A Review of the Nucleic Acid-Based Lateral Flow Assay for Detection of Breast Cancer from Circulating Biomarkers at a Point-of-Care in Low Income Countries
Abstract
:1. Introduction
2. Breast Cancer in Africa
3. Breast Cancer Symptoms and Diagnosis
3.1. Breast Cancer Susceptibility Genes
3.2. Diagnosis of Breast Cancer
4. Nucleic Acids in Breast Cancer Diagnosis
4.1. Circulating Biomarkers for Breast Cancer Diagnosis
4.2. PCR-Based Diagnostic Methods for Detection of Nucleic Acids
5. NABLFA for Rapid Diagnostics
5.1. NABLFA
5.2. NABLFA in Cancer Diagnosis
5.3. NABLFA in Breast Cancer Diagnosis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Senel, M.; Dervisevic, M.; Kokkokoğlu, F. Electrochemical DNA biosensors for label-free breast cancer gene marker detection. Anal. Bioanal. Chem. 2019, 411, 2925–2935. [Google Scholar] [CrossRef]
- Anand, P.; Kunnumakara, A.B.; Sundaram, C.; Harikumar, K.B.; Tharakan, S.T.; Lai, O.S.; Sung, B.; Aggarwal, B.B. Cancer is a Preventable Disease that Requires Major Lifestyle Changes. Pharm. Res. 2008, 25, 2097. [Google Scholar] [CrossRef]
- Jedy-Agba, E.; McCormack, V.; Adebamowo, C.; dos-Santos-Silva, I. Stage at diagnosis of breast cancer in sub-Saharan Africa: A systematic review and meta-analysis. Lancet Glob. Health 2016, 4, e923–e935. [Google Scholar] [CrossRef]
- Karellas, A.; Vedantham, S. Breast cancer imaging: A perspective for the next decade. Med. Phys. 2008, 35, 4878–4897. [Google Scholar] [CrossRef]
- Ranjan, P.; Parihar, A.; Jain, S.; Kumar, N.; Dhand, C.; Murali, S.; Mishra, D.; Sanghi, S.K.; Chaurasia, J.P.; Srivastava, A.K.; et al. Biosensor-based diagnostic approaches for various cellular biomarkers of breast cancer: A comprehensive review. Anal. Biochem. 2020, 610, 113996. [Google Scholar] [CrossRef] [PubMed]
- Harbeck, N.; Penault-Llorca, F.; Cortes, J.; Gnant, M.; Houssami, N.; Poortmans, P.; Ruddy, K.; Tsang, J.; Cardoso, F. Breast cancer. Nat. Rev. Dis. Prim. 2019, 5, 66. [Google Scholar] [CrossRef]
- Espina, C.; McKenzie, F.; dos-Santos-Silva, I. Delayed presentation and diagnosis of breast cancer in African women: A systematic review. Ann. Epidemiol. 2017, 27, 659–671.e7. [Google Scholar] [CrossRef]
- Van’t Veer, L.J.; Dai, H.; Van de Vijver, M.J.; He, Y.D.; Hart, A.A.M.; Mao, M.; Peterse, H.L.; Van Der Kooy, K.; Marton, M.J.; Witteveen, A.T.; et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002, 415, 530–536. [Google Scholar] [CrossRef]
- Quezada, H.; Guzmán-Ortiz, A.L.; Díaz-Sánchez, H.; Valle-Rios, R.; Aguirre-Hernández, J. Omics-based biomarkers: Current status and potential use in the clinic. Boletín Médico Hosp. Infant. México (Engl. Ed.) 2017, 74, 219–226. [Google Scholar] [CrossRef]
- Dong, J.; Ueda, H. ELISA-type assays of trace biomarkers using microfluidic methods. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017, 9, e1457. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, H.; Li, G.; Kang, Y.; Shi, J.; Kong, T.; Yang, X.; Xu, J.; Li, C.; Su, K.P.; et al. Active smoking, sleep quality and cerebrospinal fluid biomarkers of neuroinflammation. Brain. Behav. Immun. 2020, 89, 623–627. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.B.; Skinner, C.D.; Taylor, J.; Attiya, S.; Lee, W.E.; Picelli, G.; Harrison, D.J. Development of a Multichannel Microfluidic Analysis System Employing Affinity Capillary Electrophoresis for Immunoassay. Anal. Chem. 2001, 73, 1472–1479. [Google Scholar] [CrossRef] [PubMed]
- Shawky, A.M.; El-Tohamy, M. Signal amplification strategy of label-free ultrasenstive electrochemical immunosensor based ternary Ag/TiO2/rGO nanocomposites for detecting breast cancer biomarker CA 15-3. Mater. Chem. Phys. 2021, 272, 124983. [Google Scholar] [CrossRef]
