Oxygen Requirement in Overweight/Obese Kidney Transplant Recipients with COVID-19: An Observational Cohort Study
Abstract
:1. Introduction
2. Patients and Methods
2.1. Study Design and Setting
2.2. Laboratory Testing
2.3. Statistical Analyses
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kates, O.S.; Haydel, B.M.; Florman, S.S.; Rana, M.M.; Chaudhry, Z.S.; Ramesh, M.S.; Safa, K.; Kotton, C.N.; Blumberg, E.A.; Besharatian, B.D.; et al. Coronavirus Disease 2019 in Solid Organ Transplant: A Multicenter Cohort Study. Clin. Infect. Dis. 2021, 73, e4090–e4099. [Google Scholar] [CrossRef]
- Chavarot, N.; Gueguen, J.; Bonnet, G.; Jdidou, M.; Trimaille, A.; Burger, C.; Amrouche, L.; Weizman, O.; Pommier, T.; Aubert, O.; et al. COVID-19 severity in kidney transplant recipients is similar to nontransplant patients with similar comorbidities. Am. J. Transplant. 2021, 21, 1285–1294. [Google Scholar] [CrossRef]
- Aguiar-Brito, I.; de Lucena, D.D.; Veronese-Araujo, A.; Cristelli, M.P.; Tedesco-Silva, H.; Medina-Pestana, J.O.; Rangel, E.B. Impact of Hypertension on COVID-19 Burden in Kidney Transplant Recipients: An Observational Cohort Study. Viruses 2022, 14, 2409. [Google Scholar] [CrossRef]
- Fisher, A.M.; Schlauch, D.; Mulloy, M.; Dao, A.; Reyad, A.I.; Correll, M.; Fromell, G.J.; Pittman, J.; Bingaman, A.W.; Sankarapandian, B.; et al. Outcomes of COVID-19 in hospitalized solid organ transplant recipients compared to a matched cohort of non-transplant patients at a national healthcare system in the United States. Clin. Transplant. 2021, 35, e14216. [Google Scholar] [CrossRef] [PubMed]
- Linares, L.; Cofan, F.; Diekmann, F.; Herrera, S.; Marcos, M.A.; Castel, M.A.; Farrero, M.; Colmenero, J.; Ruiz, P.; Crespo, G.; et al. A propensity score-matched analysis of mortality in solid organ transplant patients with COVID-19 compared to non-solid organ transplant patients. PLoS ONE 2021, 16, e0247251. [Google Scholar] [CrossRef]
- Rangel, E.B.; de Lucena, D.D.; Aguiar-Brito, I.; de Andrade, L.G.M.; Veronese-Araujo, A.; Cristelli, M.P.; Tedesco-Silva, H.; Medina-Pestana, J.O. COVID-19 in Kidney Transplant Recipients with Diabetes Mellitus: A Propensity Score Matching Analysis. Transpl. Int. 2022, 35, 10375. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Hu, J.; Zhu, C. Obesity aggravates COVID-19: A systematic review and meta-analysis. J. Med. Virol. 2021, 93, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Lasbleiz, A.; Gaborit, B.; Soghomonian, A.; Bartoli, A.; Ancel, P.; Jacquier, A.; Dutour, A. COVID-19 and Obesity: Role of Ectopic Visceral and Epicardial Adipose Tissues in Myocardial Injury. Front. Endocrinol. 2021, 12, 726967. [Google Scholar] [CrossRef]
