Aging Affects Insulin Resistance, Insulin Secretion, and Glucose Effectiveness in Subjects with Normal Blood Glucose and Body Weight
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Participants
2.3. Calculating the IR, FPIS, SPIS, and GE
- IR: 327 subjects were enrolled in the study. The IR was estimated using an insulin suppression test. The r-value between the obtained and calculated GE was 0.581 (p < 0.001). This can be observed in the 2013 Journal of Diabetes Investigation.
- 2
- FPIS: 186 subjects were enrolled. The FPIS was measured using an intravenous glucose tolerance test via frequent sampling. The r-value between the measured and calculated GE was 0.671 (p < 0.000). The following equation was published in the International Journal of Endocrinology in 2015.
- 3
- SPIS: 82 participants were enrolled. The SPIS was measured using a modified glucose infusion test at a low dose. The r-value between the measured and calculated GE was 0.65 (p = 0.002). It was referred to in Metabolic Syndrome and Related Disorders in 2016.
- 4
- GE: 227 participants were enrolled. The GE was measured using a constantly sampled intravenous glucose tolerance test. The r-value between the measured and calculated GE was 0.43 (p = 0.001). It was published in Metabolic Syndrome and Related Disorders in 2016.
2.4. Laboratory Evaluation
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chockalingam, N.; Gatt, A.; Formosa, C.; Nachiappan, N.; Healy, A. Provision of assistive devices for people with diabetes at risk of mobility impairment. World Health Organ. 2019, 2019, 466–470. [Google Scholar]
- Tseng, C.-H. The epidemiologic transition of diabetes mellitus in Taiwan: Implications for reversal of female preponderance from a national cohort. Open Diabetes J. 2009, 2, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.C.; Yang, H.C.; Chang, H.Y.; Yeh, C.J.; Chen, H.H.; Huang, K.C.; Pan, W.-H. Morbid obesity in Taiwan: Prevalence, trends, associated social demographics, and lifestyle factors. PLoS ONE 2017, 12, e0169577. [Google Scholar] [CrossRef] [Green Version]
- Chiu, C.J.; Li, M.L.; Chang, C.M.; Wu, C.H.; Tan, M.P. Disability trajectories prior to death for ten leading causes of death among middle-aged and older adults in Taiwan. BMC Geriatr. 2021, 21, 420. [Google Scholar] [CrossRef]
- Wilcox, G. Insulin and Insulin Resistance. Clin. Biochem. Rev. 2005, 26, 19–39. [Google Scholar] [PubMed]
- Osei, K.; Rhinesmith, S.; Gaillard, T.; Schuster, D. Impaired insulin sensitivity, insulin secretion, and glucose effectiveness predict future development of impaired glucose tolerance and type 2 diabetes in pre-diabetic African Americans: Implications for primary diabetes prevention. Diabetes Care 2004, 27, 1439–1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henquin, J.-C. Regulation of insulin secretion: A matter of phase control and amplitude modulation. Diabetologia 2009, 52, 739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdul-Ghani, M.A.; Tripathy, D.; DeFronzo, R.A. Contributions of β-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care 2006, 29, 1130–1139. [Google Scholar] [CrossRef]
- Vella, A.; Shah, P.; Basu, R.; Basu, A.; Holst, J.J.; Rizza, R.A. Effect of glucagon-like peptide 1(7-36) amide on glucose effectiveness and insulin action in people with type 2 diabetes. Diabetes 2000, 49, 611–617. [Google Scholar] [CrossRef] [Green Version]
- Steil, G.M.; Murray, J.; Bergman, R.N.; Buchanan, T.A. Repeatability of Insulin Sensitivity and Glucose Effectiveness from the Minimal Model: Implications for Study Design. Diabetes 1994, 43, 1365–1371. [Google Scholar] [CrossRef]
- Best, J.D.; Kahn, S.E.; Ader, M.; Watanabe, R.M.; Ni, T.C.; Bergman, R.N. Role of glucose effectiveness in the determination of glucose tolerance. Diabetes Care 1996, 19, 1018–1030. [Google Scholar] [CrossRef]
