syndrome. Bone 2020, 135, 115333. [Google Scholar] [CrossRef]
- Jones, K.B.; Myers, L.; Judge, D.P.; Kirby, P.A.; Dietz, H.C.; Sponseller, P.D. Toward an understanding of dural ectasia: A light microscopy study in a murine model of Marfan syndrome. Spine 2005, 30, 291–293. [Google Scholar] [CrossRef] [PubMed]
- Foran, J.R.H.; Pyeritz, R.E.; Dietz, H.C.; Sponseller, P.D. Characterization of the symptoms associated with dural ectasia in the Marfan patient. Am. J. Med. Genet. Part A 2005, 134, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Giske, L.; Stanghelle, J.K.; Rand-Hendrikssen, S.; Strøm, V.; Wilhelmsen, J.E.; Røe, C. Pulmonary function, working capacity and strength in young adults with Marfan syndrome. J. Rehabil. Med. 2003, 35, 221–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von Kodolitsch, Y.; Demolder, A.; Girdauskas, E.; Kaemmerer, H.; Kornhuber, K.; Mosquera, L.M.; Morris, S.; Neptune, E.; Pyeritz, R.; Rand-Hendriksen, S.; et al. Features of Marfan syndrome not listed in the Ghent nosology—The dark side of the disease. Expert Rev. Cardiovasc. Ther. 2019, 17, 883–915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mcdaniel, S.H. The psychotherapy of genetics. Fam. Process 2005, 44, 25–44. [Google Scholar] [CrossRef]
- Austin, J.; Semaka, A.; Hadjipavlou, G. Conceptualizing Genetic Counseling as Psychotherapy in the Era of Genomic Medicine. J. Genet. Couns. 2014, 23, 903–909. [Google Scholar] [CrossRef]
- Velvin, G.; Bathen, T.; Rand-Hendriksen, S.; Geirdal, A.Ø. Satisfaction with life in adults with Marfan syndrome (MFS): Associations with health-related consequences of MFS, pain, fatigue, and demographic factors. Qual. Life Res. 2016, 25, 1779–1790. [Google Scholar] [CrossRef]
- Benke, K.; Ágg, B.; Pólos, M.; Sayour, A.A.; Radovits, T.; Bartha, E.; Nagy, P.; Rákóczi, B.; Koller, Á.; Szokolai, V.; et al. The effects of acute and elective cardiac surgery on the anxiety traits of patients with Marfan syndrome. BMC Psychiatry 2017, 17, 253. [Google Scholar] [CrossRef] [Green Version]
- Speed, T.J.; Mathur, V.A.; Hand, M.; Christensen, B.; Sponseller, P.D.; Williams, K.A.; Campbell, C.M. Characterization of pain, disability, and psychological burden in Marfan syndrome. Am. J. Med. Genet. Part A 2017, 173, 315–323. [Google Scholar] [CrossRef]
- Bathen, T.; Velvin, G.; Rand-Hendriksen, S.; Robinson, H.S. Fatigue in adults with Marfan syndrome, occurrence and associations to pain and other factors. Am. J. Med. Genet. Part A 2014, 164, 1931–1939. [Google Scholar] [CrossRef] [Green Version]
- Connors, E.; Jeremy, R.W.; Fisher, A.; Sharpe, L.; Juraskova, I. Adjustment and Coping Mechanisms for Individuals with Genetic Aortic Disorders. Heart Lung Circ. 2015, 24, 1193–1202. [Google Scholar] [CrossRef]
- Velvin, G.; Bathen, T.; Rand-Hendriksen, S.; Geirdal, A.O. Systematic review of the psychosocial aspects of living with Marfan syndrome. Clin. Genet. 2015, 87, 109–116. [Google Scholar] [CrossRef]
- Gritti, A.; Pisano, S.; Catone, G.; Iuliano, R.; Salvati, T.; Gritti, P. Psychiatric and neuropsychological issues in Marfan syndrome: A critical review of the literature. Int. J. Psychiatry Med. 2015, 50, 347–360. [Google Scholar] [CrossRef]
- Benninghoven, D.; Hamann, D.; Von Kodolitsch, Y.; Rybczynski, M.; Lechinger, J.; Schroeder, F.; Vogler, M.; Hoberg, E. Inpatient rehabilitation for adult patients with Marfan syndrome: An observational pilot study. Orphanet J. Rare Dis. 2017, 12, 127. [Google Scholar] [CrossRef] [Green Version]
- Arnaud, P.; Hanna, N.; Aubart, M.; Leheup, B.; Dupuis-Girod, S.; Naudion, S.; Lacombe, D.; Milleron, O.; Odent, S.; Faivre, L.; et al. Homozygous and compound heterozygous mutations in the FBN1 gene: Unexpected findings in molecular diagnosis of Marfan syndrome. J. Med. Genet. 2017, 54, 125–133. [Google Scholar] [CrossRef]
- Baudhuin, L.M.; Kotzer, K.E.; Lagerstedt, S.A. Increased frequency of FBN1 truncating and splicing variants in Marfan syndrome patients with aortic events. Genet. Med. 2015, 17, 177–187. [Google Scholar] [CrossRef] [Green Version]
- Faivre, L.; Collod-Beroud, G.; Adès, L.; Arbustini, E.; Child, A.; Callewaert, B.; Loeys, B.; Binquet, C.; Gautier, E.; Mayer, K.; et al. The new Ghent criteria for Marfan syndrome: What do they change? Clin. Genet. 2012, 81, 433–442. [Google Scholar] [CrossRef]