- Li, J.; Peng, Y.; Duan, Y. Diagnosis of breast cancer based on breath analysis: An emerging method. Crit. Rev. Oncol. Hematol. 2013, 87, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Nagai, H.; Kim, Y.H. Cancer prevention from the perspective of global cancer burden patterns. J. Thorac. Dis. 2017, 9, 448. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S. Data mining classification techniques applied for breast cancer diagnosis and prognosis. Indian J. Comput. Sci. Eng. 2011, 2, 188–195. [Google Scholar]
- Pierz, A.J.; Randall, T.C.; Castle, P.E.; Adedimeji, A.; Ingabire, C.; Kubwimana, G.; Uwinkindi, F.; Hagenimana, M.; Businge, L.; Musabyimana, F.; et al. A scoping review: Facilitators and barriers of cervical cancer screening and early diagnosis of breast cancer in Sub-Saharan African health settings. Gynecol. Oncol. Rep. 2020, 33, 100605. [Google Scholar] [CrossRef]
- Morhason-Bello, I.O.; Odedina, F.; Rebbeck, T.R.; Harford, J.; Dangou, J.M.; Denny, L.; Adewole, I.F. Challenges and opportunities in cancer control in Africa: A perspective from the African organisation for research and training in cancer. Lancet Oncol. 2013, 14, e142–e151. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Phakathi, B.; Nietz, S.; Cubasch, H.; Dickens, C.; Dix-Peek, T.; Joffe, M.; Neugut, A.I.; Jacobson, J.; Duarte, R.; Ruff, P. Survival of South African women with breast cancer receiving anti-retroviral therapy for HIV. Breast 2021, 59, 27–36. [Google Scholar] [CrossRef]
- Galukande, M.; Wabinga, H.; Mirembe, F. Breast cancer survival experiences at a tertiary hospital in sub-Saharan Africa: A cohort study. World J. Surg. Oncol. 2015, 13, 220. [Google Scholar] [CrossRef] [PubMed]
- Sankaranarayanan, R.; Swaminathan, R.; Brenner, H.; Chen, K.; Chia, K.S.; Chen, J.G.; Law, S.C.; Ahn, Y.O.; Xiang, Y.B.; Yeole, B.B.; et al. Cancer survival in Africa, Asia, and Central America: A population-based study. Lancet. Oncol. 2010, 11, 165–173. [Google Scholar] [CrossRef]
- Akarolo-Anthony, S.N.; Ogundiran, T.O.; Adebamowo, C.A. Emerging breast cancer epidemic: Evidence from Africa. Breast Cancer Res. 2010, 12, S8. [Google Scholar] [CrossRef] [PubMed]
- Phakathi, B.; Cubasch, H.; Nietz, S.; Dickens, C.; Dix-Peek, T.; Joffe, M.; Neugut, A.I.; Jacobson, J.; Duarte, R.; Ruff, P. Clinico-pathological characteristics among South African women with breast cancer receiving anti-retroviral therapy for HIV. Breast 2019, 43, 123–129. [Google Scholar] [CrossRef]
- Hessol, N.A.; Pipkin, S.; Schwarcz, S.; Cress, R.D.; Bacchetti, P.; Scheer, S. The impact of highly active antiretroviral therapy on Non-AIDS-Defining cancers among adults with AIDS. Am. J. Epidemiol. 2007, 165, 1143–1153. [Google Scholar] [CrossRef] [PubMed]
- Mounier, N.; Katlama, C.; Costagliola, D.; Chichmanian, R.M.; Spano, J.P. Drug interactions between antineoplastic and antiretroviral therapies: Implications and management for clinical practice. Crit. Rev. Oncol. Hematol. 2009, 72, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Brandão, M.; Bruzzone, M.; Franzoi, M.A.; De Angelis, C.; Eiger, D.; Caparica, R.; Piccart-Gebhart, M.; Buisseret, L.; Ceppi, M.; Dauby, N.; et al. Impact of HIV infection on baseline characteristics and survival of women with breast cancer. AIDS 2021, 35, 605–618. [Google Scholar] [CrossRef] [PubMed]
- Coovadia, H.; Jewkes, R.; Barron, P.; Sanders, D.; McIntyre, D. The health and health system of South Africa: Historical roots of current public health challenges. Lancet 2009, 374, 817–834. [Google Scholar] [CrossRef]