- Lorenzo, C.; Wagenknecht, L.E.; Rewers, M.J.; Karter, A.J.; Bergman, R.N.; Hanley, A.J.G.; Haffner, S.M. Disposition Index, Glucose Effectiveness, and Conversion to Type 2 Diabetes. Insul. Resist. Atheroscler. Study (IRAS) 2010, 33, 2098–2103. [Google Scholar] [CrossRef] [Green Version]
- Morettini, M.; Di Nardo, F.; Burattini, L.; Fioretti, S.; Göbl, C.; Kautzky-Willer, A.; Pacini, G.; Tura, A. Assessment of glucose effectiveness from short IVGTT in individuals with different degrees of glucose tolerance. Acta Diabetol. 2018, 55, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.H.; Shau, W.Y.; Jiang, Y.D.; Li, H.Y.; Chang, T.J.; Sheu, W.H.; Kwok, C.F.; Ho, L.T.; Chuang, L.M. Type 2 diabetes prevalence and incidence among adults in Taiwan during 1999-2004: A national health insurance data set study. Diabet. Med. 2010, 27, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.C.; Li, C.I.; Hsiao, C.Y.; Liu, C.S.; Yang, S.Y.; Lee, C.C.; Li, T.C. Time trend analysis of the prevalence and incidence of diagnosed type 2 diabetes among adults in Taiwan from 2000 to 2007: A population-based study. BMC Public Health 2013, 13, 318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akehi, Y.; Oketa, A.; Mitsuyoshi, Y.; Yoshida, R.; Ohkubo, K.; Yamashita, T.; Kawashima, H.; Anzai, K.; Ono, J. The effects of age on insulin sensitivity and insulin secretion in Japanese subjects with normal glucose tolerance. Rinsho Byori. Jpn. J. Clin. Pathol. 2007, 55, 901–905. [Google Scholar]
- Ropelle, E.R.; Pauli, J.R.; Cintra, D.E.; Da Silva, A.S.; De Souza, C.T.; Guadagnini, D.; Carvalho, B.M.; Caricilli, A.M.; Katashima, C.K.; Carvalho-Filho, M.A.; et al. Targeted disruption of inducible nitric oxide synthase protects against aging, S-nitrosylation, and insulin resistance in muscle of male mice. Diabetes 2013, 62, 466–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buren, J.; Lindmark, S.; Renstrom, F.; Eriksson, J.W. In vitro reversal of hyperglycemia normalizes insulin action in fat cells from type 2 diabetes patients: Is cellular insulin resistance caused by glucotoxicity in vivo? Metabolism 2003, 52, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Chiu, K.C.; Chuang, L.M.; Yoon, C. Comparison of measured and estimated indices of insulin sensitivity and beta cell function: Impact of ethnicity on insulin sensitivity and beta cell function in glucose-tolerant and normotensive subjects. J. Clin. Endocrinol. Metab. 2001, 86, 1620–1625. [Google Scholar] [PubMed] [Green Version]
- Fu, J.; Cui, Q.; Yang, B.; Hou, Y.; Wang, H.; Xu, Y.; Wang, D.; Zhang, Q.; Pi, J. The impairment of glucose-stimulated insulin secretion in pancreatic beta-cells caused by prolonged glucotoxicity and lipotoxicity is associated with elevated adaptive antioxidant response. Food Chem. Toxicol. 2017, 100, 161–167. [Google Scholar] [CrossRef]
- Lopez, X.; Bouche, C.; Tatro, E.; Goldfine, A.B. Family history of diabetes impacts on interactions between minimal model estimates of insulin sensitivity and glucose effectiveness. Diabetes Obes. Metab. 2009, 11, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.Z.; Lin, J.D.; Hsia, T.L.; Hsu, C.H.; Hsieh, C.H.; Chang, J.B.; Chen, J.S.; Pei, C.; Pei, D.; Chen, Y.L. Accurate method to estimate insulin resistance from multiple regression models using data of metabolic syndrome and oral glucose tolerance test. J. Diabetes Investig. 2014, 5, 290–296. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.D.; Hsu, C.H.; Liang, Y.J.; Lian, W.C.; Hsieh, C.H.; Wu, C.Z.; Pei, D.; Chen, Y.L. The estimation of first-phase insulin secretion by using components of the metabolic syndrome in a chinese population. Int. J. Endocrinol. 2015, 2015, 675245. [Google Scholar] [CrossRef]