- De Freitas, V.M.; Chiloff, D.M.; Bosso, G.G.; Teixeira, J.O.P.; Hernandes, I.C.G.; Padilha, M.D.P.; Moura, G.C.; de Andrade, L.G.M.; Mancuso, F.; Finamor, F.E.; et al. A Machine Learning Model for Predicting Hospitalization in Patients with Respiratory Symptoms during the COVID-19 Pandemic. J. Clin. Med. 2022, 11, 4574. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.C.; Murthy, S.; Diaz, J.; Adhikari, N.K.; Angus, D.C.; Arabi, Y.M.; Baillie, K.; Bauer, M.; Berry, S.; Blackwood, B.; et al. A minimal common outcome measure set for COVID-19 clinical research. Lancet Infect. Dis. 2020, 20, e192–e197. [Google Scholar] [CrossRef]
- Saadatmand, S.; Salimifard, K.; Mohammadi, R.; Marzban, M.; Naghibzadeh-Tahami, A. Predicting the necessity of oxygen therapy in the early stage of COVID-19 using machine learning. Med. Biol. Eng. Comput. 2022, 60, 957–968. [Google Scholar] [CrossRef]
- Stefan, N.; Birkenfeld, A.L.; Schulze, M.B.; Ludwig, D.S. Obesity and impaired metabolic health in patients with COVID-19. Nat. Rev. Endocrinol. 2020, 16, 341–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, J.; Toyoda, S.; Nishitani, S.; Fukuhara, A.; Kita, S.; Otsuki, M.; Shimomura, I. Possible Involvement of Adipose Tissue in Patients with Older Age, Obesity, and Diabetes with SARS-CoV-2 Infection (COVID-19) via GRP78 (BIP/HSPA5): Significance of Hyperinsulinemia Management in COVID-19. Diabetes 2021, 70, 2745–2755. [Google Scholar] [CrossRef] [PubMed]
- Beyerstedt, S.; Casaro, E.B.; Rangel, E.B. COVID-19: Angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 905–919. [Google Scholar] [CrossRef]
- Al-Benna, S. Association of high level gene expression of ACE2 in adipose tissue with mortality of COVID-19 infection in obese patients. Obes. Med. 2020, 19, 100283. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, Q.; Ma, L.; Wu, D.; Gao, J.; Chen, G.; Li, H. Systematic profiling of ACE2 expression in diverse physiological and pathological conditions for COVID-19/SARS-CoV-2. J. Cell. Mol. Med. 2020, 24, 9478–9482. [Google Scholar] [CrossRef]
- Kornilov, S.A.; Lucas, I.; Jade, K.; Dai, C.L.; Lovejoy, J.C.; Magis, A.T. Plasma levels of soluble ACE2are associated with sex, Metabolic Syndrome, and its biomarkers in a large cohort, pointing to a possible mechanism for increased severity in COVID-19. Crit. Care 2020, 24, 452. [Google Scholar] [CrossRef]
