Increased Epicardial Adipose Tissue and Heart Characteristics Are Correlated with BMI and Predict Silent Myocardial Infarction in Sudden Cardiac Death Subjects: An Autopsy Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Studied Parameters
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kelly, K.L.; Lin, P.T.; Basso, C.; Bois, M.; Buja, L.M.; Cohle, S.D.; d’Amati, G.; Duncanson, E.; Fallon, J.T.; Firchau, D.; et al. Sudden Cardiac Death in the Young: A Consensus Statement on Recommended Practices for Cardiac Examination by Pathologists from the Society for Cardiovascular Pathology. Cardiovasc. Pathol. Off. J. Soc. Cardiovasc. Pathol. 2023, 63, 107497. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, M.; Shimizu, W.; Albert, C.M. The Spectrum of Epidemiology Underlying Sudden Cardiac Death. Circ. Res. 2015, 116, 1887–1906. [Google Scholar] [CrossRef] [PubMed]
- WHO Results Report 2020–2021. Available online: https://www.who.int/about/accountability/results/who-results-report-2020-2021 (accessed on 11 December 2022).
- Rizzo, S.; Carturan, E.; De Gaspari, M.; Pilichou, K.; Thiene, G.; Basso, C. Update on Cardiomyopathies and Sudden Cardiac Death. Forensic Sci. Res. 2019, 4, 202–210. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Deyell, M.W.; Krahn, A.D.; Goldberger, J.J. Sudden Cardiac Death Risk Stratification. Circ. Res. 2015, 116, 1907–1918. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Friedlander, Y.; Siscovick, D.S.; Weinmann, S.; Austin, M.A.; Psaty, B.M.; Lemaitre, R.N.; Arbogast, P.; Raghunathan, T.E.; Cobb, L.A. Family History as a Risk Factor for Primary Cardiac Arrest. Circulation 1998, 97, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Jouven, X.; Desnos, M.; Guerot, C.; Ducimetière, P. Predicting Sudden Death in the Population: The Paris Prospective Study I. Circulation 1999, 99, 1978–1983. [Google Scholar] [CrossRef][Green Version]
- Sallam, K.; Li, Y.; Sager, P.T.; Houser, S.R.; Wu, J.C. Finding the Rhythm of Sudden Cardiac Death. Circ. Res. 2015, 116, 1989–2004. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Montisci, M.; Thiene, G.; Ferrara, S.D.; Basso, C. Cannabis and Cocaine: A Lethal Cocktail Triggering Coronary Sudden Death. Cardiovasc. Pathol. Off. J. Soc. Cardiovasc. Pathol. 2008, 17, 344–346. [Google Scholar] [CrossRef]
- Venkatesh, K.; Deepak, D.C.; Venkatesha, V.T. Escalation of Coronary Atherosclerosis in Younger People by Comparison of Two Autopsy Studies Conducted a Decade Apart. Heart Views Off. J. Gulf Heart Assoc. 2018, 19, 128–136. [Google Scholar] [CrossRef]
- Basso, C.; Calabrese, F.; Corrado, D.; Thiene, G. Postmortem Diagnosis in Sudden Cardiac Death Victims: Macroscopic, Microscopic and Molecular Findings. Cardiovasc. Res. 2001, 50, 290–300. [Google Scholar] [CrossRef][Green Version]
- Bartos, J.A.; Matsuura, T.R.; Sarraf, M.; Youngquist, S.T.; McKnite, S.H.; Rees, J.N.; Sloper, D.T.; Bates, F.S.; Segal, N.; Debaty, G.; et al. Bundled Postconditioning Therapies Improve Hemodynamics and Neurologic Recovery after 17 Min of Untreated Cardiac Arrest. Resuscitation 2015, 87, 7–13. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Betts, T.R.; Sadarmin, P.P.; Tomlinson, D.R.; Rajappan, K.; Wong, K.C.K.; de Bono, J.P.; Bashir, Y. Absolute Risk Reduction in Total Mortality with Implantable Cardioverter Defibrillators: Analysis of Primary and Secondary Prevention Trial Data to Aid Risk/Benefit Analysis. Europace 2013, 15, 813–819. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; de Ferranti, S.; Després, J.-P.; Fullerton, H.J.; Howard, V.J.; et al. Heart Disease and Stroke Statistics—2015 Update: A Report from the American Heart Association. Circulation 2015, 131, e29–e322. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yousuf, O.; Chrispin, J.; Tomaselli, G.F.; Berger, R.D. Clinical Management and Prevention of Sudden Cardiac Death. Circ. Res. 2015, 116, 2020–2040. [Google Scholar] [CrossRef][Green Version]
- Arenja, N.; Mueller, C.; Ehl, N.F.; Brinkert, M.; Roost, K.; Reichlin, T.; Sou, S.M.; Hochgruber, T.; Osswald, S.; Zellweger, M.J. Prevalence, Extent, and Independent Predictors of Silent Myocardial Infarction. Am. J. Med. 2013, 126, 515–522. [Google Scholar] [CrossRef]
- Kwong, R.Y.; Chan, A.K.; Brown, K.A.; Chan, C.W.; Reynolds, H.G.; Tsang, S.; Davis, R.B. Impact of Unrecognized Myocardial Scar Detected by Cardiac Magnetic Resonance Imaging on Event-Free Survival in Patients Presenting with Signs or Symptoms of Coronary Artery Disease. Circulation 2006, 113, 2733–2743. [Google Scholar] [CrossRef][Green Version]
- Pride, Y.B.; Piccirillo, B.J.; Gibson, C.M. Prevalence, Consequences, and Implications for Clinical Trials of Unrecognized Myocardial Infarction. Am. J. Cardiol. 2013, 111, 914–918. [Google Scholar] [CrossRef]
- Valensi, P.; Lorgis, L.; Cottin, Y. Prevalence, Incidence, Predictive Factors and Prognosis of Silent Myocardial Infarction: A Review of the Literature. Arch. Cardiovasc. Dis. 2011, 104, 178–188. [Google Scholar] [CrossRef][Green Version]
- Basso, C.; Aguilera, B.; Banner, J.; Cohle, S.; d’Amati, G.; de Gouveia, R.H.; di Gioia, C.; Fabre, A.; Gallagher, P.J.; Leone, O.; et al. Guidelines for Autopsy Investigation of Sudden Cardiac Death: 2017 Update from the Association for European Cardiovascular Pathology. Virchows Arch. Int. J. Pathol. 2017, 471, 691–705. [Google Scholar] [CrossRef][Green Version]
- Lang, R.M.; Bierig, M.; Devereux, R.B.; Flachskampf, F.A.; Foster, E.; Pellikka, P.A.; Picard, M.H.; Roman, M.J.; Seward, J.; Shanewise, J.S.; et al. Recommendations for Chamber Quantification: A Report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, Developed in Conjunction with the European Association of Echocardiography, a Branch of the European Society of Cardiology. J. Am. Soc. Echocardiogr. Off. Publ. Am. Soc. Echocardiogr. 2005, 18, 1440–1463. [Google Scholar] [CrossRef]
- Stary, H.C.; Chandler, A.B.; Dinsmore, R.E.; Fuster, V.; Glagov, S.; Insull, W.; Rosenfeld, M.E.; Schwartz, C.J.; Wagner, W.D.; Wissler, R.W. A Definition of Advanced Types of Atherosclerotic Lesions and a Histological Classification of Atherosclerosis. A Report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1995, 92, 1355–1374. [Google Scholar] [CrossRef]
- Wang, A.Y.-M.; Ho, S.S.-Y.; Wang, M.; Liu, E.K.-H.; Ho, S.; Li, P.K.-T.; Lui, S.-F.; Sanderson, J.E. Cardiac Valvular Calcification as a Marker of Atherosclerosis and Arterial Calcification in End-Stage Renal Disease. Arch. Intern. Med. 2005, 165, 327–332. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sheifer, S.E.; Manolio, T.A.; Gersh, B.J. Unrecognized Myocardial Infarction. Ann. Intern. Med. 2001, 135, 801–811. [Google Scholar] [CrossRef] [PubMed]