- Lin, Y.T.; Wu, C.Z.; Lian, W.C.; Hsu, C.H.; Hsieh, C.H.; Pei, D.; Chen, Y.L.; Lin, J.D. Measuring Second Phase of Insulin Secretion by Components of Metabolic Syndrome. Int. J. Diabetes Clin. Diagn. 2015, 2, 113. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.L.; Lee, S.F.; Pei, C.; Pei, D.; Lee, C.H.; He, C.T.; Liang, Y.J.; Lin, J.D. Predicting Glucose Effectiveness in Chinese Participants Using Routine Measurements. Metab. Syndr. Relat. Disord. 2016, 14, 386–390. [Google Scholar] [CrossRef]
- Stančáková, A.; Javorský, M.; Kuulasmaa, T.; Haffner, S.M.; Kuusisto, J.; Laakso, M. Changes in insulin sensitivity and insulin release in relation to glycemia and glucose tolerance in 6,414 Finnish men. Diabetes 2009, 58, 1212–1221. [Google Scholar] [CrossRef] [Green Version]
- D’Archivio, M.; Annuzzi, G.; Varì, R.; Filesi, C.; Giacco, R.; Scazzocchio, B. Predominant role of obesity/insulin resistance in oxidative stress development. Eur. J. Clin. Investig. 2012, 42, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Gołacki, J.; Matuszek, M.; Matyjaszek-Matuszek, B. Link between Insulin Resistance and Obesity—From Diagnosis to Treatment. Diagnostics 2022, 12, 1681. [Google Scholar] [CrossRef] [PubMed]
- Guardado-Mendoza, R.; Jimenez-Ceja, L.; Majluf-Cruz, A.; Kamath, S.; Fiorentino, T.V.; Casiraghi, F. Impact of obesity severity and duration on pancreatic β-and α-cell dynamics in normoglycemic non-human primates. Int. J. Obes. 2013, 37, 1071–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Feng, Y.; Ma, X.; Chen, K.; Wu, N.; Wang, D. Visceral adiposity index and insulin secretion and action in first-degree relatives of subjects with type 2 diabetes. Diabetes/Metab. Res. Rev. 2015, 31, 315–321. [Google Scholar] [CrossRef]
- Basu, R.; Man, C.D.; Campioni, M.; Basu, A.; Klee, G.; Toffolo, G.; Cobelli, C.; Rizza, R.A. Effects of Age and Sex on Postprandial Glucose Metabolism: Differences in Glucose Turnover, Insulin Secretion, Insulin Action, and Hepatic Insulin Extraction. Diabetes 2006, 55, 2001–2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bacos, K.; Gillberg, L.; Volkov, P.; Olsson, A.H.; Hansen, T.; Pedersen, O.; Gjesing, A.P.; Eiberg, H.; Tuomi, T.; Almgren, P.; et al. Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes. Nat. Commun. 2016, 7, 11089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mauvais-Jarvis, F. Epidemiology of gender differences in diabetes and obesity. In Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity; Springer: Cham, Switzerland, 2017; pp. 3–8. [Google Scholar]
- Sicree, R.A.; Zimmet, P.Z.; Dunstan, D.W.; Cameron, A.J.; Welborn, T.A.; Shaw, J.E. Differences in height explain gender differences in the response to the oral glucose tolerance test—The AusDiab study. Diabet. Med. 2008, 25, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Goodman-Gruen, D.; Barrett-Connor, E. Sex differences in the association of endogenous sex hormone levels and glucose tolerance status in older men and women. Diabetes Care 2000, 23, 912–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Genugten, R.E.; Utzschneider, K.M.; Tong, J.; Gerchman, F.; Zraika, S.; Udayasankar, J.; Boyko, E.J.; Fujimoto, W.Y.; Kahn, S.E.; American Diabetes Association GENNID Study Group. Effects of sex and hormone replacement therapy use on the prevalence of isolated impaired fasting glucose and isolated impaired glucose tolerance in subjects with a family history of type 2 diabetes. Diabetes 2006, 55, 3529–3535. [Google Scholar] [CrossRef] [Green Version]
- Mitnitski, A.B.; Graham, J.E.; Mogilner, A.J.; Rockwood, K. Frailty, fitness and late-life mortality in relation to chronological and biological age. BMC Geriatr. 2002, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Roberts, C.K.; Hevener, A.L.; Barnard, R.J. Metabolic Syndrome and Insulin Resistance: Underlying Causes and Modification by Exercise Training. Compr. Physiol. 2013, 3, 1–58. [Google Scholar]