- Higashikuni, Y.; Liu, W.; Obana, T.; Sata, M. Pathogenic Basis of Thromboinflammation and Endothelial Injury in COVID-19: Current Findings and Therapeutic Implications. Int. J. Mol. Sci. 2021, 22, 12081. [Google Scholar] [CrossRef]
- Nagashima, S.; Mendes, M.C.; Camargo Martins, A.P.; Borges, N.H.; Godoy, T.M.; Miggiolaro, A.F.R.D.; da Silva, D.F.; Machado-Souza, C.; de Noronha, L. Endothelial Dysfunction and Thrombosis in Patients with COVID-19-Brief Report. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 2404–2407. [Google Scholar] [CrossRef]
- Fuster, J.J.; Ouchi, N.; Gokce, N.; Walsh, K. Obesity-Induced Changes in Adipose Tissue Microenvironment and Their Impact on Cardiovascular Disease. Circ. Res. 2016, 118, 1786–1807. [Google Scholar] [CrossRef] [Green Version]
- Salvator, H.; Grassin-Delyle, S.; Naline, E.; Brollo, M.; Fournier, C.; Couderc, L.J.; Devillier, P. Contrasting Effects of Adipokines on the Cytokine Production by Primary Human Bronchial Epithelial Cells: Inhibitory Effects of Adiponectin. Front. Pharmacol. 2020, 11, 56. [Google Scholar] [CrossRef] [Green Version]
- Dana, R.; Bannay, A.; Bourst, P.; Ziegler, C.; Losser, M.R.; Gibot, S.; Levy, B.; Audibert, G.; Ziegler, O. Obesity and mortality in critically ill COVID-19 patients with respiratory failure. Int. J. Obes. 2021, 45, 2028–2037. [Google Scholar] [CrossRef]
- De, J.A.; Chanques, G.; Jaber, S. Mechanical ventilation in obese ICU patients: From intubation to extubation. Crit. Care 2017, 21, 63. [Google Scholar]
- Kress, J.P.; Pohlman, A.S.; Alverdy, J.; Hall, J.B. The impact of morbid obesity on oxygen cost of breathing (VO(2RESP)) at rest. Am. J. Respir. Crit. Care Med. 1999, 160, 883–886. [Google Scholar] [CrossRef]
- Chlif, M.; Keochkerian, D.; Choquet, D.; Vaidie, A.; Ahmaidi, S. Effects of obesity on breathing pattern, ventilatory neural drive and mechanics. Respir. Physiol. Neurobiol. 2009, 168, 198–202. [Google Scholar] [CrossRef]
- Pan, X.W.; Xu, D.; Zhang, H.; Zhou, W.; Wang, L.H.; Cui, X.G. Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: A study based on single-cell transcriptome analysis. Intensive Care Med. 2020, 46, 1114–1116. [Google Scholar] [CrossRef] [Green Version]
- de Lucena, D.D.; Rangel, E.B. Glucocorticoids use in kidney transplant setting. Expert Opin. Drug Metab. Toxicol. 2018, 14, 1023–1041. [Google Scholar] [CrossRef] [PubMed]
