Novel Markers in Diabetic Kidney Disease—Current State and Perspectives
Abstract
1. Introduction and Epidemiology
2. Diagnosis
3. Biopsy and Histopathology of DKD
4. Classic and Alternative Clinical Patterns of DKD
4.1. Classical (Albuminuria-Based) DKD Pattern
4.2. Non-Albuminuric DKD Pattern
4.3. “Regression of Albuminuria” Pattern
4.4. “Early Rapid Decliner” Pattern
5. Novel Biomarkers: A Selection and Future Perspectives
5.1. Soluble α-Klotho
5.2. Proteases as Novel Circulating Biomarkers
5.2.1. ADAM10 and ADAM17
5.2.2. Cathepsin Proteases
5.2.3. Calpain
5.2.4. Urinary Activity of DPP-4
5.2.5. Caspase
5.2.6. Thrombin
Biomarker | Change in Biomarker Level | Research Model/Localization | Preclinical and Morphological Effects | References |
---|---|---|---|---|
α-Klotho | ↓ | CKD patients with various stages of disease | Serum concentration and urinary excreted Klotho correlates with eGFR in patients with various stages of CKD. | [29] |
↓ | Serum of CKD patients with various stages of disease | Circulating α-Klotho levels were lower in people with reduced kidney function and independently associated with eGFR in patients with CKD. | [30] | |
↓ | Serum of patients with type 2 diabetic with stage 2–3 CKD | Reduced blood Klotho concentration is associated with increased albuminuria. Klotho levels were correlated with FGF23, vitamin D, and insulin resistance, suggesting that Klotho levels might be affected by renal function. | [31] | |
ADAM17 | ↑ | Mesangial cells | Glucose induces activation of ADAM17, regulates profibrotic TGFβ, and causes the ac-cumulation of matrix proteins. | [39] |
↑ | Kidney cortex of OVE26 mice with type 1 diabetes | ADAM17 contributes to matrix protein accumulation, through activation of NOX4 subunits of NADPH oxidase. | [39] | |
ADAM10 | ↑ | Urinary podocytes from patients with glomerular diseases | Urinary podocytes mainly expressed the mature form of ADAM10. | [43] |
↑ | Urine of patients with various glomerular diseases | Patients with high amounts of vesicular ADAM10 demonstrated lower levels of CD9. | [43] | |
↑ | Urinary podocytes from patients with type 2 DM | A significant correlation of urinary ADAM10 with urinary advanced glycation end-products. | [44] | |
Cathepsin L | ↑ | STZ-induced diabetes in WT and cathepsin L-deficient mice | Cathepsin L-deficient mice fail to develop albuminuria and show better renal function after induction of experimental DN. | [36] |
Cathepsin D | ↑ | Serum and plasma from patients with newly diagnosed type 2 DM | Circulating cathepsin D levels were positively correlated with BMI, triglyceride, HbA1c, and fasting glucose. | [49] |
Cathepsin C | ↑ | Podocyte | Cathepsin C deletion ameliorate nephrin and GLUT4 expression in podocytes cultured in hyperglycemic milieu. | [34] |
↑ | Urine and glomeruli from Zucker diabetic fatty rats | Cathepsin C expression and activity were corelated with albuminuria. | [34] | |
Calpain | ↑ | Urine and snap-frozen kidney of patients with FSGS | Increased activity of calpain in patients with FSGS was accompanied by a decreased cortical and glomerular talin-1 expression. | [52] |
↑ | Podocyte | TRPC6 activity has been linked to increased calpain and calcineurin activity, leading to podocyte injury. | [52] | |
Dipeptidyl peptidase 4 | ↑ | Kidney from Zucker diabetic fatty rats | Less glomerular and tubulointerstitial lesions after administration with DPP4 inhibitor (sitagliptin). | [55] |
↑ | STZ-induced diabetic rats | Inhibition of DPP-4 decreased proteinuria, albuminuria, urinary albumin-to-creatinine ratio, and improved creatinine clearance. | [55] | |
Caspase-3/-9 | ↑ | STZ-induced diabetes in TMEM16A-/-mice. | Upregulation of TMEM16A induced the activation of apoptosis via increase level of caspase-3/-9. | [58] |
↑ | Podocyte | TMEM16A exacerbate renal injury caused by podocyte apoptosis via induction caspase-3/-9. | [58] | |
Caspase-1 | ↑ | db/db (Lepr db/db), nondiabetic control db/m, Casp1-/-mice | Caspase-1-dependent inflammasome activation has a crucial function in the establishment of diabetic nephropathy. | [59] |