- Fukuda-Akita, E.; Okita, K.; Okauchi, Y.; Ryo, M.; Nakamura, T.; Funahashi, T.; Iwahashi, H.; Shimomura, I.; Miyagawa, J.; Yamagata, K. Impaired early insulin secretion in Japanese type 2 diabetes with metabolic syndrome. Diabetes Res. Clin. Pract. 2008, 79, 482–489. [Google Scholar] [CrossRef]
- Morillo, J.S.G.; García-Junco, P.S.; Guisado, M.L.K.; Maroto, I.V.; Andreu, E.P.; Grigalvo, O.M.; de la Fuente, J.C.; Ortiz, J.V. Glucose effectiveness and components of the metabolic syndrome in recently diagnosed hypertensive patients. Med. Clin. 2002, 119, 527–530. [Google Scholar]
- Bae, C.Y.; Piao, M.; Kim, M.; Im, Y.; Kim, S.; Kim, D.; Choi, J.; Cho, K.H. Biological age and lifestyle in the diagnosis of metabolic syndrome: The NHIS health screening data, 2014–2015. Sci. Rep. 2021, 11, 444. [Google Scholar] [CrossRef] [PubMed]
- Newsholme, E.A.; Dimitriadis, G. Integration of biochemical and physiologic effects of insulin on glucose metabolism. Exp. Clin. Endocrinol. Diabetes 2001, 109, S122–S134. [Google Scholar] [CrossRef]
- Ormazabal, V.; Nair, S.; Elfeky, O.; Aguayo, C.; Salomon, C.; Zuñiga, F.A. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc. Diabetol. 2018, 17, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, M.A.; Yang, Y.; Zhang, L.; Sun, Z.; Jia, G.; Parrish, A.R.; Sowers, J.R. Insulin resistance, cardiovascular stiffening and cardiovascular disease. Metabolism 2021, 119, 154766. [Google Scholar] [CrossRef]
- Raji, A.; Williams, J.S.; Hopkins, P.N.; Simonson, D.C.; Williams, G.H. Familial aggregation of insulin resistance and cardiovascular risk factors in hypertension. J. Clin. Hypertens. 2006, 8, 791–796. [Google Scholar] [CrossRef]
- Davis, J.W.; Chung, R.; Juarez, D.T. Prevalence of comorbid conditions with aging among patients with diabetes and cardiovascular disease. Hawaii Med. J. 2011, 70, 209. [Google Scholar] [PubMed]
- GLumer, C.; Jørgensen, T.; Borch-Johnsen, K. Prevalences of diabetes and impaired glucose regulation in a Danish population: The Inter99 study. Diabetes Care 2003, 26, 2335–2340. [Google Scholar] [CrossRef] [Green Version]
- Torquato, M.T.; Montenegro Junior, R.M.; Viana, L.A.; Souza, R.A.; Lanna, C.M.; Lucas, J.C.; Bidurin, C.; Foss, M.C. Prevalence of diabetes mellitus and impaired glucose tolerance in the urban population aged 30–69 years in Ribeirão Preto (São Paulo), Brazil. São Paulo Med. J. 2003, 121, 224–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barzilai, N.; Ferrucci, L. Insulin resistance and aging: A cause or a protective response? J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2012, 67, 1329–1331. [Google Scholar] [CrossRef] [PubMed]
- Gayoso-Diz, P.; Otero-González, A.; Rodriguez-Alvarez, M.X.; Gude, F.; García, F.; De Francisco, A.; Quintela, A.G. Insulin resistance (HOMA-IR) cut-off values and the metabolic syndrome in a general adult population: Effect of gender and age: EPIRCE cross-sectional study. BMC Endocr. Disord. 2013, 13, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, A.M.; Halter, J.B. Aging and insulin secretion. Am. J. Physiol.-Endocrinol. Metab. 2003, 284, E7–E12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrannini, E.; Vichi, S.; Beck-Nielsen, H.; Laakso, M.; Paolisso, L.; Smith, G.; European Group for the Study of Insulin Resistance. Insulin action and age: European Group for the Study of Insulin Resistance (EGIR). Diabetes 1996, 45, 947–953. [Google Scholar]
- Freeman, A.M.; Pennings, N. Insulin Resistance; InStatPearls: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK507839/ (accessed on 20 September 2022).