- Robinson, P.N.; Arteaga-Solis, E.; Baldock, C.; Collod-Beroud, G.; Booms, P.; De Paepe, A.; Dietz, H.C.; Guo, G.; Handford, P.A.; Judge, D.P.; et al. The molecular genetics of Marfan syndrome and related disorders. J. Med. Genet. 2006, 43, 769–787. [Google Scholar] [CrossRef] [Green Version]
- Lerner-Ellis, J.; Aldubayan, S.; Hernandez, A.L.; Kelly, M.A.; Stuenkel, A.; Walsh, J.; Joshi, V. The spectrum of FBN1, TGFβR1, TGFβR2 and ACTA2 variants in 594 individuals with suspected marfan syndrome, loeys-dietz syndrome or thoracic aortic aneurysms and dissections (TAAD). Mol. Genet. Metab. 2014, 112, 171–176. [Google Scholar] [CrossRef]
- Stengl, R.; Bors, A.; Ágg, B.; Pólos, M.; Matyas, G.; Molnár, M.J.; Fekete, B.; Csabán, D.; Andrikovics, H.; Merkely, B.; et al. Optimising the mutation screening strategy in Marfan syndrome and identifying genotypes with more severe aortic involvement. Orphanet J. Rare Dis. 2020, 15, 290. [Google Scholar] [CrossRef]
- Li, J.; Wu, W.; Lu, C.; Liu, Y.; Wang, R.; Si, N.; Liu, F.; Zhou, J.; Zhang, S.; Zhang, X. Gross deletions in FBN1 results in variable phenotypes of Marfan syndrome. Clin. Chim. Acta 2017, 474, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Hilhorst-Hofstee, Y.; Hamel, B.C.; Verheij, J.B.; Rijlaarsdam, M.E.; Mancini, G.M.; Cobben, J.M.; Giroth, C.; AL Ruivenkamp, C.; Hansson, K.B.; Timmermans, J.; et al. The clinical spectrum of complete FBN1 allele deletions. Eur. J. Hum. Genet. 2011, 19, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Loeys, B. The search for genotype/phenotype correlation in Marfan syndrome: To be or not to be? Eur. Heart J. 2016, 37, 3291–3293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostberg, N.P.; Zafar, M.A.; Ziganshin, B.A.; Elefteriades, J.A. The genetics of thoracic aortic aneurysms and dissection: A clinical perspective. Biomolecules 2020, 10, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakai, L.Y.; Keene, D.R. Fibrillin protein pleiotropy: Acromelic dysplasias. Matrix Biol. 2019, 80, 6–13. [Google Scholar] [CrossRef]
- Maeda, J.; Kosaki, K.; Shiono, J.; Kouno, K.; Aeba, R.; Yamagishi, H. Variable severity of cardiovascular phenotypes in patients with an early-onset form of Marfan syndrome harboring FBN1 mutations in exons 24–32. Heart Vessels 2016, 31, 1717–1723. [Google Scholar] [CrossRef]
- Schrijver, I.; Liu, W.; Odom, R.; Brenn, T.; Oefner, P.; Furthmayr, H.; Francke, U. Premature termination mutations in FBN1: Distinct effects on differential allelic expression and on protein and clinical phenotypes. Am. J. Hum. Genet. 2002, 71, 223–237. [Google Scholar] [CrossRef] [Green Version]
- Faivre, L.; Collod-Beroud, G.; Loeys, B.; Child, A.; Binquet, C.; Gautier, E.; Callewaert, B.; Arbustini, E.; Mayer, K.; Arslan-Kirchner, M.; et al. Effect of mutation type and location on clinical outcome in 1,013 probands with Marfan syndrome or related phenotypes and FBN1 mutations: An international study. Am. J. Hum. Genet. 2007, 81, 454–466. [Google Scholar] [CrossRef] [Green Version]
- Gentilini, D.; Oliveri, A.; Fazia, T.; Pini, A.; Marelli, S.; Bernardinelli, L.; Di Blasio, A.M. NGS analysis in Marfan syndrome spectrum: Combination of rare and common genetic variants to improve genotype-phenotype correlation analysis. PLoS ONE 2019, 14, e0222506. [Google Scholar] [CrossRef]
- Hubmacher, D.; Apte, S.S. ADAMTS proteins as modulators of microfibril formation and function. Matrix Biol. 2015, 47, 34–43. [Google Scholar] [CrossRef]
- Baumann, L.; Bernstein, E.F.; Weiss, A.S.; Bates, D.; Humphrey, S.; Silberberg, M.; Daniels, R. Clinical Relevance of Elastin in the Structure and Function of Skin. Aesthetic Surg. J. Open Forum 2021, 3, ojab019. [Google Scholar] [CrossRef]
- Eckersley, A.; Mellody, K.T.; Pilkington, S.; Griffiths, C.E.M.; Watson, R.E.B.; O’cualain, R.; Baldock, C.; Knight, D.; Sherratt, M.J. Structural and compositional diversity of fibrillin microfibrils in human tissues. J. Biol. Chem. 2018, 293, 5117–5133. [Google Scholar] [CrossRef] [Green Version]
- Jensen, S.A.; Handford, P.A. New insights into the structure, assembly and biological roles of 10–12 nm connective tissue microfibrils from fibrillin-1 studies. Biochem. J. 2016, 473, 827–838. [Google Scholar] [CrossRef]
- Sakai, L.Y.; Keene, D.R.; Renard, M.; De Backer, J. FBN1: The disease-causing gene for Marfan syndrome and other genetic disorders. Gene 2016, 592, 279–291. [Google Scholar] [CrossRef]
- Verstraeten, A.; Alaerts, M.; Van Laer, L.; Loeys, B. Marfan Syndrome and Related Disorders: 25 Years of Gene Discovery. Hum. Mutat. 2016, 37, 524–531. [Google Scholar] [CrossRef]
