Detection of Patient HIV-1 Drug Resistance Mutations in Russia’s Northwestern Federal District in Patients with Treatment Failure
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Complete Sample Name | Subtype in REGA (Version 3.0) | Subtype by Phylogenetic Analysis |
---|---|---|
AB098332 | A3 | A3 |
AB231896 | CRF 02AG | CRF 02AG |
AB231898 | CRF 02AG | CRF 02AG |
AB287376 | A1 | A1 |
AF061641 | G | G |
AF063224 | CRF 02AG | CRF 02AG |
AF067155 | C | C |
AF069670 | A1 | A1 |
AF075703 | F1 | F1 |
AF084936 | G | G |
AF107771 | A | A |
AF286237 | A2 | A2 |
AF377954 | CRF 02AG | CRF 02AG |
AF413987 | A6 | A1 |
AF484509 | A1 | A1 |
AY151001 | CRF 02AG | CRF 02AG |
AY173951 | B | B |
AY500393 | A6 | A6 |
AY521629 | A3 | A3 |
AY521631 | A3 | A3 |
AY713409 | B | B |
AY772699 | C | C |
EF589043 | A6 | A6 |
EU110087 | A1 | A1 |
EU786671 | CRF 02AG | CRF 02AG |
EU861977 | A1 | A1 |
GU201514 | CRF 02AG | CRF 02AG |
HM586190 | B | B |
HQ161930 | A6 | A6 |
HQ449397 | A6 | A6 |
KJ771697 | B | B |
KT124792 | CRF 02AG | CRF 02AG |
M17449 | B | B |
U46016 | C | C |
U51190 | A1 | A1 |
U52953 | C | C |
U88826 | G | G |
MH605500.1 | CRF 06cpx | CRF 06cpx |
HQ529257.1 | CRF 06cpx | CRF 06cpx |
References
- Weiss, R.A. How does HIV cause AIDS? Science 1993, 260, 1273–1279. [Google Scholar] [CrossRef] [PubMed]
- Walker, N.; Grassly, N.C.; Gamett, G.P. Estimating the global burden of HIV/AIDS: What do we really know about the HIV pandemic? Lancet 2004, 363, 2180–2185. [Google Scholar] [CrossRef]
- Taylor, B.S.; Sobieszczyk, M.E.; McCutchan, F.E. The challenge of HIV-1 subtype diversity. N. Engl. J. Med. 2008, 358, 1590–1602. [Google Scholar] [CrossRef] [PubMed]
- Troyer, R.M.; Collins, K.R.; Abraha, A.; Fraundorf, E.; Moore, D.M.; Krizan, R.W.; Toossi, Z.; Colebunders, R.L.; Jensen, M.A.; Mullins, J.I.; et al. Changes in human immunodeficiency virus type 1 fitness and genetic diversity during disease progression. J. Virol. 2005, 79, 9006–9018. [Google Scholar] [CrossRef]
- Bbosa, N.; Kaleebu, P.; Ssemwanga, D. HIV subtype diversity worldwide. Curr. Opin. HIV AIDS 2019, 14, 153–160. [Google Scholar] [CrossRef]
- Bobkov, A.F.; Kazennova, E.V.; Selimova, L.M.; Khanina, T.A.; Ryabov, G.S.; Bobkova, M.R.; Sukhanova, A.L.; Kravchenko, A.V.; Ladnaya, N.N.; Weber, J.N.; et al. Temporal trends in the HIV-1 epidemic in Russia: Predominance of subtype A. J. Med. Virol. 2004, 74, 191–196. [Google Scholar] [CrossRef]
- Sacktor, N.; Nakasujja, N.; Skolasky, R.L.; Rezapour, M.; Robertson, K.; Musisi, S.; Katabira, E.; Ronald, A.; Clifford, D.B.; Laeyendecker, O.; et al. HIV subtype D is associated with dementia, compared with subtype A, in immunosuppressed individuals at risk of cognitive impairment in Kampala, Uganda. Clin. Infect. Dis. 2009, 49, 780–786. [Google Scholar] [CrossRef]
- Perno, C.F.; Moyle, G.; Tsoukas, C.; Ratanasuwan, W.; Gatell, J.; Schechter, M. Overcoming resistance to existing therapies in hiv-infected patients: The role of new antiretroviral drugs. J. Med. Virol. 2008, 80, 565–576. [Google Scholar] [CrossRef]
- Bobkova, M.R. HIV Drug Resistance (Drug-Resistant HIV); Chelovek: Moscow, Russia, 2014. (In Russian) [Google Scholar]
- Zhang, L.; Ramratnam, B.; Tenner-Racz, K.; He, Y.; Vesanen, M.; Lewin, S.; Talal, A.; Racz, P.; Perelson, A.S.; Korber, B.T.; et al. Quantifying residual HIV-1 replication in patients receiving combination an-tiretroviral therapy. N. Engl. J. Med. 1994, 340, 1605–1613. [Google Scholar] [CrossRef]
- Hellinger, F.J.; Encinosa, W.E. Antiretroviral therapy and health care utilization: A study of privately insured men and women with HIV disease. Health Serv. Res. 2004, 19, 949–967. [Google Scholar] [CrossRef]
- Fact Sheets. HIV Infection in the Russian Federation as of 31 December 2020 (In Russian). Available online: http://www.hivrussia.info/wp-content/uploads/2021/03/VICH-infektsiya-v-Rossijskoj-Federatsii-na-31.12.2020-..pdf (accessed on 9 May 2021).