- Abdel-Wahab, M.; Bourque, J.M.; Pynda, Y.; Izewska, J.; Van der Merwe, D.; Zubizarreta, E.; Rosenblatt, E. Status of radiotherapy resources in Africa: An international atomic energy agency analysis. Lancet Oncol. 2013, 14, e168–e175. [Google Scholar] [CrossRef]
- Dickens, C.; Duarte, R.; Zietsman, A.; Cubasch, H.; Kellett, P.; Schüuz, J.; Kielkowski, D.; McCormack, V. Racial comparison of receptor-defined breast cancer in Southern African women: Subtype prevalence and age—Incidence analysis of nationwide cancer registry data. Cancer Epidemiol. Biomark. Prev. 2014, 23, 2311–2321. [Google Scholar] [CrossRef] [PubMed]
- Conmy, A. South African health care system analysis. Public Health Rev. 2018, 1, 1–8. [Google Scholar]
- Cubasch, H.; Dickens, C.; Joffe, M.; Duarte, R.; Murugan, N.; Tsai Chih, M.; Moodley, K.; Sharma, V.; Ayeni, O.; Jacobson, J.S.; et al. Breast cancer survival in Soweto, Johannesburg, South Africa: A receptor-defined cohort of women diagnosed from 2009 to 11. Cancer Epidemiol. 2018, 52, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Nietz, S.; Ruff, P.; Chen, W.C.; O’Neil, D.S.; Norris, S.A. Quality indicators for the diagnosis and surgical management of breast cancer in South Africa. Breast 2020, 54, 187–196. [Google Scholar] [CrossRef]
- McCormack, V.A.; Joffe, M.; van den Berg, E.; Broeze, N.; dos Santos Silva, I.; Romieu, I.; Jacobson, J.S.; Neugut, A.I.; Schüz, J.; Cubasch, H. Breast cancer receptor status and stage at diagnosis in over 1,200 consecutive public hospital patients in Soweto, South Africa: A case series. Breast Cancer Res. 2013, 15, R84. [Google Scholar] [CrossRef] [PubMed]
- Forouzanfar, M.H.; Foreman, K.J.; Delossantos, A.M.; Lozano, R.; Lopez, A.D.; Murray, C.J.L.; Naghavi, M. Breast and cervical cancer in 187 countries between 1980 and 2010: A systematic analysis. Lancet 2011, 378, 1461–1484. [Google Scholar] [CrossRef]
- Dickens, C.; Joffe, M.; Jacobson, J.; Venter, F.; Schüz, J.; Cubasch, H.; McCormack, V. Stage at breast cancer diagnosis and distance from diagnostic hospital in a periurban setting: A South African public hospital case series of over 1000 women. Int. J. Cancer 2014, 135, 2173–2182. [Google Scholar] [CrossRef] [PubMed]
- Freeman, E.; Semeere, A.; Wenger, M.; Bwana, M.; Asirwa, F.C.; Busakhala, N.; Oga, E.; Jedy-Agba, E.; Kwaghe, V.; Iregbu, K.; et al. Pitfalls of practicing cancer epidemiology in resource-limited settings: The case of survival and loss to follow-up after a diagnosis of Kaposi’s sarcoma in five countries across sub-Saharan Africa. BMC Cancer 2016, 16, 65. [Google Scholar] [CrossRef] [PubMed]
- Le, E.P.V.; Wang, Y.; Huang, Y.; Hickman, S.; Gilbert, F.J. Artificial intelligence in breast imaging. Clin. Radiol. 2019, 74, 357–366. [Google Scholar] [CrossRef]
- Lee, S.W.; Hyun, K.A.; Kim, S.I.; Kang, J.Y.; Jung, H.I. Continuous enrichment of circulating tumor cells using a microfluidic lateral flow filtration chip. J. Chromatogr. A 2015, 1377, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Lin, Q.; Su, X.H.; Cui, C.X.; Bian, T.T.; Wang, C.Q.; Zhao, J.; Li, L.L.; Ma, J.Z.; Huang, J.L. Breast ductal carcinoma in situ with micro-invasion versus ductal carcinoma in situ: A comparative analysis of clinicopathological and mammographic findings. Clin. Radiol. 2021, 76, 787.e1–787.e7. [Google Scholar] [CrossRef]
- CDC. What Are the Symptoms of Breast Cancer? Available online: https://www.cdc.gov/cancer/breast/basic_info/risk_factors.htm (accessed on 8 June 2022).
- Malherbe, K.; Khan, M.; Fatima, S. Fibrocystic Breast Disease. Up to Date 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK551609/ (accessed on 13 June 2022).