- Pinto, B.G.G.; Oliveira, A.E.R.; Singh, Y.; Jimenez, L.; Goncalves, A.N.A.; Ogava, R.L.T.; Creighton, R.; Schatzmann Peron, J.P.; Nakaya, H.I. ACE2 Expression Is Increased in the Lungs of Patients with Comorbidities Associated with Severe COVID-19. J. Infect. Dis. 2020, 222, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Antos, A.; Kwong, M.L.; Balmorez, T.; Villanueva, A.; Murakami, S. Unusually High Risks of COVID-19 Mortality with Age-Related Comorbidities: An Adjusted Meta-Analysis Method to Improve the Risk Assessment of Mortality Using the Comorbid Mortality Data. Infect. Dis. Rep. 2021, 13, 700–711. [Google Scholar] [CrossRef]
- Bartleson, J.M.; Radenkovic, D.; Covarrubias, A.J.; Furman, D.; Winer, D.A.; Verdin, E. SARS-CoV-2, COVID-19 and the Ageing Immune System. Nat. Aging 2021, 1, 769–782. [Google Scholar] [CrossRef] [PubMed]
- Mahmoodpoor, A.; Hosseini, M.; Soltani-Zangbar, S.; Sanaie, S.; Aghebati-Maleki, L.; Saghaleini, S.H.; Ostadi, Z.; Hajivalili, M.; Bayatmakoo, Z.; Haji-Fatahaliha, M.; et al. Reduction and exhausted features of T lymphocytes under serological changes, and prognostic factors in COVID-19 progression. Mol. Immunol. 2021, 138, 121–127. [Google Scholar] [CrossRef]
- Cravedi, P.; Mothi, S.S.; Azzi, Y.; Haverly, M.; Farouk, S.S.; Perez-Saez, M.J.; Redondo-Pachon, M.D.; Murphy, B.; Florman, S.; Cyrino, L.G.; et al. COVID-19 and kidney transplantation: Results from the TANGO International Transplant Consortium. Am. J. Transplant. 2020, 20, 3140–3148. [Google Scholar] [CrossRef]
- Fava, A.; Cucchiari, D.; Montero, N.; Toapanta, N.; Centellas, F.J.; Vila-Santandreu, A.; Coloma, A.; Meneghini, M.; Manonelles, A.; Sellares, J.; et al. Clinical characteristics and risk factors for severe COVID-19 in hospitalized kidney transplant recipients: A multicentric cohort study. Am. J. Transplant. 2020, 20, 3030–3041. [Google Scholar] [CrossRef]
- Martha, J.W.; Wibowo, A.; Pranata, R. Prognostic value of elevated lactate dehydrogenase in patients with COVID-19: A systematic review and meta-analysis. Postgrad. Med. J. 2022, 98, 422–427. [Google Scholar] [CrossRef]
- Gansevoort, R.T.; Hilbrands, L.B. CKD is a key risk factor for COVID-19 mortality. Nat. Rev. Nephrol. 2020, 16, 705–706. [Google Scholar] [CrossRef]
- Cheng, Y.; Luo, R.; Wang, K.; Zhang, M.; Wang, Z.; Dong, L.; Li, J.; Yao, Y.; Ge, S.; Xu, G. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020, 97, 829–838. [Google Scholar] [CrossRef]
- Hirsch, J.S.; Ng, J.H.; Ross, D.W.; Sharma, P.; Shah, H.H.; Barnett, R.L.; Hazzan, A.D.; Fishbane, S.; Jhaveri, K.D. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int. 2020, 98, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Gheorghe, G.; Ilie, M.; Bungau, S.; Stoian, A.M.P.; Bacalbasa, N.; Diaconu, C.C. Is There a Relationship between COVID-19 and Hyponatremia? Medicina 2021, 57, 55. [Google Scholar] [CrossRef] [PubMed]