- Jensen, S.A.; Robertson, I.B.; Handford, P.A. Dissecting the fibrillin microfibril: Structural insights into organization and function. Structure 2012, 20, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Isogai, Z.; Ono, R.N.; Ushiro, S.; Keene, D.R.; Chen, Y.; Mazzieri, R.; Charbonneau, N.L.; Reinhardt, D.P.; Rifkin, D.B.; Sakai, L.Y. Latent transforming growth factor β-binding protein 1 interacts with fibrillin and is a microfibril-associated protein. J. Biol. Chem. 2003, 278, 2750–2757. [Google Scholar] [CrossRef] [Green Version]
- Takeda, N.; Yagi, H.; Hara, H.; Fujiwara, T.; Fujita, D.; Nawata, K.; Inuzuka, R.; Taniguchi, Y.; Harada, M.; Toko, H.; et al. Pathophysiology and management of cardiovascular manifestations in Marfan and Loeys–Dietz syndromes. Int. Heart J. 2016, 57, 271–277. [Google Scholar] [CrossRef] [Green Version]
- Neptune, E.R.; Frischmeyer, P.A.; Arking, D.E.; Myers, L.; Bunton, T.E.; Gayraud, B.; Ramirez, F.; Sakai, L.Y.; Dietz, H.C. Dysregulation of TGF-β activation contributes to pathogenesis in Marfan syndrome. Nat. Genet. 2003, 33, 407–411. [Google Scholar] [CrossRef]
- Siegert, A.M.; Serra-Peinado, C.; Gutiérrez-Martínez, E.; Rodríguez-Pascual, F.; Fabregat, I.; Egea, G. Altered TGF-β endocytic trafficking contributes to the increased signaling in Marfan syndrome. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2018, 1864, 554–562. [Google Scholar] [CrossRef]
- Bunton, T.E.; Biery, N.J.; Myers, L.; Gayraud, B.; Ramirez, F.; Dietz, H.C. Phenotypic alteration of vascular smooth muscle cells precedes elastolysis in a mouse model of Marfan syndrome. Circ. Res. 2001, 88, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Perrucci, G.L.; Rurali, E.; Corlianò, M.; Balzo, M.; Piccoli, M.; Moschetta, D.; Pini, A.; Gaetano, R.; Antona, C.; Egea, G.; et al. Cyclophilin A/EMMPRIN Axis Is Involved in Pro-Fibrotic Processes Associated with Thoracic Aortic Aneurysm of Marfan Syndrome Patients. Cells 2020, 9, 154. [Google Scholar] [CrossRef] [Green Version]
- Rurali, E.; Perrucci, G.L.; Gaetano, R.; Pini, A.; Moschetta, D.; Gentilini, D.; Nigro, P.; Pompilio, G. Soluble EMMPRIN levels discriminate aortic ectasia in marfan syndrome patients. Theranostics 2019, 9, 2224–2234. [Google Scholar] [CrossRef]
- Orphanet: Neonatal Marfan Syndrome. Available online: https://www.orpha.net/consor/cgi-bin/Disease_Search.php?lng=EN&data_id=20630&Disease_Disease_Search_diseaseGroup=Neonatal-Marfan-syndrome&Disease_Disease_Search_diseaseType=Pat&Disease(s)/groupofdiseases=Neonatal-Marfan-syndrome&title=NeonatalMar. (accessed on 3 April 2020).
- Curry, R.A.; Gelson, E.; Swan, L.; Dob, D.; Babu-Narayan, S.V.; Gatzoulis, M.A.; Steer, P.J.; Johnson, M.R. Marfan syndrome and pregnancy: Maternal and neonatal outcomes. BJOG Int. J. Obstet. Gynaecol. 2014, 121, 610–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solé-Ribalta, A.; Rodríguez-Fanjul, X.; Carretero-Bellon, J.M.; Pascual-Sala, C.; Martorell-Sampol, L.; Bobillo-Pérez, S.; Morillo-Palomo, A.M. Neonatal Marfan Syndrome: A Rare, Severe, and Life-Threatening Genetic Disease. J. Pediatr. 2019, 211, 221.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, H.; Wu, X.; Cai, K.; Qiao, Z. Weill-Marchesani syndrome with advanced glaucoma and corneal endothelial dysfunction: A case report and literature review. BMC Ophthalmol. 2015, 15, 3. [Google Scholar] [CrossRef] [Green Version]
- Le Goff, C.; Mahaut, C.; Wang, L.W.; Allali, S.; Abhyankar, A.; Jensen, S.; Zylberberg, L.; Collod-Beroud, G.; Bonnet, D.; Alanay, Y.; et al. Mutations in the TGFβb binding-protein-like domain 5 of FBN1 are responsible for acromicric and geleophysic dysplasias. Am. J. Hum. Genet. 2011, 89, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Myers, K.L.; Mir, A.; Schaffer, J.V.; Meehan, S.A.; Orlow, S.J.; Brinster, N.K. Segmental stiff skin syndrome (SSS): A distinct clinical entity. J. Am. Acad. Dermatol. 2016, 75, 163–168. [Google Scholar] [CrossRef]
- Del Cid, J.S.; Reed, N.I.; Molnar, K.; Liu, S.; Dang, B.; Jensen, S.A.; DeGrado, W.; Handford, P.A.; Sheppard, D.; Sundaram, A.B. A disease-associated mutation in fibrillin-1 differentially regulates integrin-mediated cell adhesion. J. Biol. Chem. 2019, 294, 18232–18243. [Google Scholar] [CrossRef]
- Orphanet: Progeroid and Marfanoid Aspect Lipodystrophy Syndrome. Available online: https://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=EN&Expert=300382. (accessed on 5 September 2021).