- Stachs, A.; Stubert, J.; Reimer, T.; Hartmann, S. Benign breast disease in women. Dtsch. Arztebl. Int. 2019, 116, 565. [Google Scholar] [CrossRef]
- Sheikh, A.; Hussain, S.A.; Ghori, Q.; Naeem, N.; Fazil, A.; Giri, S.; Sathian, B.; Mainali, P.; Al Tamimi, D.M. The spectrum of genetic mutations in breast cancer. Asian Pac. J. Cancer Prev. 2015, 16, 2177–2185. [Google Scholar] [CrossRef] [PubMed]
- Oldenburg, R.A.; Meijers-Heijboer, H.; Cornelisse, C.J.; Devilee, P. Genetic susceptibility for breast cancer: How many more genes to be found? Crit. Rev. Oncol. Hematol. 2007, 63, 125–149. [Google Scholar] [CrossRef] [PubMed]
- Holland, M.L.; Huston, A.; Noyes, K. Cost-effectiveness of testing for breast cancer susceptibility genes. Value Health 2009, 12, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Casey, M.; Bewtra, C. Peritoneal carcinoma in women with genetic susceptibility: Implications for Jewish populations. Fam. Cancer 2004, 3, 265–281. [Google Scholar] [CrossRef] [PubMed]
- Friebel, T.M.; Andrulis, I.L.; Balmaña, J.; Blanco, A.M.; Couch, F.J.; Daly, M.B.; Domchek, S.M.; Easton, D.F.; Foulkes, W.D.; Ganz, P.A.; et al. BRCA1 and BRCA2 pathogenic sequence variants in women of African origin or ancestry. Hum. Mutat. 2019, 40, 1781–1796. [Google Scholar] [CrossRef] [PubMed]
- Struewing, J.P.; Hartge, P.; Wacholder, S.; Baker, S.M.; Berlin, M.; McAdams, M.; Timmerman, M.M.; Brody, L.C.; Tucker, M.A. The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N. Engl. J. Med. 1997, 336, 1401–1408. [Google Scholar] [CrossRef] [PubMed]
- PDQ Cancer Genetics Editorial Board. Genetics of Breast and Gynecologic Cancers (PDQ®): Health Professional Version; PDQ Cancer Information Summaries; National Cancer Institute: Bethasda, MD, USA, 2002. [Google Scholar]
- Ibrahim, M.; Yadav, S.; Ogunleye, F.; Zakalik, D. Male BRCA mutation carriers: Clinical characteristics and cancer spectrum. BMC Cancer 2018, 18, 179. [Google Scholar] [CrossRef]
- Karami, F.; Mehdipour, P. A comprehensive focus on global spectrum of BRCA1 and BRCA2 mutations in breast cancer. Biomed Res. Int. 2013, 2013, 928562. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Sau, C.; Lai, W.; Cichon, J.; Li, W. BRAC1 and BRAC2 mutation and treatment strategies for breast cancer. HHS Pulic Access 2015, 344, 1173–1178. [Google Scholar]
- Song, Y.; Huang, Y.Y.; Liu, X.; Zhang, X.; Ferrari, M.; Qin, L. Point-of-care technologies for molecular diagnostics using a drop of blood. Trends Biotechnol. 2014, 32, 132–139. [Google Scholar] [CrossRef]
- Roche Foundation Medicine|Cancer testing. Available online: https://www.rochefoundationmedicine.com/cancertesting.html (accessed on 1 August 2022).
- Ali, M.A.; Mondal, K.; Jiao, Y.; Oren, S.; Xu, Z.; Sharma, A.; Dong, L. Microfluidic immuno-biochip for detection of breast cancer biomarkers using hierarchical composite of porous graphene and titanium dioxide nanofibers. ACS Appl. Mater. Interfaces 2016, 8, 20570–20582. [Google Scholar] [CrossRef] [PubMed]
- Allemani, C.; Weir, H.K.; Carreira, H.; Harewood, R.; Spika, D.; Wang, X.S.; Bannon, F.; Ahn, J.V.; Johnson, C.J.; Bonaventure, A. Global surveillance of cancer survival 1995-2009: Analysis of individual data for 25 676 887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet 2015, 385, 977–1010. [Google Scholar] [CrossRef]
- Lee, C.H.; Dershaw, D.D.; Kopans, D.; Evans, P.; Monsees, B.; Monticciolo, D.; Brenner, R.J.; Bassett, L.; Berg, W.; Feig, S.; et al. Breast cancer screening with imaging: Recommendations from the Society of Breast Imaging and the ACR on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer. J. Am. Coll. Radiol. 2010, 7, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Dervisevic, M.; Alba, M.; Adams, T.E.; Prieto-Simon, B.; Voelcker, N.H. Electrochemical immunosensor for breast cancer biomarker detection using high-density silicon microneedle array. Biosens. Bioelectron. 2021, 192, 113496. [Google Scholar] [CrossRef] [PubMed]
- Grimaldi, A.M.; Conte, F.; Pane, K.; Fiscon, G.; Mirabelli, P.; Baselice, S.; Giannatiempo, R.; Messina, F.; Franzese, M.; Salvatore, M.; et al. The new paradigm of network medicine to analyze breast cancer phenotypes. Int. J. Mol. Sci. 2020, 21, 6690. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-Y.; Chiao, C.-C.; Phan, N.N.; Li, C.-Y.; Sun, Z.-D.; Jiang, J.-Z.; Hung, J.-H.; Chen, Y.-L.; Yen, M.-C.; Weng, T.-Y.; et al. Gene signatures and potential therapeutic targets of amino acid metabolism in estrogen receptor-positive breast cancer. Am. J. Cancer Res. 2020, 10, 95. [Google Scholar] [PubMed]
- Lien, T.G.; Ohnstad, H.O.; Lingjærde, O.C.; Vallon-Christersson, J.; Aaserud, M.; Sveli, M.A.T.; Borg, Å.; Garred, Ø.; Borgen, E.; Naume, B.; et al. Sample Preparation Approach Influences PAM50 Risk of Recurrence Score in Early Breast Cancer. Cancers 2021, 13, 6118. [Google Scholar] [CrossRef]
- Li, F.; You, M.; Li, S.; Hu, J.; Liu, C.; Gong, Y.; Yang, H.; Xu, F. Paper-based point-of-care immunoassays: Recent advances and emerging trends. Biotechnol. Adv. 2020, 39, 107442. [Google Scholar] [CrossRef] [PubMed]
- Mediclinic. The Mediclinic Southern Africa Private Tariff Schedule. 2021. Available online: https://www.mediclinic.co.za/content/dam/mc-sa-corporate/downloads/stay-and-visit/Mediclinic%20Southern%20Africa%20Private%20Tariff%20Schedule%202021%20(South%20Africa%20only).pdf (accessed on 2 July 2022).