- Akbar, M.R.; Pranata, R.; Wibowo, A.; Irvan; Sihite, T.A.; Martha, J.W. The Prognostic Value of Hyponatremia for Predicting Poor Outcome in Patients with COVID-19: A Systematic Review and Meta-Analysis. Front. Med. 2021, 8, 666949. [Google Scholar] [CrossRef] [PubMed]
- De Lucena, D.D.; de Sa, J.R.; Medina-Pestana, J.O.; Rangel, E.B. Modifiable Variables Are Major Risk Factors for Posttransplant Diabetes Mellitus in a Time-Dependent Manner in Kidney Transplant: An Observational Cohort Study. J. Diabetes Res. 2020, 2020, 1938703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | O2 (n = 153, 53.9%) | No O2 (n = 131, 46.1%) | Univariate Analysis |
---|---|---|---|
Age (years) | 55.4 ± 12.0 | 49.0 ± 11.6 | 1.05 (1.03–1.07, p = 0.0001) |
Male (n, %) | 82 (53.6) | 78 (51.0) | 0.79 (0.49–1.26, p = 0.31) |
Race (n, %) White Black/brown | 96 (62.7) 57 (37.3) | 77 (50.7) 54 (35.3) | 1.18 (0.73–1.90, p = 0.50) |
Transplant time (months) | 92.1 ± 71.4 | 94.6 ± 72.5 | 1.00 (1.00–1.00, p = 0.77) |
Donor type (n, %) Alive Deceased | 39 (25.5) 114 (74.5) | 41 (46.4) 90 (58.8) | 1.33 (0.79–2.24, p = 0.28) |
BMI (kg/m2) | 27.5 ± 4.9 | 26.2 ± 4.8 | 1.06 (1.00–1.11, p = 0.03) |
BMI ≥ 25 (n, %) | 108 (70.6) | 77 (50.7) | 1.68 (1.03–2.75, p = 0.04) |
BMI ≥ 30 (n, %) | 41 (26.8) | 24 (15.7) | 1.63 (0.92–2.88, p = 0.09) |
Hypertension (n, %) | 114 (74.5) | 100 (65.4) | 0.91 (0.53–1.56, p = 0.72) |
Diabetes mellitus (n, %) | 68 (44.4) | 44 (28.8) | 1.58 (0.98–2.56, p = 0.06) |
COPD (n, %) | 7 (4.6) | 2 (1.3) | 3.09 (0.63–15.15, p = 0.16) |
Heart disease (n, %) | 19 (12.4) | 13 (8.5) | 1.29 (0.61–2.72, p = 0.51) |
Neoplasia (n, %) | 14 (9.2) | 7 (4.6) | 1.78 (0.70–4.56, p = 0.23) |
Liver disease (n, %) | 8 (5.2) | 1 (0.7) | 7.17 (0.88–58.12, p = 0.06) |
Autoimmune disease (n, %) | 6 (3.9) | 2 (1.3) | 2.63 (0.52–13.27, p = 0.24) |
Smoking (n, %) | 41 (26.8) | 18 (11.8) | 2.12 (1.13–3.99, p = 0.02) |
Laboratory data | |||
Basal eGFR | 47.5 ± 23.6 | 50.2 ± 24.5 | 1.00 (0.99–1.00, p = 0.34) |
Admission eGFR | 34.4 ± 21.7 | 40.2 ± 21.8 | 0.99 (0.98–01.00, p = 0.03) |
Previous glucose (mg/dL) | 127.2 ± 65.7 | 112.2 ± 66.7 | 1.00 (1.00–1.01, p = 0.07) |
Admission glucose (mg/dL) | 177.9 ± 105.9 | 167.0 ± 102.2 | 1.00 (1.00–1.00, p = 0.61) |
Previous Hb1Ac (%) | 7.0 ± 2.0 | 6.7 ± 2.1 | 1.09 (0.95–1.26, p = 0.20) |
CRP (mg/dL) | 8.7 [4.0;15.2] | 3.3 [1.0;9.6] | 1.06 (1.02–1.09, p = 0.001) |
LDH (U/L) | 341.0 [241.5;430.5] | 239.0 [182.8;308.0] | 1.00 (1.00–1.01, p = 0.0001) |
Lymphocytes (mm3) | 658.5 [429.0;997.0] | 909.5 [584.0;1314.0] | 1.00 (1.00–1.00, p = 0.004) |