- Kannel, W.B.; Abbott, R.D. Incidence and Prognosis of Unrecognized Myocardial Infarction. An Update on the Framingham Study. N. Engl. J. Med. 1984, 311, 1144–1147. [Google Scholar] [CrossRef]
- Askin, L.; Aşkın, H. The Association Between Serum Procalcitonin Levels and Selvester QRS Score in ST Elevation Myocardial Infarction Patients. MN Kardiyoloji. 2019, 25, 52–59. [Google Scholar]
- Burgess, D.C.; Hunt, D.; Li, L.; Zannino, D.; Williamson, E.; Davis, T.M.E.; Laakso, M.; Kesäniemi, Y.A.; Zhang, J.; Sy, R.W.; et al. Incidence and Predictors of Silent Myocardial Infarction in Type 2 Diabetes and the Effect of Fenofibrate: An Analysis from the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) Study. Eur. Heart J. 2010, 31, 92–99. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kaandorp, T.A.M.; Bax, J.J.; Lamb, H.J.; Viergever, E.P.; Boersma, E.; Poldermans, D.; van der Wall, E.E.; de Roos, A. Which Parameters on Magnetic Resonance Imaging Determine Q Waves on the Electrocardiogram? Am. J. Cardiol. 2005, 95, 925–929. [Google Scholar] [CrossRef]
- Kim, H.W.; Klem, I.; Shah, D.J.; Wu, E.; Meyers, S.N.; Parker, M.A.; Crowley, A.L.; Bonow, R.O.; Judd, R.M.; Kim, R.J. Unrecognized Non-Q-Wave Myocardial Infarction: Prevalence and Prognostic Significance in Patients with Suspected Coronary Disease. PLoS Med. 2009, 6, e1000057. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Montisci, R.; Cecchetto, G.; Ruscazio, M.; Snenghi, R.; Portale, A.; Viel, G.; Nalesso, A.; Paoli, A.; Iliceto, S.; Meloni, L.; et al. Early Myocardial Dysfunction after Chronic Use of Anabolic Androgenic Steroids: Combined Pulsed-Wave Tissue Doppler Imaging and Ultrasonic Integrated Backscatter Cyclic Variations Analysis. J. Am. Soc. Echocardiogr. Off. Publ. Am. Soc. Echocardiogr. 2010, 23, 516–522. [Google Scholar] [CrossRef]
- Lampe, F.C.; Whincup, P.H.; Wannamethee, S.G.; Shaper, A.G.; Walker, M.; Ebrahim, S. The Natural History of Prevalent Ischaemic Heart Disease in Middle-Aged Men. Eur. Heart J. 2000, 21, 1052–1062. [Google Scholar] [CrossRef][Green Version]
- Sigurdsson, E.; Thorgeirsson, G.; Sigvaldason, H.; Sigfusson, N. Unrecognized Myocardial Infarction: Epidemiology, Clinical Characteristics, and the Prognostic Role of Angina Pectoris. The Reykjavik Study. Ann. Intern. Med. 1995, 122, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Sheifer, S.E.; Gersh, B.J.; Yanez, N.D.; Ades, P.A.; Burke, G.L.; Manolio, T.A. Prevalence, Predisposing Factors, and Prognosis of Clinically Unrecognized Myocardial Infarction in the Elderly. J. Am. Coll. Cardiol. 2000, 35, 119–126. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nadelmann, J.; Frishman, W.H.; Ooi, W.L.; Tepper, D.; Greenberg, S.; Guzik, H.; Lazar, E.J.; Heiman, M.; Aronson, M. Prevalence, Incidence and Prognosis of Recognized and Unrecognized Myocardial Infarction in Persons Aged 75 Years or Older: The Bronx Aging Study. Am. J. Cardiol. 1990, 66, 533–537. [Google Scholar] [CrossRef]
- González, N.; Moreno-Villegas, Z.; González-Bris, A.; Egido, J.; Lorenzo, Ó. Regulation of Visceral and Epicardial Adipose Tissue for Preventing Cardiovascular Injuries Associated to Obesity and Diabetes. Cardiovasc. Diabetol. 2017, 16, 44. [Google Scholar] [CrossRef][Green Version]