- Stroun, M.; Anker, P.; Maurice, P.; Lyautey, J.; Lederrey, C.; Beljanski, M. Neoplastic characteristics of the dna found in the plasma of cancer patients. Oncology 1989, 46, 318–322. [Google Scholar] [CrossRef]
- Lenshof, A.; Ahmad-Tajudin, A.; Järås, K.; Swärd-Nilsson, A.M.; Åberg, L.; Marko-Varga, G.; Malm, J.; Lilja, H.; Laurell, T. Acoustic whole blood plasmapheresis chip for prostate specific antigen microarray diagnostics. Anal. Chem. 2009, 81, 6030–6037. [Google Scholar] [CrossRef] [PubMed]
- Marieb, E. Essentials of Human Anatomy and Physiology, 6th ed.; Benjamin Cummings: San Francisco, CA, USA, 2000; ISBN 9780805349405. [Google Scholar]
- Li, J.; Guan, X.; Fan, Z.; Ching, L.M.; Li, Y.; Wang, X.; Cao, W.M.; Liu, D.X. Non-invasive biomarkers for early detection of breast cancer. Cancers 2020, 12, 2767. [Google Scholar] [CrossRef] [PubMed]
- Suea-Ngam, A.; Bezinge, L.; Mateescu, B.; Howes, P.D.; Demello, A.J.; Richards, D.A. Enzyme-assisted nucleic acid detection for infectious disease diagnostics: Moving toward the point-of-care. ACS Sens. 2020, 5, 2701–2723. [Google Scholar] [CrossRef]
- Dennis Lo, Y.M. Circulating nucleic acids in plasma and serum: An overview. Ann. N.Y. Acad. Sci. 2001, 945, 1–7. [Google Scholar] [CrossRef]
- Fleischhacker, M.; Schmidt, B. Free circulating nucleic acids in plasma and serum (CNAPS)—Useful for the detection of lung cancer patients? Cancer Biomark. 2009, 6, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Manoharan, A.; Sambandam, R.; Bhat, V. Recent technologies enhancing the clinical utility of circulating tumor DNA. Clin. Chim. Acta 2020, 510, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Kalishwaralal, K.; Kwon, W.Y.; Park, K.S. Exosomes for non-invasive cancer monitoring. Biotechnol. J. 2019, 14, 1800430. [Google Scholar] [CrossRef]
- Phan, J.H.; Moffitt, R.A.; Stokes, T.H.; Liu, J.; Young, A.N.; Nie, S.; Wang, M.D. Convergence of biomarkers, bioinformatics and nanotechnology for individualized cancer treatment. Trends Biotechnol. 2009, 27, 350–358. [Google Scholar] [CrossRef]
- Schmidt, B.; Weickmann, S.; Witt, C.; Fleischhacker, M. Improved method for isolating cell-free DNA. Clin. Chem. 2005, 51, 1561–1563. [Google Scholar] [CrossRef]
- Tan, E.M.; Schur, P.H.; Carr, R.I.; Kunkel, H.G. Deoxyribonucleic Acid (DNA) and antibodies to DNA in the serum of patients with systemic lupus erythematosus. J. Clin. Investig. 1966, 45, 1732–1740. [Google Scholar] [CrossRef]
- Leon, S.A.; Shapiro, B.; Sklaroff, D.M.; Yaros, M.J. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 1977, 37, 646–650. [Google Scholar] [PubMed]
- Scherer, F.; Kurtz, D.M.; Diehn, M.; Alizadeh, A.A. High-throughput sequencing for noninvasive disease detection in hematologic malignancies. Blood 2017, 130, 440. [Google Scholar] [CrossRef] [PubMed]
- Sefrioui, D.; Blanchard, F.; Toure, E.; Basile, P.; Beaussire, L.; Dolfus, C.; Perdrix, A.; Paresy, M.; Antonietti, M.; Iwanicki-Caron, I.; et al. Diagnostic value of CA19.9, circulating tumour DNA and circulating tumour cells in patients with solid pancreatic tumours. Br. J. Cancer 2017, 117, 1017. [Google Scholar] [CrossRef]
- Kodahl, A.R.; Lyng, M.B.; Binder, H.; Cold, S.; Gravgaard, K.; Knoop, A.S.; Ditzel, H.J. Novel circulating microRNA signature as a potential non-invasive multi-marker test in ER-positive early-stage breast cancer: A case control study. Mol. Oncol. 2014, 8, 874–883. [Google Scholar] [CrossRef] [PubMed]
- Heneghan, H.M.; Miller, N.; Lowery, A.J.; Sweeney, K.J.; Newell, J.; Kerin, M.J. Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann. Surg. 2010, 251, 499–505. [Google Scholar] [CrossRef]
- Iorio, M.V.; Casalini, P.; Piovan, C.; Braccioli, L.; Tagliabue, E. Breast cancer and microRNAs: Therapeutic impact. Breast 2011, 20, S63–S70. [Google Scholar] [CrossRef]