- Passarge, E.; Robinson, P.N.; Graul-Neumann, L.M. Marfanoid-progeroid-lipodystrophy syndrome: A newly recognized fibrillinopathy. Eur. J. Hum. Genet. 2016, 24, 1244–1247. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Yao, B.; Yang, Q.; Deng, J.; Song, Y.; Sui, T.; Zhou, L.; Yao, H.; Xu, Y.; Ouyang, H.; et al. Truncated C-terminus of fibrillin-1 induces Marfanoid-progeroidlipodystrophy (MPL) syndrome in rabbit. DMM Dis. Models Mech. 2018, 11, dmm031542. [Google Scholar] [CrossRef] [Green Version]
- Loeys, B.L.; Gerber, E.E.; Riegert-Johnson, D.; Iqbal, S.; Whiteman, P.; McConnell, V.; Chillakuri, C.R.; Macaya, D.; Coucke, P.J.; De Paepe, A.; et al. Mutations in fibrillin-1 cause congenital scleroderma: Stiff skin syndrome. Sci. Transl. Med. 2010, 2, ra20–ra23. [Google Scholar] [CrossRef] [Green Version]
- Fusco, C.; Morlino, S.; Micale, L.; Ferraris, A.; Grammatico, P.; Castori, M. Characterization of two novel intronic variants affecting splicing in FBN1-related disorders. Genes 2019, 10, 442. [Google Scholar] [CrossRef] [Green Version]
- Grahame, R.; Hakim, A.J. Arachnodactyly—A key to diagnosing heritable disorders of connective tissue. Nat. Rev. Rheumatol. 2013, 9, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Meester, J.A.; Vandeweyer, G.; Pintelon, I.; Lammens, M.; Van Hoorick, L.; De Belder, S.; Waitzman, K.; Young, L.; Markham, L.W.; Vogt, J.; et al. Loss-of-function mutations in the X-linked biglycan gene cause a severe syndromic form of thoracic aortic aneurysms and dissections. Genet. Med. 2017, 19, 386–395. [Google Scholar] [CrossRef] [Green Version]
- Lacro, R.V.; Dietz, H.C.; Sleeper, L.A.; Yetman, A.T.; Bradley, T.J.; Colan, S.D.; Pearson, G.D.; Tierney, E.S.S.; Levine, J.C.; Atz, A.M.; et al. Atenolol versus Losartan in Children and Young Adults with Marfan’s Syndrome. N. Engl. J. Med. 2014, 371, 2061–2071. [Google Scholar] [CrossRef] [Green Version]
- Camerota, L.; Ritelli, M.; Wischmeijer, A.; Majore, S.; Cinquina, V.; Fortugno, P.; Monetta, R.; Gigante, L.; Marfan Syndrome Study Group Tor Vergata University Hospital; Sangiuolo, F.C.; et al. Genotypic categorization of loeys-dietz syndrome based on 24 novel families and literature data. Genes 2019, 10, 764. [Google Scholar] [CrossRef] [Green Version]
- Van De Laar, I.M.B.H.; Oldenburg, R.A.; Pals, G.; Roos-Hesselink, J.W.; De Graaf, B.M.; Verhagen, J.M.A.; Hoedemaekers, Y.M.; Willemsen, R.; Severijnen, L.-A.; Venselaar, H.; et al. Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat. Genet. 2011, 43, 121–126. [Google Scholar] [CrossRef]
- Callewaert, B.L.; Loeys, B.L.; Ficcadenti, A.; Vermeer, S.; Landgren, M.; Kroes, H.Y.; Yaron, Y.; Pope, M.; Foulds, N.; Boute, O.; et al. Comprehensive clinical and molecular assessment of 32 probands with congenital contractural arachnodactyly: Report of 14 novel mutations and review of the literature. Hum. Mutat. 2009, 30, 334–341. [Google Scholar] [CrossRef]
- Davis, M.R.; Summers, K.M. Structure and function of the mammalian fibrillin gene family: Implications for human connective tissue diseases. Mol. Genet. Metab. 2012, 107, 635–647. [Google Scholar] [CrossRef]
- Beighton, P.; De Paepe, A.; Steinmann, B.; Tsipouras, P.; Wenstrup, R.J. Ehlers-danlos syndromes: Revised nosology, Villefranche, 1997. Am. J. Med. Genet. 1998, 77, 31–37. [Google Scholar] [CrossRef]
- Malfait, F.; Francomano, C.; Byers, P.; Belmont, J.; Berglund, B.; Black, J.; Bloom, L.; Bowen, J.M.; Brady, A.F.; Burrows, N.P.; et al. The 2017 international classification of the Ehlers–Danlos syndromes. Am. J. Med. Genet. Part C Semin. Med. Genet. 2017, 175, 8–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritelli, M.; Dordoni, C.; Venturini, M.; Chiarelli, N.; Quinzani, S.; Traversa, M.; Zoppi, N.; Vascellaro, A.; Wischmeijer, A.; Manfredini, E.; et al. Clinical and molecular characterization of 40 patients with classic Ehlers-Danlos syndrome: Identification of 18 COL5A1 and 2 COL5A2 novel mutations. Orphanet J. Rare Dis. 2013, 8, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malfait, F.; Symoens, S.; De Backer, J.; Hermanns-Lê, T.; Sakalihasan, N.; Lapière, C.M.; Coucke, P.; De Paepe, A. Three arginine to cysteine substitutions in the pro-alpha (I)-collagen chain cause Ehlers-Danlos syndrome with a propensity to arterial rupture in early adulthood. Hum. Mutat. 2007, 28, 387–395. [Google Scholar] [CrossRef]
- Olubajo, F.; Kaliaperumal, C.; Choudhari, K.A. Vascular Ehlers-Danlos Syndrome: Literature review and surgical management of intracranial vascular complications. Clin. Neurol. Neurosurg. 2020, 193, 105775. [Google Scholar] [CrossRef]