- Liu, C.-Y.; Redheuil, A.; Ouwerkerk, R.; Lima, J.A.C.; Bluemke, D.A. Myocardial Fat Quantification in Humans: Evaluation by Two-Point Water-Fat Imaging and Localized Proton Spectroscopy. Magn. Reson. Med. Off. J. Soc. Magn. Reson. Med. Soc. Magn. Reson. Med. 2010, 63, 892–901. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhang, Z.-M.; Rautaharju, P.M.; Prineas, R.J.; Rodriguez, C.J.; Loehr, L.; Rosamond, W.D.; Kitzman, D.; Couper, D.; Soliman, E.Z. Race and Sex Differences in the Incidence and Prognostic Significance of Silent Myocardial Infarction in the Atherosclerosis Risk in Communities (ARIC) Study. Circulation 2016, 133, 2141–2148. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hogea, T.; Suciu, B.A.; Ivănescu, A.D.; Carașca, C.; Chinezu, L.; Arbănași, E.M.; Russu, E.; Kaller, R.; Arbănași, E.M.; Mureșan, A.V.; et al. Increased Epicardial Adipose Tissue (EAT), Left Coronary Artery Plaque Morphology, and Valvular Atherosclerosis as Risks Factors for Sudden Cardiac Death from a Forensic Perspective. Diagnostics 2023, 13, 142. [Google Scholar] [CrossRef]
- Perju-Dumbrava, D.; Chiroban, O.; Radu, C.C. Obesity and Overweight Risk Factors in Sudden Death Due to Cardiovascular Causes: A Case Series. Iran. J. Public Health 2017, 46, 856–857. [Google Scholar]
Variables | All Patients n = 189 | Non-SMI n = 130 | SMI n = 59 | p Value |
---|---|---|---|---|
Age mean ± SD | 61.16 ± 10.52 | 60.65 ± 10.28 | 62.28 ± 11.06 | 0.33 |
Male/Female sex N (%) | 140 (74.07%) 49 (25.93%) | 97 (74.62%) 33 (25.38%) | 43 (72.88%) 16 (27.12%%) | 0.80 |
Heart and Coronary Artery Characteristics, mean ± SD | ||||
BMI | 27.11 ± 5.34 | 26.08 ± 5.13 | 29.38 ± 5.25 | <0.0001 |
Heart Weight (g) | 500.36 ± 134.12 | 469.64 ± 106.01 | 568.05 ± 162.89 | <0.0001 |
EAT LCx (cm) | 0.70 ± 0.20 | 0.63 ± 0.17 | 0.85 ± 0.19 | <0.0001 |
EAT LAD (cm) | 0.72 ± 0.22 | 0.65 ± 0.19 | 0.88 ± 0.20 | <0.0001 |
LV thickness (cm) | 1.21 ± 0.28 | 1.18 ± 0.24 | 1.28 ± 0.33 | 0.004 |
IV thickness (cm) | 1.26 ± 0.31 | 1.22 ± 0.29 | 1.35 ± 0.34 | 0.004 |
RV thickness (cm) | 0.27 ± 0.08 | 0.26 ± 0.07 | 0.28 ± 0.09 | 0.10 |
Histological Type of Left Coronary Artery Plaque, N (%) | ||||
No lesion | 6 (3.17%) | 6 (4.62%) | - | 0.21 |
Type I | 2 (1.06%) | 2 (1.54%) | - | 0.58 |
Type II | 7 (3.70%) | 6 (4.62%) | 1 (1.69%) | 0.34 |
Type III | 8 (4.23%) | 7 (5.38%) | 1 (1.69%) | 0.26 |
Type IV | 33 (17.46%) | 26 (20%) | 7 (11.86%) | 0.17 |
Type V | 116 (61.38%) | 72 (55.38%) | 44 (74.58%) | 0.01 |
Type VI | 18 (9.52%) | 12 (9.23%) | 6 (10.17% | 0.83 |
Histological Type of Right Coronary Artery Plaque, N (%) | ||||
No lesion | 11 (5.82%) | 11 (8.46%) | - | 0.09 |
Type I | 7 (3.70%) | 7 (5.38%) | - | 0.17 |
Type II | 8 (4.23%) | 8 (6.15%) | - | 0.14 |
Type III | 17 (8.99%) | 13 (10%) | 4 (6.78%) | 0.48 |
Type IV | 48 (25.40%) | 35 (26.92%) | 13 (22.03%) | 0.20 |
Type V | 77 (40.74%) | 46 (35.38%) | 31 (52.54%) | 0.02 |
Type VI | 21 (11.11%) | 10 (7.69%) | 11 (18.64%) | 0.03 |
Valvular Atherosclerosis, N (%) | ||||
Absent | 79 (41.80%) | 58 (44.62%) | 21 (35.59%) | 0.24 |
Mild | 74 (39.15%) | 57 (43.85%) | 17 (28.81%) | 0.051 |
Moderate | 33 (17.46%) | 15 (11.54%) | 18 (30.51%) | 0.001 |
Severe | 7 (3.70%) | 2 (1.54%) | 5 (8.47%) | 0.01 |
Left Ventricle Dilatation, N (%) | ||||
Absent | 16 (8.47%) | 12 (9.23%) | 4 (6.78%) | 0.57 |