- Sapountzi, E.A.; Tragoulias, S.S.; Kalogianni, D.P.; Ioannou, P.C.; Christopoulos, T.K. Lateral flow devices for nucleic acid analysis exploiting quantum dots as reporters. Anal. Chim. Acta 2015, 864, 48–54. [Google Scholar] [CrossRef]
- Trevino, V.; Falciani, F.; Barrera-Saldaña, H.A. DNA microarrays: A powerful genomic tool for biomedical and clinical research. Mol. Med. 2007, 13, 527–541. [Google Scholar] [CrossRef]
- Chikkaveeraiah, B.V.; Bhirde, A.A.; Morgan, N.Y.; Eden, H.S.; Chen, X. Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano 2012, 6, 6546–6561. [Google Scholar] [CrossRef]
- Shi, W.; Friedman, A.K.; Baker, L.A. Nanopore sensing. Anal. Chem. 2017, 89, 157. [Google Scholar] [CrossRef]
- Liu, G.; Mao, X.; Phillips, J.A.; Xu, H.; Tan, W.; Zeng, L. Aptamer-nanoparticle strip biosensor for sensitive detection of cancer cells. Anal. Chem. 2009, 81, 10013–10018. [Google Scholar] [CrossRef] [PubMed]
- Labib, M.; Khan, N.; Ghobadloo, S.M.; Cheng, J.; Pezacki, J.P.; Berezovski, M.V. Three-mode electrochemical sensing of ultralow MicroRNA levels. J. Am. Chem. Soc. 2013, 135, 3027–3038. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, T.; de la Guardia, M.; Baradaran, B. Lateral flow assays towards point-of-care cancer detection: A review of current progress and future trends. TrAC Trends Anal. Chem. 2020, 125, 115842. [Google Scholar] [CrossRef]
- Martin, D.R.; Sibuyi, N.R.; Dube, P.; Fadaka, A.O.; Cloete, R.; Onani, M.; Madiehe, A.M.; Meyer, M. Aptamer-based diagnostic systems for the rapid screening of TB at the point-of-care. Diagnostics 2021, 11, 1352. [Google Scholar] [CrossRef]
- Blažková, M.; Koets, M.; Rauch, P.; van Amerongen, A. Development of a nucleic acid lateral flow immunoassay for simultaneous detection of listeria spp. and listeria monocytogenes in food. Eur. Food Res. Technol. 2009, 229, 867–874. [Google Scholar] [CrossRef]
- Andryukov, B.G. Six decades of lateral flow immunoassay: From determining metabolic markers to diagnosing COVID-19. AIMS Microbiol. 2020, 6, 280–304. [Google Scholar] [CrossRef]
- Liu, Y.; Zhan, L.; Qin, Z.; Sackrison, J.; Bischof, J.C. Ultrasensitive and highly specific lateral flow assays for point-of-care. Diagnosis 2021, 15, 3593–3611. [Google Scholar] [CrossRef]
- Sajid, M.; Kawde, A.N.; Daud, M. Designs, formats and applications of lateral flow assay: A literature review. J. Saudi Chem. Soc. 2015, 19, 689–705. [Google Scholar] [CrossRef]
- Jauset-Rubio, M.; Svobodová, M.; Mairal, T.; McNeil, C.; Keegan, N.; Saeed, A.; Abbas, M.N.; El-Shahawi, M.S.; Bashammakh, A.S.; Alyoubi, A.O.; et al. Ultrasensitive, rapid and inexpensive detection of DNA using paper based lateral flow assay. Sci. Rep. 2016, 6, 37732. [Google Scholar] [CrossRef]
- Chen, A.; Yang, S. Replacing antibodies with aptamers in lateral flow immunoassay. Biosens. Bioelectron. 2015, 71, 230–242. [Google Scholar] [CrossRef]
- Quesada-González, D.; Merkoçi, A. Nanoparticle-based lateral flow biosensors. Biosens. Bioelectron. 2015, 73, 47–63. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, X.; Han, L.; Niu, S.; Shi, C.; Ma, C. Rapid detection of foodborne pathogen Listeria monocytogenes by strand exchange amplification. Anal. Biochem. 2018, 545, 38–42. [Google Scholar] [CrossRef]
- Mao, X.; Wang, W.; Du, T.E. Dry-reagent nucleic acid biosensor based on blue dye doped latex beads and lateral flow strip. Talanta 2013, 114, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.; Zhang, S.; Hu, X. Signal enhancement in a lateral flow immunoassay based on dual gold nanoparticle conjugates. Clin. Biochem. 2013, 46, 1734–1738. [Google Scholar] [CrossRef]
- Cantera, J.L.; White, H.; Diaz, M.H.; Beall, S.G.; Winchell, J.M.; Lillis, L.; Kalnoky, M.; Gallarda, J.; Boyle, D.S. Assessment of eight nucleic acid amplification technologies for potential use to detect infectious agents in low-resource settings. PLoS ONE 2019, 14, e0215756. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Ma, J.; Zhang, Q.; Li, N.; Yang, J.; Raju, P.A.; Peng, M.; Luo, Y.; Hui, W.; Chen, C.; et al. Polyelectrolyte-coated gold magnetic nanoparticles for immunoassay development: Toward point of care diagnostics for syphilis screening. Anal. Chem. 2013, 85, 6688–6695. [Google Scholar] [CrossRef] [PubMed]