- Baumann, M.; Giunta, C.; Krabichler, B.; Rüschendorf, F.; Zoppi, N.; Colombi, M.; Bittner, R.E.; Quijano-Roy, S.; Muntoni, F.; Cirak, S.; et al. Mutations in FKBP14 cause a variant of Ehlers-Danlos syndrome with progressive kyphoscoliosis, myopathy, and hearing loss. Am. J. Hum. Genet. 2012, 90, 201–216. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.O.; Aldahmesh, M.A.; Mohamed, J.N.; Alkuraya, F.S. Blue sclera with and without corneal fragility (brittle cornea syndrome) in a consanguineous family harboring ZNF469 mutation (p.E1392X). Arch. Ophthalmol. 2010, 128, 1376–1379. [Google Scholar] [CrossRef] [Green Version]
- Wright, E.M.B.; Spencer, H.L.; Daly, S.B.; Manson, F.D.; Zeef, L.A.; Urquhart, J.; Zoppi, N.; Bonshek, R.; Tosounidis, I.; Mohan, M.; et al. Mutations in PRDM5 in brittle cornea syndrome identify a pathway regulating extracellular matrix development and maintenance. Am. J. Hum. Genet. 2011, 88, 767–777. [Google Scholar] [CrossRef] [Green Version]
- Zoppi, N.; Chiarelli, N.; Cinquina, V.; Ritelli, M.; Colombi, M. GLUT10 deficiency leads to oxidative stress and non-canonical αvβ3 integrin-mediated TGFβ signalling associated with extracellular matrix disarray in arterial tortuosity syndrome skin fibroblasts. Hum. Mol. Genet. 2015, 24, 6769–6787. [Google Scholar] [CrossRef] [Green Version]
- Coucke, P.J.; Willaert, A.; Wessels, M.W.; Callewaert, B.; Zoppi, N.; De Backer, J.; Fox, J.E.; Mancini, G.M.S.; Kambouris, M.; Gardella, R.; et al. Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome. Nat. Genet. 2006, 38, 452–457. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Zhao, S.; Zhang, Y.; Wang, S.; Shao, J.; Liu, B.; Li, Y.; Yan, Z.; Niu, Y.; Li, X.; et al. Mutational burden and potential oligogenic model of TBX6-mediated genes in congenital scoliosis. Mol. Genet. Genom. Med. 2020, 8, e1453. [Google Scholar] [CrossRef] [PubMed]
- Testai, F.D.; Gorelick, P.B. Inherited metabolic disorders and stroke part 2: Homocystinuria, organic acidurias, and urea cycle disorders. Arch. Neurol. 2010, 67, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Boothe, M.; Morris, R.; Robin, N. Stickler syndrome: A review of clinical manifestations and the genetics evaluation. J. Pers. Med. 2020, 10, 105. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Weile, J.; Verby, M.; Wu, Y.; Wang, Y.; Cote, A.G.; Fotiadou, I.; Kitaygorodsky, J.; Vidal, M.; Rine, J.; et al. A proactive genotype-to-patient-phenotype map for cystathionine beta-synthase. Genome Med. 2020, 12, 13. [Google Scholar] [CrossRef] [Green Version]
- Saratzis, A.; Bown, M.J. The genetic basis for aortic aneurysmal disease. Heart 2014, 100, 916–922. [Google Scholar] [CrossRef]
- Chou, E.L.; Lindsay, M.E. The genetics of aortopathies: Hereditary thoracic aortic aneurysms and dissections. Am. J. Med. Genet. Part C Semin. Med. Genet. 2020, 184, 136–148. [Google Scholar] [CrossRef]
- Kuang, S.-Q.; Guo, D.-C.; Prakash, S.K.; McDonald, M.-L.N.; Johnson, R.J.; Wang, M.; Regalado, E.S.; Russell, L.; Cao, J.-M.; Kwartler, C.; et al. Recurrent chromosome 16p13.1 duplications are a risk factor for aortic dissections. PLoS Genet. 2011, 7, e1002118. [Google Scholar] [CrossRef]
- Renard, M.; Francis, C.; Ghosh, R.; Scott, A.F.; Witmer, P.D.; Adès, L.C.; Andelfinger, G.U.; Arnaud, P.; Boileau, C.; Callewaert, B.L.; et al. Clinical Validity of Genes for Heritable Thoracic Aortic Aneurysm and Dissection. J. Am. Coll. Cardiol. 2018, 72, 605–615. [Google Scholar] [CrossRef]
- Bouleti, C.; Flamant, M.; Escoubet, B.; Arnoult, F.; Milleron, O.; Vidal-Petiot, E.; Langeois, M.; Ou, P.; Vrtovsnik, F.; Jondeau, G. Risk of Ascending Aortic Aneurysm in Patients with Autosomal Dominant Polycystic Kidney Disease. Am. J. Cardiol. 2019, 123, 482–488. [Google Scholar] [CrossRef]
- Shiraishi, K.; Matsuyama, H. Klinefelter syndrome: From pediatrics to geriatrics. Reprod. Med. Biol. 2019, 18, 140–150. [Google Scholar] [CrossRef]
- Goldstein, S.A.; Evangelista, A.; Abbara, S.; Arai, A.; Asch, F.M.; Badano, L.P.; Bolen, M.A.; Connolly, H.M.; Cuéllar-Calàbria, H.; Czerny, M.; et al. Multimodality imaging of diseases of the thoracic aorta in adults: From the American Society of Echocardiography and the European Association of Cardiovascular Imaging: Endorsed by the Society of Cardiovascular Computed Tomography and Society for Cardiovascular Magnetic Resonance. J. Am. Soc. Echocardiogr. 2015, 28, 119–182. [Google Scholar]
- Salcedo-Arellano, M.J.; Dufour, B.; McLennan, Y.; Martinez-Cerdeno, V.; Hagerman, R. Fragile X syndrome and associated disorders: Clinical aspects and pathology. Neurobiol. Dis. 2020, 136, 104740. [Google Scholar] [CrossRef]
- Graham, J.M.; Schwartz, C.E. MED 12 related disorders. Am. J. Med. Genet. Part A 2013, 161, 2734–2740. [Google Scholar] [CrossRef] [Green Version]
- Conaway, R.C.; Sato, S.; Tomomori-Sato, C.; Yao, T.; Conaway, J.W. The mammalian Mediator complex and its role in transcriptional regulation. Trends Biochem. Sci. 2005, 30, 250–255. [Google Scholar] [CrossRef]