Mild | 65 (34.39%) | 54 (41.54%) | 11 (18.64%) | 0.002 |
Moderate | 73 (38.62%) | 45 (34.62%) | 28 (47.46%) | 0.09 |
Severe | 35 (18.52%) | 19 (14.62%) | 16 (27.12%) | 0.04 |
Heart autopsy findings, N (%) | ||||
Contraction Band Necrosis | 47 (24.87%) | 22 (16.92%) | 25 (42.37%) | <0.0001 |
Hypoplastic Coronary Artery Disease | 27 (14.29%) | 16 (12.31%) | 11 (18.64%) | 0.25 |
Cardiac Lipomatosis | 33 (17.46%) | 23 (17.69%) | 10 (16.95%) | 0.90 |
Fibrinous Pericarditis | 17 (8.99%) | 12 (9.23%) | 5 (8.47%) | 0.86 |
Coronary Bridging | 16 (8.47%) | 9 (6.92%) | 7 (11.86%) | 0.26 |
Variables | Cut-Off | AUC | Std. Error | 95% CI | Sensitivity | Specificity | p Value |
---|---|---|---|---|---|---|---|
Silent Myocardial Infarction | |||||||
BMI | 30.5 | 0.677 | 0.042 | 0.595–0.758 | 55.9% | 73.1% | <0.0001 |
Heart Weight | 502.5 | 0.716 | 0.041 | 0.636–0.795 | 69.5% | 66.9% | <0.0001 |
EAT LCx | 0.65 | 0.796 | 0.035 | 0.728–0.865 | 83.1% | 60% | <0.0001 |
EAT LAD | 0.75 | 0.790 | 0.036 | 0.720–0.861 | 76.3% | 70% | <0.0001 |
LV thickness | 1.25 | 0.619 | 0.046 | 0.528–0.709 | 55.9% | 65.4% | 0.009 |
IV thickness | 1.25 | 0.617 | 0.045 | 0.528–0.706 | 57.6% | 60.8% | 0.01 |
Silent Myocardial Infarction | |||
---|---|---|---|
OR | 95% CI | p value | |
Left Coronary Artery | |||
Type V plaque | 2.36 | 1.19–4.66 | 0.01 |
Right Coronary Artery | |||
Type V plaque | 2.02 | 1.08–3.77 | 0.02 |
Type VI plaque | 2.75 | 1.09–6.89 | 0.03 |
Valvular Atherosclerosis | |||
Mild | 0.51 | 0.26–1.004 | 0.052 |
Moderate | 3.36 | 1.55–7.28 | 0.002 |
Severe | 5.92 | 1.11–13.49 | 0.03 |
Left Ventricle Dilatation | |||
Mild | 0.32 | 0.15–0.67 | 0.003 |
Moderate | 1.70 | 0.91–3.19 | 0.09 |
Severe | 2.17 | 1.02–4.61 | 0.04 |
Contraction Band Necrosis | 3.61 | 1.81–7.20 | <0.001 |
BMI | 3.07 | 1.62–5.81 | <0.001 |
Heart Weight | 3.64 | 1.88–7.03 | <0.001 |
EAT LCx | 7.35 | 3.41–15.8 | <0.001 |
EAT LAD | 7.50 | 3.69–15.21 | <0.001 |
LV thickness | 3.49 | 1.26–12.29 | 0.01 |
IV thickness | 3.90 | 1.44–10.56 | 0.007 |
RV thickness | 1.66 | 0.40–6.92 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hogea, T.; Noemi, N.; Suciu, B.A.; Brinzaniuc, K.; Chinezu, L.; Arbănași, E.M.; Kaller, R.; Carașca, C.; Arbănași, E.M.; Vunvulea, V.; et al. Increased Epicardial Adipose Tissue and Heart Characteristics Are Correlated with BMI and Predict Silent Myocardial Infarction in Sudden Cardiac Death Subjects: An Autopsy Study. Diagnostics 2023, 13, 2157. https://doi.org/10.3390/diagnostics13132157
Hogea T, Noemi N, Suciu BA, Brinzaniuc K, Chinezu L, Arbănași EM, Kaller R, Carașca C, Arbănași EM, Vunvulea V, et al. Increased Epicardial Adipose Tissue and Heart Characteristics Are Correlated with BMI and Predict Silent Myocardial Infarction in Sudden Cardiac Death Subjects: An Autopsy Study. Diagnostics. 2023; 13(13):2157. https://doi.org/10.3390/diagnostics13132157
Chicago/Turabian StyleHogea, Timur, Nagy Noemi, Bogdan Andrei Suciu, Klara Brinzaniuc, Laura Chinezu, Emil Marian Arbănași, Réka Kaller, Cosmin Carașca, Eliza Mihaela Arbănași, Vlad Vunvulea, and et al. 2023. "Increased Epicardial Adipose Tissue and Heart Characteristics Are Correlated with BMI and Predict Silent Myocardial Infarction in Sudden Cardiac Death Subjects: An Autopsy Study" Diagnostics 13, no. 13: 2157. https://doi.org/10.3390/diagnostics13132157