- Kalligosfyri, P.; Nikou, S.; Bravou, V.; Kalogianni, D.P. Liquid biopsy genotyping by a simple lateral flow strip assay with visual detection. Anal. Chim. Acta 2021, 1163, 338470. [Google Scholar] [CrossRef]
- Tan, C.; Du, X. KRAS mutation testing in metastatic colorectal cancer. World J. Gastroenterol. 2012, 18, 5171. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, H.; Xu, Y.; Laššáková, S.; Korabečná, M.; Neužil, P. PCR past, present and future. Biotechniques 2020, 69, 317–325. [Google Scholar] [CrossRef]
- Paul, R.; Ostermann, E.; Wei, Q. Advances in point-of-care nucleic acid extraction technologies for rapid diagnosis of human and plant diseases. Biosens. Bioelectron. 2020, 169, 112592. [Google Scholar] [CrossRef]
- Moehling, T.J.; Choi, G.; Dugan, L.C.; Salit, M.; Meagher, R.J. LAMP diagnostics at the point-of-care: Emerging trends and perspectives for the developer community. Expert Rev. Mol. Diagn. 2021, 21, 43–61. [Google Scholar] [CrossRef] [PubMed]
- Warkiani, M.E.; Guan, G.; Luan, K.B.; Lee, W.C.; Bhagat, A.A.S.; Kant Chaudhuri, P.; Tan, D.S.W.; Lim, W.T.; Lee, S.C.; Chen, P.C.Y.; et al. Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Lab Chip 2014, 14, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.; Othman, S.; Lau, Y.; Radu, S.; Chee, H. Loop-mediated isothermal amplification (LAMP): A versatile technique for detection of micro-organisms. J. Appl. Microbiol. 2018, 124, 626–643. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Mauk, M.; Qiu, X.; Liu, C.; Kim, J.; Ramprasad, S.; Ongagna, S.; Abrams, W.R.; Malamud, D.; Corstjens, P.L.A.M.; et al. An integrated, self-contained microfluidic cassette for isolation, amplification, and detection of nucleic acids. Biomed. Microdevices 2010, 12, 705–719. [Google Scholar] [CrossRef] [PubMed]
- Horvath, P.; Barrangou, R. CRISPR/Cas, the immune system of bacteria and archaea. Science 2010, 327, 167–170. [Google Scholar] [CrossRef]
- Pavagada, S.; Channon, R.B.; Chang, J.Y.H.; Kim, S.H.; MacIntyre, D.; Bennett, P.R.; Terzidou, V.; Ladame, S. Oligonucleotide-templated lateral flow assays for amplification-free sensing of circulating microRNAs. Chem. Commun. 2019, 55, 12451–12454. [Google Scholar] [CrossRef]
- Ribeiro, C.; Gante, I.; Dias, M.F.; Gomes, A.; Silva, H.C. A new application to one-step nucleic acid amplification-discarded sample in breast cancer: Preliminary results. Mol. Clin. Oncol. 2021, 15, 216. [Google Scholar] [CrossRef]
- Beretov, J.; Wasinger, V.C.; Millar, E.K.A.; Schwartz, P.; Graham, P.H.; Li, Y. Proteomic analysis of urine to identify breast cancer biomarker candidates using a label-free LC-MS/MS approach. PLoS ONE 2015, 10, e0141876. [Google Scholar] [CrossRef]
- MarketsandMarketsTM. INC Lateral Flow Assays Market worth $12.6 Billion by 2026—Report by MarketsandMarketsTM. Available online: https://www.marketsandmarkets.com/PressReleases/lateral-flow-assay.asp (accessed on 13 July 2022).
- Labmedica. Point-of-Care Lateral Flow Test Detects Bladder Cancer Using Urine Sample within Minutes—Molecular Diagnostics. Available online: https://www.labmedica.com/molecular-diagnostics/articles/294791303/point-of-care-lateral-flow-test-detects-bladder-cancer-using-urine-sample-within-minutes.html (accessed on 7 July 2022).
- Jani, I.V.; Peter, T.F. Nucleic acid point-of-care testing to improve diagnostic preparedness. Clin. Infect. Dis. 2022, ciac013. [Google Scholar] [CrossRef] [PubMed]
- University Research, Co. Rapid Test Improves TB Diagnosis in People with HIV in South Africa—URC. Available online: https://www.urc-chs.com/news/rapid-test-improves-tb-diagnosis-in-people-with-hiv-in-south-africa/ (accessed on 11 July 2022).