- Fiordaliso, S.K.; Iwata-Otsubo, A.; Ritter, A.L.; Quesnel-Vallières, M.; Fujiki, K.; Nishi, E.; Hancarova, M.; Miyake, N.; Morton, J.E.; Lee, S.; et al. Missense Mutations in NKAP Cause a Disorder of Transcriptional Regulation Characterized by Marfanoid Habitus and Cognitive Impairment. Am. J. Hum. Genet. 2019, 105, 987–995. [Google Scholar] [CrossRef]
- Balasubramanian, M.; Willoughby, J.; Fry, A.E.; Weber, A.; Firth, H.V.; Deshpande, C.; Berg, J.N.; Chandler, K.; Metcalfe, K.A.; Lam, W.; et al. Delineating the phenotypic spectrum of Bainbridge-Ropers syndrome: 12 new patients with de novo, heterozygous, loss-of-function mutations in ASXL3 and review of published literature. J. Med. Genet. 2017, 54, 537–543. [Google Scholar] [CrossRef]
- Moutton, S.; Bruel, A.-L.; Assoum, M.; Chevarin, M.; Sarrazin, E.; Goizet, C.; Guerrot, A.-M.; Charollais, A.; Charles, P.; Heron, D.; et al. Truncating variants of the DLG4 gene are responsible for intellectual disability with marfanoid features. Clin. Genet. 2018, 93, 1172–1178. [Google Scholar] [CrossRef]
- Van Kimmenade, R.R.J.; Kempers, M.; de Boer, M.-J.; Loeys, B.L.; Timmermans, J. A clinical appraisal of different Z-score equations for aortic root assessment in the diagnostic evaluation of Marfan syndrome. Genet. Med. 2013, 15, 528–532. [Google Scholar] [CrossRef]
- Van De Laar, I.M.B.H.; Arbustini, E.; Loeys, B.; Björck, E.; Murphy, L.; Groenink, M.; Kempers, M.; Timmermans, J.; Roos-Hesselink, J.; Benke, K.; et al. European reference network for rare vascular diseases (VASCERN) consensus statement for the screening and management of patients with pathogenic ACTA2 variants. Orphanet J. Rare Dis. 2019, 14, 264. [Google Scholar] [CrossRef]
- Hannuksela, M.; Lundqvist, S.; Carlberg, B. Thoracic aorta—Dilated or not? Scand. Cardiovasc. J. 2006, 40, 175–178. [Google Scholar] [CrossRef]
- Hiratzka, L.F.; Bakris, G.L.; Beckman, J.A.; Bersin, R.M.; Carr, V.F.; Casey, D.E., Jr.; Eagle, K.A.; Hermann, L.K.; Isselbacher, E.M.; Kazerooni, E.A.; et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease: A report of the american college of cardiology Foundation/American heart association task force on practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. Circulation 2010, 121, e266–e369. [Google Scholar] [PubMed] [Green Version]
- Salvi, P.; Grillo, A.; Marelli, S.; Gao, L.; Salvi, L.; Viecca, M.; Di Blasio, A.M.; Carretta, R.; Pini, A.; Parati, G. Aortic dilatation in Marfan syndrome: Role of arterial stiffness and fibrillin-1 variants. J. Hypertens. 2018, 36, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Nollen, G.J.; Groenink, M.; Tijssen, J.G.P.; Van Der Wall, E.E.; Mulder, B.J.M. Aortic stiffness and diameter predict progressive aortic dilatation in patients with Marfan syndrome. Eur. Heart J. 2004, 25, 1146–1152. [Google Scholar] [CrossRef] [PubMed]
- Kröner, E.S.; Scholte, A.J.; de Koning, P.J.; Boogaard, P.J.v.D.; Kroft, L.J.; van der Geest, R.J.; Hilhorst-Hofstee, Y.; Lamb, H.J.; Siebelink, H.-M.J.; Mulder, B.J.; et al. MRI-assessed regional pulse wave velocity for predicting absence of regional aorta luminal growth in marfan syndrome. Int. J. Cardiol. 2013, 167, 2977–2982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvi, L.; Alfonsi, J.; Grillo, A.; Pini, A.; Soranna, D.; Zambon, A.; Pacini, D.; Di Bartolomeo, R.; Salvi, P.; Parati, G. Postoperative and mid-term hemodynamic changes after replacement of the ascending aorta. J. Thorac. Cardiovasc. Surg. 2020, 163, 1283–1292. [Google Scholar] [CrossRef]
- Grillo, A.; Salvi, P.; Marelli, S.; Gao, L.; Salvi, L.; Faini, A.; Trifirò, G.; Carretta, R.; Pini, A.; Parati, G.; et al. Impaired central pulsatile hemodynamics in children and adolescents with Marfan syndrome. J. Am. Heart Assoc. 2017, 6, 6815. [Google Scholar] [CrossRef] [Green Version]
- Isselbacher, E.; Preventza, O.; Black, J.H., 3rd; Augoustides, J.G.; Beck, A.W.; Bolen, M.A.; Braverman, A.C.; Bray, B.E.; Brown-Zimmerman, M.M.; Chen, E.P.; et al. 2022 ACC/AHA Guideline for the diagnosis and management od aortic disease: A report of the American Heart Association/American College of Cardiology Joint Committee on clinical practice guidelines. Circulation 2022, 146, e334–e482. [Google Scholar] [CrossRef]
- Treasure, T.; King, A.; Lemp, L.H.; Golesworthy, T.; Pepper, J.; Takkenberg, J.J.M. Developing a shared decision support framework for aortic root surgery in Marfan Syndrome. Heart 2018, 104, 480–486. [Google Scholar] [CrossRef]
- Zhu, Y.; Woo, J. Has personalised surgery made another advancement in aortic root surgery? Heart 2023, 109, 812–813. [Google Scholar] [CrossRef]
- Treasure, T.; Austin, C.; Kenny, L.A.; Pepper, J. Personalised external aortic root support in aneurysm disease. Curr. Opin. Cardiol. 2022, 37, 454–458. [Google Scholar] [CrossRef]
- Van Hoof, L.; Lamberigts, M.; Noé, D.; El-Hamamsy, I.; Lansac, E.; Kluin, J.; de Kerchove, L.; Pepper, J.; Treasure, T.; Meuris, B.; et al. Matched comparison between external aortic root support and valve-sparing root replacement. Heart 2023, 109, 832–838. [Google Scholar] [CrossRef]