D-dimer (µg/L) | 1.2 [0.6;2.4] | 1.2 [0.5;2.1] | 1.03 (0.96–1.11, p = 0.37) |
AST (U/L) | 31.0 [20.0;44.0] | 28.0 [22.5;37.5] | 1.01 (1.00–1.02, p = 0.06) |
ALT (U/L) | 21.0 [13.5;33.0] | 21.0 [16.0;29.3] | 1.01 (1.00–1.02, p = 0.22) |
Sodium (mEq/L) | 134.2 ± 5.8 | 135.9 ± 3.7 | 0.93 (0.88–0.98, p = 0.01) |
Variables | BMI ≥ 25 (n = 185, 65.1%) | BMI < 25 (n = 99, 34.9%) | TOTAL (n = 284, 100%) | Univariate Analysis |
---|---|---|---|---|
Age (years) | 53.3 ± 11.1 | 50.9 ± 14.0 | 52.5 ± 12.2 | 1.02 (1.00–1.04, p = 0.12) |
Male (n, %) | 97 (60.6) | 63 (39.4) | 160 (56.3) | 0.63 (0.38–1.04, p = 0.07) |
Female (n, %) | 88 (71) | 36 (29) | 124 (43.7) | 1.59 (0.96–2.62, p = 0.07) |
Race (n, %) White Black/brown | 121 (65.4) 64 (34.6) | 52 (52.5) 47 (47.5) | 173 (60.9) 111 (39.1) | 1.71 (1.04–2.81, p = 0.03) |
Transplant time (months) | 71.0 [33.0;145.0] | 74.0 [34.5;127.5] | 73.5 [33.0;142.3] | 0.99 (1.00–1.00, p = 0.72) |
Donor type (n, %) Alive Deceased | 55 (29.7) 130 (70.3) | 25 (25.3) 74 (74.7) | 80 (28.2) 204 (71.8) | 1.25 (0.72–2.17, p = 0.42) |
BMI (kg/m2) | 28.9 [26.0;31.2] | 22.4 [20.2;23.6] | 26.6 [23.5;29.6] | p = 0.92 |
Hypertension (n, %) | 145 (78.4) | 69 (69.7) | 214 (75.4) | 1.58 (0.91–2.74, p = 0.11) |
Diabetes mellitus (n, %) | 76 (41.1) | 36 (36.4) | 112 (39.4) | 1.22 (0.74–2.02, p = 0.44) |
COPD (n, %) | 6 (3.2) | 3 (3.0) | 9 (3.2) | 1.07 (0.26–4.38, p = 0.92) |
Heart disease (n, %) | 24 (13.0) | 8 (8.1) | 32 (11.3) | 1.70 (0.73–3.93, p = 0.22) |
Neoplasia (n, %) | 13 (7.0) | 8 (8.1) | 21 (7.4) | 0.86 (0.34–2.15, p = 0.75) |
Liver disease (n, %) | 6 (3.2) | 3 (3.0) | 9 (3.2) | 1.07 (0.26–4.38, p = 0.92) |
Autoimmune disease (n, %) | 7 (3.8) | 1 (1.0) | 8 (2.8) | 3.85 (0.47–31.78, p = 0.21) |
Smoking (n, %) | 43 (23.2) | 16 (16.2) | 59 (20.8) | 1.72 (0.89–3.29, p = 0.10) |
Laboratory Data | BMI ≥ 25 (n = 185, 65.1%) | BMI < 25 (n = 99, 34.9%) | TOTAL (n = 291, 100%) | Univariate Analysis |
---|---|---|---|---|
Basal eGFR | 49.2 ± 23.2 | 47.8 ± 25.6 | 48.7 ± 24.0 | 1.00 (0.99–1.01, p = 0.63) |
Admission eGFR | 37.7 ± 20.7 | 36.0 ± 24.0 | 37.1 ± 21.9 | 1.00 (0.99–1.01, p = 0.53) |
Previous glucose (mg/dL) | 125.5 ± 65.5 | 110.5 ± 67.5 | 120.3 ± 66.5 | 1.00 (1.00–1.01, p = 0.08) |
Admission glucose (mg/dL) | 184.9 ± 107.7 | 154.6 ± 95.9 | 174.8 ± 104.5 | 1.00 (1.00–1.01, p = 0.14) |
Previous Hb1Ac (%) | 7.0 ± 2.0 | 6.5 ± 2.0 | 6.9 ± 2.0 | 1.15 (0.98–1.34, p = 0.08) |
CRP (mg/dL) | 5.5 [2.0;13.0] | 6.4 [1.8;11.3] | 5.7 [2.0;12.7] | 1.01 (0.98–1.04, p = 0.59) |