- Sun, Y.; Qin, P.; He, J.; Li, W.; Shi, Y.; Xu, J.; Wu, Q.; Chen, Q.; Li, W.; Wang, X.; et al. Rapid and simultaneous visual screening of SARS-CoV-2 and influenza virufses with customized isothermal amplification integrated lateral flow strip. Biosens. Bioelectron. 2022, 197, 113771. [Google Scholar] [CrossRef] [PubMed]
- Aveyard, J.; Mehrabi, M.; Cossins, A.; Braven, H.; Wilson, R. One step visual detection of PCR products with gold nanoparticles and a nucleic acid lateral flow (NALF) device. Chem. Commun. 2007, 41, 4251–4253. [Google Scholar] [CrossRef] [PubMed]
Low-Risk Genes | Moderate Risk Genes | High-Risk Genes |
---|---|---|
Fibroblast growth factor receptor 2 | CHEK2 | BRCA1 |
TOX high mobility group box family member 3 | Partner and localizer of BRCA (PALB) 2 | BRCA2 |
mitogen-activated protein kinase kinase kinase 1 | BRCA1 Interacting Protein 1 | PTEN |
FAM84B/C-MYC | ATM | TP53 |
lymphocyte-specific protein 1 | STK11 | |
NIMA Related Kinase 10 | CDHI | |
Cytochrome c oxidase 11 | ||
CASP8(D302H) | ||
TNP/IGFBP5/IGFBP2/TNSI | ||
Neurogenic locus notch homolog protein 2/Fc gamma receptor Ib | ||
RAD5ILI | ||
mitochondrial ribosomal protein S30/FcgammaRI | ||
Estrogen receptor I |
Technique | Advantage | Disadvantage | * Cost Per Consultation (ZAR) |
---|---|---|---|
Biopsy | The results provide all the characteristics of the cancer cells. | Require surgery to get a sample women who may not have breast cancer will have the surgery just to clear them. | R11,000–R26,000 |
Endoscopy | More details about the cancer cells (colour, texture). Short operation time Can see cancer in hidden areas. | Requires surgery and may leave a scar. | R1000–R4000 |
Diagnostic Imaging (CAT, X-rays, MRI) | Screening of high-risk woman gives more information about suspicious area. Detect the spreading of cancer to other parts of the body and Monitor reoccurrence after treatment. | A contrast solution (dye) is intravenously injected into your arm. This dye can affect your kidneys, a test for kidneys must be performed before it’s injected. The procedure is invasive and requires too many tests. | R6000–R12,000 |
Breast self-exam | Detect tumour at an early stage. | Validation must be followed-up with molecular tests. | Free |
Method | Advantage | Disadvantage | Ref. |
---|---|---|---|
Microarrays | Analysis of thousands of genes in a single test to create molecular tumour profiles | Require long hybridisation times Prolonged wash steps that can take up to 24 h | [84] |
RT-PCR | DNA amplification increases sensitivity Test multiple samples simultaneously | Requires a series of temperature changes Tedious sample preparation Equipment | [85] |
Nano pore sensor | Label-free. Small sample size Amplification free Distinguish single-nucleotide differences | No reproducibility or adaptability of biological system | [86] |
Micro-fluid devices | Rapid purification of nucleic acids | Challenging to integrate blood pre-treatment steps | [87] |
A three-mode electrochemical sensor (HPD-SENS) | Detect low concentrations of miRNA 10 aM to 1 mM range Multiple miRNAs on a single electrode. Exhibits high selectivity and specificity. | Detection of low of copy number of sample of DNA/RNA in samples for early onset of a disease | [88] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dyan, B.; Seele, P.P.; Skepu, A.; Mdluli, P.S.; Mosebi, S.; Sibuyi, N.R.S. A Review of the Nucleic Acid-Based Lateral Flow Assay for Detection of Breast Cancer from Circulating Biomarkers at a Point-of-Care in Low Income Countries. Diagnostics 2022, 12, 1973. https://doi.org/10.3390/diagnostics12081973
Dyan B, Seele PP, Skepu A, Mdluli PS, Mosebi S, Sibuyi NRS. A Review of the Nucleic Acid-Based Lateral Flow Assay for Detection of Breast Cancer from Circulating Biomarkers at a Point-of-Care in Low Income Countries. Diagnostics. 2022; 12(8):1973. https://doi.org/10.3390/diagnostics12081973
Chicago/Turabian StyleDyan, Busiswa, Palesa Pamela Seele, Amanda Skepu, Phumlane Selby Mdluli, Salerwe Mosebi, and Nicole Remaliah Samantha Sibuyi. 2022. "A Review of the Nucleic Acid-Based Lateral Flow Assay for Detection of Breast Cancer from Circulating Biomarkers at a Point-of-Care in Low Income Countries" Diagnostics 12, no. 8: 1973. https://doi.org/10.3390/diagnostics12081973