- Level and Structure of HIV Drug Resistance among Naive Patients in the Russian Federation (In Russian). Available online: http://www.hivrussia.info/wp-content/uploads/2020/12/2020-Rossijskaya-baza-dannyh-LU-VICH-u-naivnyh-patsientov.pdf (accessed on 9 May 2021).
- Schemelev, A.N.; Ostankova, Y.B.; Zueva, E.B.; Huinh, K.T.; Semenov, A.V. Genotypic and pharmacoresistant HIV characteristics in patients in the Socialist Republic of Vietnam. HIV Infect. Immunosuppr. Disord. 2020, 12, 56–68. [Google Scholar] [CrossRef]
- Okonechnikov, K.; Golosova, O.; Fursov, M.; The UGENE Team. Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics 2012, 28, 1166–1167. [Google Scholar] [CrossRef] [PubMed]
- Golosova, O.; Henderson, R.; Vaskin, Y.; Gabrielian, A.; Grekhov, G.; Nagarajan, V.; Oler, A.J.; Quiñones, M.; Hurt, D.; Fursov, M.; et al. Unipro UGENE NGS pipelines and components for variant calling, RNA-seq and ChIP-seq data analyses. Peer J. 2014, 2, e644. [Google Scholar] [CrossRef]
- Rose, R.; Golosova, O.; Sukhomlinov, D.; Tiunov, A.; Prosperi, M. Flexible design of multiple metagenomics classification pipelines with UGENE. Bioinformatics 2018, 35, 1963–1965. [Google Scholar] [CrossRef] [PubMed]
- Rhee, S.Y.; Gonzales, M.J.; Kantor, R.; Betts, B.J.; Ravela, J.; Shafer, R.W. Human immunodeficiency virus reverse transcriptase and protease sequence database. Nucleic Acids Res. 2003, 31, 298–303. [Google Scholar] [CrossRef]
- Pineda-Peña, A.-C.; Faria, N.R.; Imbrechts, S.; Libin, P.; Abecasis, A.B.; Deforche, K.; Gómez-López, A.; Camacho, R.J.; de Oliveira, T.; Vandamme, A.-M. Automated subtyping of HIV-1 genetic sequences for clinical and surveillance purposes: Performance evaluation of the new REGA version 3 and seven other tools. Infect. Genet. Evol. 2013, 19, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Kazennova, E.V.; Lapovok, I.A.; Vasilyev, A.V.; Laga, V.Y.; Grezina, L.A.; Volova, L.Y.; Bobkova, M.R. Problems of subtyping of HIV-1 on the base of Pol gene and ways of their permission. VICh-Infect. Immunosuppr. 2010, 3, 42–48. (In English) [Google Scholar]
- Kotova, V.O.; Trotsenko, O.E.; Balakhontseva, L.A.; Bazykina, E.A. Molecular genetic characteristics of HIV-1 variants isolated in the subjects of the Russian Far East. Vopr. Virusol. (Probl. Virol. Russ. J.) 2019, 64, 79–89. (In Russian) [Google Scholar] [CrossRef]
- Dement’yeva, N.Y.; Sizova, N.V.; Lisitsyna, Z.N.; Belyakov, N.A. Molecular and epidemiologic characteristic of HIV infection in saint-petersburg. Med. Acad. J. 2012, 12, 97–104. (In Russian) [Google Scholar]
- Lebedeva, N.N.; Zverev, S.Y.; Kulagin, V.V.; Kurina, N.V.; Pronin, A.Y.; Mikova, O.E.; Milovanova, I.I.; Polovitsa, N.V.; Sandyreva, T.P.; Sizova, N.V.; et al. HIV drug resistance early warning in-dicators and their assessment in some regions of Russia. HIV Infect. Immunosuppr. Disord. 2018, 10, 67–75. (In Russian) [Google Scholar] [CrossRef]
- Ingabire, T.; Semenov, A.V.; Esaulenko, E.V.; Zueva, E.B.; Schemelev, A.N.; Bushmanova, A.D. Primary HIV drug resistance among newly HIV type-1 diagnosed patients in St. Petersburg Petersburg. HIV Infect. Immunosuppr. Disord. 2021, 13, 70–79. (In Russian) [Google Scholar] [CrossRef]
- Mamatkulov, A.; Kazakova, E.; Ibadullaeva, N.; Joldasova, E.; Bayjanov, A.; Musabaev, E.; Kan, N.; Mustafaeva, D.; Lebedev, A.V.; Bobkova, M.; et al. Prevalence of Antiretroviral Drug Resistance Mutations Among Pretreatment and Antiretroviral Therapy-Failure HIV Patients in Uzbekistan. AIDS Res. Hum. Retrovir. 2021, 37, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Kolomeets, A.N.; Varghese, V.; Lemey, P.; Bobkova, M.; Shafer, R.W. A uniquely prevalent nonnucleoside reverse transcriptase inhibitor resistance mutation in Russian subtype A HIV-1 viruses. AIDS 2014, 28, F1–F8. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhu, Q.; Xing, H.; Chen, H.; Jin, X.; Dong, L.; Dai, J.; Yang, M.; Yang, C.; Jia, M.; et al. The characteristics of pretreatment HIV-1 drug resistance in western Yunnan, China. Epidemiol. Infect. 2020, 148, e102. [Google Scholar] [CrossRef]