- Cherkas, A.; Eckl, P.; Guéraud, F.; Abrahamovych, O.; Serhiyenko, V.; Yatskevych, O.; Pliatsko, M.; Golota, S. Helicobacter pylori in sedentary men is linked to higher heart rate, sympathetic activity, and insulin resistance but not inflammation or oxidative stress. Croat. Med. J. 2016, 57, 141–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and abuse of HOMA modeling. Diabetes Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, D.I.W.; Clark, P.M.; Hales, C.N.; Osmond, C. Understanding oral glucose tolerance: Comparison of glucose or insulin measurements during the oral glucose tolerance test with specific measurements of insulin resistance and insulin secretion. Diabet. Med. 1994, 11, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Kjems, L.L.; Vølund, A.; Madsbad, S. Quantification of beta-cell function during IVGTT in Type II and non-diabetic subjects: Assessment of insulin secretion by mathematical methods. Diabetologia 2001, 44, 1339–1348. [Google Scholar] [CrossRef] [Green Version]
- Mitrakou, A.; Vuorinen-Markkola, H.; Raptis, G.; Toft, I.; Mokan, M.; Strumph, P.; Pimenta, W.; Veneman, T.; Jenssen, T.; Bolli, G. Simultaneous assessment of insulin secretion and insulin sensitivity using a hyperglycemia clamp. J. Clin. Endocrinol. Metab. 1992, 75, 379–382. [Google Scholar] [PubMed]
- Rasmussen, H.; Zawalich, K.C.; Ganesan, S.; Calle, R.; Zawalich, W.S. Physiology and pathophysiology of insulin secretion. Diabetes Care 1990, 13, 655–666. [Google Scholar] [CrossRef]
- Henquin, J.C.; Ishiyama, N.; Nenquin, M.; Ravier, M.A.; Jonas, J.C. Signals and pools underlying biphasic insulin secretion. Diabetes 2002, 51, S60–S67. [Google Scholar] [CrossRef] [Green Version]
- PALMER, J.P.; ENSINCK, J.W. Acute-phase insulin secretion and glucose tolerance in young and aged normal men and diabetic patients. J. Clin. Endocrinol. Metab. 1975, 41, 498–503. [Google Scholar] [CrossRef]
- Osei, K.; Gaillard, T.; Schuster, D.P. Pathogenetic mechanisms of impaired glucose tolerance and type II diabetes in African-Americans: The significance of insulin secretion, insulin sensitivity, and glucose effectiveness. Diabetes Care 1997, 20, 396–404. [Google Scholar] [CrossRef]
- Festa, A.; Williams, K.; Hanley, A.J.; Haffner, S.M. β-Cell dysfunction in subjects with impaired glucose tolerance and early type 2 diabetes: Comparison of surrogate markers with first-phase insulin secretion from an intravenous glucose tolerance test. Diabetes 2008, 57, 1638–1644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.D. Levels of the first-phase insulin secretion deficiency as a predictor for type 2 diabetes onset by using clinical-metabolic models. Ann. Saudi Med. 2015, 35, 138–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basu, A.; Rizza, R.A. Glucose effectiveness: Measurement in diabetic and nondiabetic humans. Exp. Clin. Endocrinol. Diabetes 2001, 109, S157–S165. [Google Scholar] [CrossRef] [PubMed]
- Healy, S.J.; Osei, K.; Gaillard, T. Comparative study of glucose homeostasis, lipids and lipoproteins, HDL functionality, and cardiometabolic parameters in modestly severely obese African Americans and white Americans with prediabetes: Implications for the metabolic paradoxes. Diabetes Care 2015, 38, 228–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Men | Women | p | |