Thrombin | ↑ | Podocyte and urine isolated from Wistar rats | Elevated urinary thrombin is associated with glomerulonephritis and leads to PAR overstimulation, increased intracellular calcium concentration, and proteinuria. | [37] |
Glomerular Biomarker | Tubular Biomarker | Inflammatory Biomarker |
---|---|---|
α-Klotho | αklotho | α-Klotho |
ADAM10/ADAM17 | ADAM10/ADAM17 | Caspases |
Cathepsins | Dipeptidyl peptidase 4 | Thrombin |
Calpain | miRNA | Cathepsins |
Dipeptidyl peptidase 4 | miRNA | |
Thrombin | ||
miRNA |
5.3. Circulating Micrornas
MicroRNAs | Type of Diabetes (TD) | Sample | Results | Reference |
---|---|---|---|---|
miRNA-29a | T2D | urine | Increased expression level of miRNA-29a was associated with increased albuminuria. | [62] |
miRNA-323b-5p | T1D | urine | Decreased in patients with moderately increased albuminuria. | [63] |
miRNA-429 | T1D | urine | Increased in patients with moderately increased albuminuria. | [63] |
miRNA-221-3p | T1D | urine | MicroRNA decreased in patients with severely increased albuminuria. | [63] |
miRNA-29b-1-5p miRNA-141-3p miRNA-335-5p miRNA-424-5p miRNA-486-3p miRNA-552 miRNA-619 miRNA-1224-3p miRNA-1912 | T1D | urine | MicroRNAs increased in patients with severely increased albuminuria. | [63] |
miRNA-320c | T2D | urine | MicroRNA strongly up-regulated in urinary exosomes. | [64] |
miR-15b miR-34a miR-636 | T2D | urine | MicroRNAs upregulated in both urine pellet and exosome. | [65] |
miR-126 | T1D | serum | Decreased in patients with increased albuminuria. | [66] |
6. Implications for Nephroprotection and Therapeutic Strategies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Global Report on Diabetes; WHO: Geneva, Switzerland, 2016; Volume 978, pp. 6–86. [Google Scholar]
- Balakumar, P.; Maung, U.K.; Jagadeesh, G. Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol. Res. 2016, 113, 600–609. [Google Scholar] [CrossRef]
- Zoccali, C.; Mallamaci, F. Nonproteinuric progressive diabetic kidney disease. Curr. Opin. Nephrol. Hypertens. 2019, 28, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Kramer, A.; Pippias, M.; Stel, V.S.; Bonthuis, M.; Abad Diez, J.M.; Afentakis, N.; Noordzij, M. Renal replacement therapy in Europe: A summary of the 2013 ERA-EDTA Registry Annual Report with a focus on diabetes mellitus. Clin. Kidney J. 2016, 9, 457. [Google Scholar] [CrossRef] [PubMed]
- Johansen, K.L.; Chertow, G.M.; Foley, R.N.; Gilbertson, D.T.; Herzog, C.A.; Ishani, A.; Wetmore, J.B. US Renal Data System 2020 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am. J. Kidney Dis. 2021, 77, A7–A8. [Google Scholar] [CrossRef] [PubMed]
- de Boer, I.H.; Caramori, M.L.; Chan, J.C.; Heerspink, H.J.; Hurst, C.; Khunti, K.; Liew, A.; Michos, E.D.; Navaneethan, S.D.; Olowu, W.A.; et al. KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2020, 98, S1–S115. [Google Scholar] [CrossRef] [PubMed]
- Hasslacher, C.H.; Ritz, E.; Wahl, P.; Michael, C. Similar risks of nephropathy in patients with type I or type II diabetes mellitus. Nephrol. Dial. Transplant. 1989, 4, 859–863. [Google Scholar] [CrossRef]
- Poggio, E.D.; McClelland, R.L.; Blank, K.N.; Hansen, S.; Bansal, S.; Bomback, A.S.; Rovin, B.H. Systematic Review and Meta-Analysis of Native Kidney Biopsy Complications. Clin. J. Am. Soc. Nephrol. 2020, 15, 1595–1602. [Google Scholar] [CrossRef]
- Tervaert, T.W.C.; Mooyaart, A.L.; Amann, K.; Cohen, A.H.; Cook, H.T.; Drachenberg, C.B.; Bruijn, J.A. Pathologic classification of diabetic nephropathy. J. Am. Soc. Nephrol. 2010, 21, 556–563. [Google Scholar] [CrossRef]
- Qi, C.; Mao, X.; Zhang, Z.; Wu, H. Classification and Differential Diagnosis of Diabetic Nephropathy. J. Diabetes Res. 2017, 2017, 8637138. [Google Scholar] [CrossRef]
- Holthöfer, H.; Ahola, H.; Solin, M.L.; Wang, S.; Palmen, T.; Luimula, P.; Kerjaschki, D. Nephrin localizes at the podocyte filtration slit area and is characteristically spliced in the human kidney. Am. J. Pathol. 1999, 155, 1681–1687. [Google Scholar] [CrossRef]