- Cheung, K.-W.; Peng, Q.; He, L.; Cai, K.; Jiang, Q.; Zhou, B.; To, S.W.-C.; Yam, W.-C.; Liu, L.; Chen, Z.; et al. Rapid and Simultaneous Detection of Major Drug Resistance Mutations in Reverse Transcriptase Gene for HIV-1 CRF01_AE, CRF07_BC and Subtype B in China Using Sequenom MassARRAY® System. PLoS ONE 2016, 11, e0153641. [Google Scholar] [CrossRef][Green Version]
- Hu, Z.; Giguel, F.; Hatano, H.; Reid, P.; Lu, J.; Kuritzkes, D.R. Fitness Comparison of Thymidine Analog Resistance Pathways in Human Immunodeficiency Virus Type 1. J. Virol. 2006, 80, 7020–7027. [Google Scholar] [CrossRef]
- Flor-Parra, F.; Pérez-Pulido, A.J.; Pachón, J.; Pérez-Romero, P. The HIV Type 1 Protease L10I Minor Mutation Decreases Replication Capacity and Confers Resistance to Protease Inhibitors. AIDS Res. Hum. Retrovir. 2011, 27, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Ekici, H.; Rao, S.D.; Sönnerborg, A.; Ramprasad, V.L.; Gupta, R.; Neogi, U.J. Cost-efficient HIV-1 drug resistance surveillance using multiplexed high-throughput amplicon sequencing: Implications for use in low- and middle-income countries. J. Antimicrob. Chemother. 2014, 69, 3349–3355. [Google Scholar] [CrossRef]
Subtype | Number of Isolates | Percent | 95% Confidence Interval |
---|---|---|---|
A6 | 383 | 71.86% | 67.83–75.64% |
A3 | 1 | 0.19% | 0–1.04% |
B | 21 | 3.94% | 2.46–5.96% |
G | 2 | 0.38% | 0.05–1.35% |
K | 1 | 0.19% | 0–1.04% |
J | 1 | 0.19% | 0–1.04% |
CRF02_AG | 4 | 0.75% | 0.20–1.91% |
CRF03_AB | 70 | 13.13% | 10.38–16.30% |
CRF03_AB + A | 51 | 9.57% | 7.21–12.39% |
Mutation | Number of Isolates | Percent | 95% Confidence Interval |
---|---|---|---|
NRTI mutations | |||
M184V | 357 | 66.98% | 62.81–70.96% |
L74V | 85 | 18.95% | 12.94–19.34% |
A62V | 80 | 15.01% | 12.08–18.33% |
K65R | 75 | 14.07% | 11.23–17.32% |
D67N | 54 | 10.13% | 7.70–13.01% |
NNRTI mutations | |||
G190S | 165 | 30.96% | 27.05–35.07% |
K103N | 123 | 23.08% | 18.56–26.89% |
K101E | 117 | 21.95% | 18.51–25.71% |
Y181C | 74 | 13.88% | 11.06–17.11% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shchemelev, A.N.; Ostankova, Y.V.; Zueva, E.B.; Semenov, A.V.; Totolian, A.A. Detection of Patient HIV-1 Drug Resistance Mutations in Russia’s Northwestern Federal District in Patients with Treatment Failure. Diagnostics 2022, 12, 1821. https://doi.org/10.3390/diagnostics12081821
Shchemelev AN, Ostankova YV, Zueva EB, Semenov AV, Totolian AA. Detection of Patient HIV-1 Drug Resistance Mutations in Russia’s Northwestern Federal District in Patients with Treatment Failure. Diagnostics. 2022; 12(8):1821. https://doi.org/10.3390/diagnostics12081821
Chicago/Turabian StyleShchemelev, Alexander N., Yulia V. Ostankova, Elena B. Zueva, Alexander V. Semenov, and Areg A. Totolian. 2022. "Detection of Patient HIV-1 Drug Resistance Mutations in Russia’s Northwestern Federal District in Patients with Treatment Failure" Diagnostics 12, no. 8: 1821. https://doi.org/10.3390/diagnostics12081821
APA StyleShchemelev, A. N., Ostankova, Y. V., Zueva, E. B., Semenov, A. V., & Totolian, A. A. (2022). Detection of Patient HIV-1 Drug Resistance Mutations in Russia’s Northwestern Federal District in Patients with Treatment Failure. Diagnostics, 12(8), 1821. https://doi.org/10.3390/diagnostics12081821