---|---|---|---|
n | 43 | 126 | |
Age (years) | 33.1 ± 18.8 | 36.3 ± 19.5 | 0.078 |
Body mass index (BMI) (kg/m2) | 23 ± 0.3 | 22 ± 0.3 | 0.271 |
Systolic blood pressure (SBP) (mmHg) | 116 ± 14 | 113 ± 17 | 0.055 |
Diastolic blood pressure (DBP) (mmHg) | 71 ± 9 | 71 ± 11 | 0.993 |
Fasting plasma glucose (FPG) (mg/dL) | 90.0 ± 0.000 a | 90.0 ± 0.000 a | |
High-density lipoprotein cholesterol (HDL-C) (mmol/dL) | 1.130 ± 0.306 | 1.348 ± 0.357 | <0.001 |
Low-density lipoprotein cholesterol (LDL-C) (mmol/dL) | 3.166 ± 0.757 | 3.162 ± 0.783 | 0.971 |
Triglyceride (TG) (mmol/dL) | 1.217 ± 0.683 | 1.081 ± 0.608 | 0.083 |
Hemoglobin (103/μL) | 15.0 ± 1.0 | 13.0 ± 1.0 | <0.001 |
White blood cell count (103/μL) | 6.285 ± 1.745 | 6.023 ± 1.463 | 0.179 |
Platelet count (103/μL) | 222 ± 49 | 247 ± 54 | <0.001 |
Glucose effectiveness (GE) (10−2 ∙dL ∙min−1 ∙kg−1) | 0.019 ± 0.002 | 0.019 ± 0.002 | 0.204 |
Insulin resistance (IR) (10−4 ∙min−1 ∙pmol−1 ∙L−1) | 3.684 ± 0.014 | 3.685 ± 0.013 | 0.809 |
Log transformation of first-phase insulin secretion (Log_FPIS) (μU/min) | 2.067 ± 0.159 | 1.950 ± 0.186 | <0.001 |
Log transformation of second-phase insulin secretion (Log_SPIS) (pmol/mmol) | −1.222 ± 0.020 | −1.224 ± 0.021 | 0.271 |
r | p | |
---|---|---|
Male | ||
Log transformation of the first-phase insulin secretion | −0.008 | 0.929 |
Log transformation of the second-phase insulin secretion | −0.028 | 0.762 |
Insulin resistance | −0.391 | <0.001 |
Glucose effectiveness | −0.667 | <0.001 |
Female | ||
Log transformation of the first-phase insulin secretion | −0.238 | 0.003 |
Log transformation of the second-phase insulin secretion | 0.096 | 0.240 |
Insulin resistance | −0.240 | 0.003 |
Glucose effectiveness | −0.780 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.-Y.; Liu, C.-H.; Chen, F.-Y.; Kuo, C.-H.; Pitrone, P.; Liu, J.-S. Aging Affects Insulin Resistance, Insulin Secretion, and Glucose Effectiveness in Subjects with Normal Blood Glucose and Body Weight. Diagnostics 2023, 13, 2158. https://doi.org/10.3390/diagnostics13132158
Huang L-Y, Liu C-H, Chen F-Y, Kuo C-H, Pitrone P, Liu J-S. Aging Affects Insulin Resistance, Insulin Secretion, and Glucose Effectiveness in Subjects with Normal Blood Glucose and Body Weight. Diagnostics. 2023; 13(13):2158. https://doi.org/10.3390/diagnostics13132158
Chicago/Turabian StyleHuang, Li-Ying, Chi-Hao Liu, Fang-Yu Chen, Chun-Heng Kuo, Pietro Pitrone, and Jhih-Syuan Liu. 2023. "Aging Affects Insulin Resistance, Insulin Secretion, and Glucose Effectiveness in Subjects with Normal Blood Glucose and Body Weight" Diagnostics 13, no. 13: 2158. https://doi.org/10.3390/diagnostics13132158
APA StyleHuang, L.-Y., Liu, C.-H., Chen, F.-Y., Kuo, C.-H., Pitrone, P., & Liu, J.-S. (2023). Aging Affects Insulin Resistance, Insulin Secretion, and Glucose Effectiveness in Subjects with Normal Blood Glucose and Body Weight. Diagnostics, 13(13), 2158. https://doi.org/10.3390/diagnostics13132158