LDH (U/L) | 292.0 [224.0;407.0] | 273.0 [212.5;370.3] | 288.0 [220.0;395.0] | 1.00 (1.00–1.00, p = 0.31) |
Lymphocytes (mm³) | 743.5 [498.0;1234.3] | 762.5 [474.3;1127.5] | 750.5 [497.0;1202.5] | 1.00 (1.00–1.00, p = 0.87) |
D-dimer (µg/L) | 1.2 [0.6;2.3] | 1.2 [0.6;2.3] | 1.2 [0.6;2.3] | 0.96 (0.89–1.03, p = 0.23) |
AST (U/L) | 28.5 [20.8;40.3] | 28.0 [23.0;42] | 28.0 [21.0;41.0] | 1.00 (0.99–1.01, p = 0.78) |
ALT (U/L) | 21.0 [15.0;33.0] | 21.0 [15.0;29.0] | 21.0 [15.0;32.0] | 1.01 (0.99--1.02, p = 0.29) |
Sodium (mEq/L) | 135.1 ± 4.9 | 134.6 ± 5.3 | 135.0 ± 5.1 | 1.11 (0.97–1.07, p = 0.48) |
Outcomes | ||||
Death (n, %) | 59 (31.9) | 25 (25.3) | 84 (29.6) | 1.39 (0.80–2.40, p = 0.24) |
ICU (n, %) | 92 (49.7) | 42 (42.4) | 134 (47.2) | 1.34 (0.82–2.20, p = 0.24) |
O2 (n, %) | 108 (58.4) | 45 (45.5) | 153 (53.9) | 1.69 (1.03–2.75, p = 0.04) |
IMV (n, %) | 70 (37.8) | 27 (27.3) | 97 (34.2) | 1.62 (0.95–2.77, p = 0.07) |
AKI (n, %) | 103 (55.7) | 62 (62.6) | 165 (58.1) | 0.75 (0.45–1.24, p = 0.26) |
Stage 1 | 21 (11.4) | 16 (16.2) | 37 (13.0) | 0.66 (0.33–1.34, p = 0.25) |
Stage 2 | 9 (4.9) | 5 (5.1) | 14 (4.9) | 0.96 (0.31–2.95, p = 0.94) |
Stage 3 | 73 (39.4) | 41 (41.4) | 114 (40.1) | 0.92 (0.56–0.51, p = 0.75) |
HD (n, %) | 70 (37.8) | 35 (35.4) | 105 (37.0) | 1.11 (0.67–1.85, p = 0.68) |
Variables | O2 (n = 108, 58.4%) | No O2 (n = 77, 41.6%) | Univariate Analysis | Multivariate Analysis |
---|---|---|---|---|
Age (years) | 55.7 ± 10.6 | 49.9 ± 10.8 | 1.05 (1.02–1.08, p = 0.001) | 1.06 (1.03–1.11, p = 0.001) |
Male (n, %) | 52 (48.1) | 45 (58.4) | 0.67 (0.37–1.19, p = 0.17) | |
Race (n, %) White Black/brown | 71 (65.7) 37 (34.3) | 50 (64.9) 27 (35.1) | 1.04 (0.56–1.91, p = 0.91) | |
Transplant time (months) | 90.8 ± 73.4 | 94.1 ± 69.9 | 0.10 (1.00–0.99, p = 0.76) | |
Donor type (n, %) Alive Deceased | 30 (27.8) 78 (72.2) | 25 (32.5) 52 (67.5) | 0.80 (0.42–1.51, p = 0.49) | |
Hypertension (n, %) | 84 (77.8) | 61 (79.2) | 0.92 (0.45–1.87, p = 0.81) | |
Diabetes mellitus (n, %) | 50 (46.3) | 26 (33.8) | 1.69 (0.92–3.10, p = 0.06) | 0.94 (0.44–2.03, p = 0.88) |
COPD (n, %) | 4 (3.7) | 2 (2.6) | 1.44 (0.26–8.08, p = 0.68) | |
Heart disease (n, %) | 14 (13.0) | 10 (13.0) | 0.99 (0.42–2.38, p = 0.10) | |
Neoplasia (n, %) | 8 (8.4) | 5 (6.5) | 1.15 (0.36–3.67, p = 0.81) | |
Liver disease (n, %) | 6 (5.6) | 0 (0.0) | −(0.0001, p = 0.999) | |
Autoimmune disease (n, %) | 5 (4.6) | 2 (2.6) | 1.82 (0.34–9.37, p = 0.48) | |
Smoking (n, %) | 32 (29.6) | 11 (14.3) | 2.45 (2.45–1.12, p = 0.02) | 2.07 (0.91–4.72, p = 0.08) |
Laboratory data | ||||