- Esfandiari, H.; Ansari, S.; Mohammad-Rabei, H.; Mets, M.B. Management Strategies of Ocular Abnormalities in Patients with Marfan Syndrome: Current Perspective. J. Ophthalmic Vis. Res. 2019, 14, 71–77. [Google Scholar]
- Al Kaissi, A.; Zwettler, E.; Ganger, R.; Schreiner, S.; Klaushofer, K.; Grill, F. Musculo-skeletal abnormalities in patients with Marfan syndrome. Clin. Med. Insights. Arthritis Musculoskelet. Disord. 2013, 6, 1–9. [Google Scholar] [CrossRef]
- Williams, A.M.; Crabbe, D.C.G. Pectus deformities of the anterior chest wall. Paediatr. Respir. Rev. 2003, 4, 237–242. [Google Scholar] [CrossRef]
- Zemel, B.S.; Leonard, M.B.; Kelly, A.; Lappe, J.M.; Gilsanz, V.; Oberfield, S.; Mahboubi, S.; Shepherd, J.A.; Hangartner, T.N.; Frederick, M.M.; et al. Height Adjustment in Assessing Dual Energy X-ray Absorptiometry Measurements of Bone Mass and Density in Children. J. Clin. Endocrinol. Metab. 2010, 95, 1265–1273. [Google Scholar] [CrossRef] [Green Version]
- Muiño-Mosquera, L.; Bauters, F.; Dhondt, K.; De Wilde, H.; Jordaens, L.; De Groote, K.; De Wolf, D.; Hertegonne, K.; De Backer, J. Sleep apnea and the impact on cardiovascular risk in patients with Marfan syndrome. Mol. Genet. Genom. Med. 2019, 7, e805. [Google Scholar] [CrossRef] [Green Version]
- Kohler, M.; Pitcher, A.; Blair, E.; Risby, P.; Senn, O.; Forfar, C.; Wordsworth, P.; Stradling, J.R. The Impact of Obstructive Sleep Apnea on Aortic Disease in Marfan’s Syndrome. Respiration 2013, 86, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.N.; Lacro, R.V. Recent Clinical Drug Trials Evidence in Marfan Syndrome and Clinical Implications. Can. J. Cardiol. 2016, 32, 66–77. [Google Scholar] [CrossRef]
- Radonic, T.; COMPARE Study Group; de Witte, P.; Baars, M.J.; Zwinderman, A.H.; Mulder, B.J.; Groenink, M. Losartan therapy in adults with Marfan syndrome: Study protocol of the multi-center randomized controlled COMPARE trial. Trials 2010, 11, 3. [Google Scholar] [CrossRef] [Green Version]
- Brooke, B.S.; Habashi, J.P.; Judge, D.P.; Patel, N.; Loeys, B.; Dietz, H.C. Angiotensin II blockade and aortic-root dilation in marfan’s syndrome. N. Engl. J. Med. 2008, 358, 2787–2795. [Google Scholar] [CrossRef] [Green Version]
- Groenink, M.; Hartog, A.W.D.; Franken, R.; Radonic, T.; de Waard, V.; Timmermans, J.; Scholte, A.J.; Berg, M.P.V.D.; Spijkerboer, A.M.; Marquering, H.A.; et al. Losartan reduces aortic dilatation rate in adults with Marfan syndrome: A randomized controlled trial. Eur. Heart J. 2013, 34, 3491–3500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burnier, M. Angiotensin II type 1 receptor blockers. Circulation 2001, 103, 904–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habashi, J.P.; Judge, D.P.; Holm, T.M.; Cohn, R.D.; Loeys, B.L.; Cooper, T.K.; Myers, L.; Klein, E.C.; Liu, G.; Calvi, C.; et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 2006, 312, 117–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shores, J.; Berger, K.R.; Murphy, E.A.; Pyeritz, R.E. Progression of aortic dilatation and the benefit of long-term β-adrenergic blockade in marfan’s syndrome. N. Engl. J. Med. 1994, 330, 1335–1341. [Google Scholar] [CrossRef]
- Koo, H.K.; Lawrence, K.A.; Musini, V.M. Beta-blockers for preventing aortic dissection in Marfan syndrome. Cochrane Database Syst. Rev. 2017, 11, CD011103. [Google Scholar] [CrossRef]
- Gao, L.; Mao, Q.; Wen, D.; Zhang, L.; Zhou, X.; Hui, R. The effect of beta-blocker therapy on progressive aortic dilatation in children and adolescents with Marfan’s syndrome: A meta-analysis. Acta Paediatr. Int. J. Paediatr. 2011, 100, e101–e105. [Google Scholar] [CrossRef]
- Phomakay, V.; Huett, W.G.; Gossett, J.M.; Tang, X.; Bornemeier, R.A.; Collins, R.T. β-blockers and angiotensin converting enzyme inhibitors: Comparison of effects on aortic growth in pediatric patients with Marfan syndrome. J. Pediatr. 2014, 165, 951–955. [Google Scholar] [CrossRef] [Green Version]
- Yetman, A.T.; Bornemeier, R.A.; McCrindle, B.W. Usefulness of enalapril versus propranolol or atenolol for prevention of aortic dilation in patients with the marfan syndrome. Am. J. Cardiol. 2005, 95, 1125–1127. [Google Scholar] [CrossRef]
- Drazen, J.M.; Morrissey, S.; Campion, E.W. Retraction: Ahimastos, A.A.; Dart, A.M.; Kingwell, B.A. Angiotensin II blockade in Marfan’s syndrome. N. Engl. J. Med. 2008, 359, 1732–1734, Erratum in N. Engl. J. Med. 2015, 373, 2280. [Google Scholar]
- Williams, A.; Kenny, D.; Wilson, D.; Fagenello, G.; Nelson, M.; Dunstan, F.; Cockcroft, J.; Stuart, G.; Fraser, A.G. Effects of atenolol, perindopril and verapamil on haemodynamic and vascular function in Marfan syndrome—A randomised, double-blind, crossover trial. Eur. J. Clin. Investig. 2012, 42, 891–899. [Google Scholar] [CrossRef]
- Hassan, N.; Patenaude, V.; Oddy, L.; Abenhaim, H.A. Pregnancy outcomes in Marfan syndrome: A retrospective cohort study. Am. J. Perinatol. 2015, 30, 123–129. [Google Scholar] [CrossRef]
- Renard, M.; Muiño-Mosquera, L.; Manalo, E.C.; Tufa, S.; Carlson, E.J.; Keene, D.R.; De Backer, J.; Sakai, L.Y. Sex, pregnancy and aortic disease in Marfan syndrome. PLoS ONE 2017, 12, e0181166. [Google Scholar] [CrossRef] [Green Version]
- Kernell, K.; Sydsjö, G.; Bladh, M.; Josefsson, A. Birth characteristics of women with Marfan syndrome, obstetric and neonatal outcomes of their pregnancies—A nationwide cohort and case-control study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2017, 215, 106–111. [Google Scholar] [CrossRef]
- Marnach, M.L.; Ramin, K.D.; Ramsey, P.S.; Song, S.W.; Stensland, J.J.; An, K.N. Characterization of the relationship between joint laxity and maternal hormones in pregnancy. Obstet. Gynecol. 2003, 101, 331–335. [Google Scholar]
- Kim, S.Y.; Wolfe, D.S.; Taub, C.C. Cardiovascular outcomes of pregnancy in Marfan’s syndrome patients: A literature review. Congenit. Heart Dis. 2018, 13, 203–209. [Google Scholar] [CrossRef]
- Regitz-Zagrosek, V.; Roos-Hesselink, J.; Bauersachs, J.; Blomström-Lundqvist, C.; Cífková, R.; De Bonis, M.; Iung, B.; Johnson, M.R.; Kintscher, U.; Kranke, P.; et al. 2018 ESC Guidelines for the management of cardiovascular diseases during pregnancy: The Task Force for the Management of Cardiovascular Diseases during Pregnancy of the European Society of Cardiology (ESC). Eur. Heart J. 2018, 39, 3165–3241. [Google Scholar] [CrossRef]
- Goland, S.; Elkayam, U. Pregnancy and Marfan syndrome. Ann. Cardiothorac. Surg. 2017, 6, 642–653. [Google Scholar] [CrossRef] [Green Version]
- Writing Group Members; Hiratzka, L.F.; Bakris, G.L.; Beckman, J.A.; Bersin, R.M.; Carr, V.F.; Casey, D.E., Jr.; Eagle, K.A.; Hermann, L.K.; Isselbacher, E.M.; et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM Guidelines for the Diagnosis and Management of Patients with Thoracic Aortic Disease. J. Am. Coll. Cardiol. 2010, 55, e27–e129. [Google Scholar] [CrossRef] [Green Version]
- Regitz-Zagrosek, V.; Lundqvist, C.B.; Borghi, C.; Cifkova, R.; Ferreira, R.; Foidart, J.-M.; Gibbs, J.S.R.; Gohlke-Baerwolf, C.; Gorenek, B.; Iung, B.; et al. ESC Guidelines on the management of cardiovascular diseases during pregnancy. Eur. Heart J. 2011, 32, 3147–3197. [Google Scholar] [CrossRef]
- Elkayam, U.; Goland, S.; Pieper, P.G.; Silverside, C.K. High-Risk Cardiac Disease in Pregnancy: Part I. J. Am. Coll. Cardiol. 2016, 68, 396–410. [Google Scholar] [CrossRef]
- Goland, S.; Elkayam, U. Cardiovascular problems in pregnant women with Marfan syndrome. Circulation 2009, 119, 619–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alwan, S.; Polifka, J.E.; Friedman, J.M. Angiotensin II receptor antagonist treatment during pregnancy. Birth Defects Res. Part A Clin. Mol. Teratol. 2005, 73, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Child, A.H.; Aragon-Martin, J.A.; Sage, K. Genetic testing in Marfan syndrome. Br. J. Hosp. Med. 2016, 77, 38–41. [Google Scholar] [CrossRef] [PubMed]
Apparatus/System | Diagnostic Criteria and/or Related Diseases | Diagnosis and Follow-up | |
---|---|---|---|
Tools | Timing | ||
Cardiovascular |
|
|
from the age of 18 years
|
Ocular |
|
|
|
Skeletal |
|
|
|
Neurovascular/Neurological |
|
|
|
Endocrinological |
|
|
|
Respiratory |
|
|
|
Integumentary and skin |
|
|
|
Genetics |
|
|
|
Psychological counselling and support | As Needed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marelli, S.; Micaglio, E.; Taurino, J.; Salvi, P.; Rurali, E.; Perrucci, G.L.; Dolci, C.; Udugampolage, N.S.; Caruso, R.; Gentilini, D.; et al. Marfan Syndrome: Enhanced Diagnostic Tools and Follow-up Management Strategies. Diagnostics 2023, 13, 2284. https://doi.org/10.3390/diagnostics13132284
Marelli S, Micaglio E, Taurino J, Salvi P, Rurali E, Perrucci GL, Dolci C, Udugampolage NS, Caruso R, Gentilini D, et al. Marfan Syndrome: Enhanced Diagnostic Tools and Follow-up Management Strategies. Diagnostics. 2023; 13(13):2284. https://doi.org/10.3390/diagnostics13132284
Chicago/Turabian StyleMarelli, Susan, Emanuele Micaglio, Jacopo Taurino, Paolo Salvi, Erica Rurali, Gianluca L. Perrucci, Claudia Dolci, Nathasha Samali Udugampolage, Rosario Caruso, Davide Gentilini, and et al. 2023. "Marfan Syndrome: Enhanced Diagnostic Tools and Follow-up Management Strategies" Diagnostics 13, no. 13: 2284. https://doi.org/10.3390/diagnostics13132284
APA StyleMarelli, S., Micaglio, E., Taurino, J., Salvi, P., Rurali, E., Perrucci, G. L., Dolci, C., Udugampolage, N. S., Caruso, R., Gentilini, D., Trifiro’, G., Callus, E., Frigiola, A., De Vincentiis, C., Pappone, C., Parati, G., & Pini, A. (2023). Marfan Syndrome: Enhanced Diagnostic Tools and Follow-up Management Strategies. Diagnostics, 13(13), 2284. https://doi.org/10.3390/diagnostics13132284