Basal eGFR | 47.5 ± 22.0 | 51.6 ± 24.8 | 0.99 (0.98–1.00, p = 0.24) | |
Admission eGFR | 34.3 ± 20.3 | 42.5 ± 20.4 | 0.98 (0.97–0.99, p = 0.01) | 0.98 (0.96–1.00, p = 0.08) |
Previous glucose (mg/dL) | 133.4 ± 73.2 | 114.5 ± 51.4 | 1.01 (1.00–1.01, p = 0.06) | 0.10 (1.00–1.01, p = 0.54) |
Admission glucose (mg/dL) | 186.3 ± 107.9 | 181.0 ± 109.9 | 1.00 (1.00–1.00, p = 0.85) | |
Previous Hb1Ac (%) | 7.2 ± 2.1 | 6.8 ± 1.9 | 1.13 (0.945–1.357, p = 0.18) | |
CRP (mg/dL) | 7.4 [3.6;13.2] | 3.4 [1.3;9.7] | 1.03 (0.992–1.069, p = 0.12) | |
LDH (U/L) | 338.5 [240.8;432.0] | 250.0 [196.0;342.0] | 1.00 (1.00–1.00, p = 0.049) | 1.03 (0.98–1.09, p = 0.24) |
Lymphocytes (mm3) | 674.0 [465.3;1087.3] | 900.5 [597.3;1533.0] | 0.10 (1.00–1.00, p = 0.003) | 1.00 (1.00–1.00, p = 0.40) |
D-dimer (µg/L) | 1.3 [0.6;2.3] | 1.1 [0.6;2.1] | 1.04 (0.93–1.16, p = 0.52) | |
AST (U/L) | 27.5 [19.3;41.0] | 29.0 [22.3;37.8] | 1.01 (1.00–1.01, p = 0.36) | |
ALT (U/L) | 20.5 [12.3;33.0] | 22.0 [16.0;32.0] | 1.00 (1.00–1.01, p = 0.38) | |
Sodium (mEq/L) | 134.5 ± 5.6 | 136.1 ± 3.4 | 0.92 (0.85–1.00, p = 0.04) | 0.93 (0.84–1.03, p = 0.18) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veronese-Araújo, A.; de Lucena, D.D.; Aguiar-Brito, I.; Modelli de Andrade, L.G.; Cristelli, M.P.; Tedesco-Silva, H.; Medina-Pestana, J.O.; Rangel, É.B. Oxygen Requirement in Overweight/Obese Kidney Transplant Recipients with COVID-19: An Observational Cohort Study. Diagnostics 2023, 13, 2168. https://doi.org/10.3390/diagnostics13132168
Veronese-Araújo A, de Lucena DD, Aguiar-Brito I, Modelli de Andrade LG, Cristelli MP, Tedesco-Silva H, Medina-Pestana JO, Rangel ÉB. Oxygen Requirement in Overweight/Obese Kidney Transplant Recipients with COVID-19: An Observational Cohort Study. Diagnostics. 2023; 13(13):2168. https://doi.org/10.3390/diagnostics13132168
Chicago/Turabian StyleVeronese-Araújo, Alexandre, Débora D. de Lucena, Isabella Aguiar-Brito, Luís Gustavo Modelli de Andrade, Marina P. Cristelli, Hélio Tedesco-Silva, José O. Medina-Pestana, and Érika B. Rangel. 2023. "Oxygen Requirement in Overweight/Obese Kidney Transplant Recipients with COVID-19: An Observational Cohort Study" Diagnostics 13, no. 13: 2168. https://doi.org/10.3390/diagnostics13132168
APA StyleVeronese-Araújo, A., de Lucena, D. D., Aguiar-Brito, I., Modelli de Andrade, L. G., Cristelli, M. P., Tedesco-Silva, H., Medina-Pestana, J. O., & Rangel, É. B. (2023). Oxygen Requirement in Overweight/Obese Kidney Transplant Recipients with COVID-19: An Observational Cohort Study. Diagnostics, 13(13), 2168. https://doi.org/10.3390/diagnostics13132168