- Steffes, M.W.; Schmidt, D.; Mccrery, R.; Basgen, J.M. Glomerular cell number in normal subjects and in type 1 diabetic patients. Kidney Int. 2001, 59, 2104–2113. [Google Scholar] [CrossRef] [PubMed]
- Pagtalunan, M.E.; Miller, P.L.; Jumping-Eagle, S.; Nelson, R.G.; Myers, B.D.; Rennke, H.G.; Meyer, T.W. Podocyte loss and progressive glomerular injury in type II diabetes. J. Clin. Investig. 1997, 99, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Oshima, M.; Shimizu, M.; Yamanouchi, M.; Toyama, T.; Hara, A.; Furuichi, K.; Wada, T. Trajectories of kidney function in diabetes: A clinicopathological update. Nat. Rev. Nephrol. 2021, 17, 740–750. [Google Scholar] [CrossRef] [PubMed]
- Mogensen, C.E.; Christensen, C.K.; Vittinghus, E. The stages in diabetic renal disease: With emphasis on the stage of incipient diabetic nephropathy. Diabetes 1983, 32 (Suppl. 2), 64–78. [Google Scholar] [CrossRef] [PubMed]
- Kramer, H.J.; Nguyen, Q.D.; Curhan, G.; Hsu, C.Y. Renal insufficiency in the absence of albuminuria and retinopathy among adults with type 2 diabetes mellitus. JAMA 2003, 289, 3273–3277. [Google Scholar] [CrossRef]
- Koye, D.N.; Magliano, D.J.; Reid, C.M.; Jepson, C.; Feldman, H.I.; Herman, W.H.; Shaw, J.E. Risk of Progression of Nonalbuminuric CKD to End-Stage Kidney Disease in People with Diabetes: The CRIC (Chronic Renal Insufficiency Cohort) Study. Am. J. Kidney Dis. 2018, 72, 653–661. [Google Scholar] [CrossRef]
- Araki, S.I.; Haneda, M.; Sugimoto, T.; Isono, M.; Isshiki, K.; Kashiwagi, A.; Koya, D. Factors associated with frequent remission of microalbuminuria in patients with type 2 diabetes. Diabetes 2005, 54, 2983–2987. [Google Scholar] [CrossRef]
- Gæde, P.; Tarnow, L.; Vedel, P.; Parving, H.H.; Pedersen, O. Remission to normoalbuminuria during multifactorial treatment preserves kidney function in patients with type 2 diabetes and microalbuminuria. Nephrol. Dial. Transplant. 2004, 19, 2784–2788. [Google Scholar] [CrossRef]
- Yokoyama, H.; Araki, S.I.; Honjo, J.; Okizaki, S.; Yamada, D.; Shudo, R.; Haneda, M. Association between remission of macroalbuminuria and preservation of renal function in patients with type 2 diabetes with overt proteinuria. Diabetes Care 2013, 36, 3227–3233. [Google Scholar] [CrossRef]
- Kidney Disease Improving Global Outcomes. Chapter 2: Definition, identification, and prediction of CKD progression. Kidney Int. Suppl. 2013, 3, 63. [CrossRef]
- Yoshida, Y.; Kashiwabara, K.; Hirakawa, Y.; Tanaka, T.; Noso, S.; Ikegami, H.; Matsuyama, Y. Conditions, pathogenesis, and progression of diabetic kidney disease and early decliners in Japan. BMJ Open Diabetes Res. Care 2020, 8, e000902. [Google Scholar] [CrossRef] [PubMed]
- Kuro-o, M.; Matsumura, Y.; Aizawa, H.; Kawaguchi, H.; Suga, T.; Utsugi, T.; Nabeshima, Y.I. Mutation of the mouse klotho gene leads to a syndrome resembling aging. Nature 1997, 390, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.D.; An, S.W.; Xie, J.; Yoon, J.; Nischan, N.; Kohler, J.J.; Huang, C.L. Modeled structural basis for the recognition of α2-3-sialyllactose by soluble Klotho. FASEB J. 2017, 31, 3574–3586. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.C.; Shi, M.; Zhang, J.; Addo, T.; Cho, H.J.; Barker, S.L.; Moe, O.W. Renal Production, Uptake, and Handling of Circulating αKlotho. J. Am. Soc. Nephrol. 2016, 27, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Erben, R.G.; Andrukhova, O. FGF23-Klotho signaling axis in the kidney. Bone 2017, 100, 62–68. [Google Scholar] [CrossRef]
- Typiak, M.; Kulesza, T.; Rachubik, P.; Rogacka, D.; Audzeyenka, I.; Angielski, S.; Piwkowska, A. Role of Klotho in Hyperglycemia: Its Levels and Effects on Fibroblast Growth Factor Receptors, Glycolysis, and Glomerular Filtration. Int. J. Mol. Sci. 2021, 22, 7867. [Google Scholar] [CrossRef]
- Kim, J.H.; Xie, J.; Hwang, K.H.; Wu, Y.L.; Oliver, N.; Eom, M.; Cha, S.K. Klotho may ameliorate proteinuria by targeting TRPC6 channels in podocytes. J. Am. Soc. Nephrol. 2017, 28, 140–151. [Google Scholar] [CrossRef]
- Akimoto, T.; Yoshizawa, H.; Watanabe, Y.; Numata, A.; Yamazaki, T.; Takeshima, E.; Kusano, E. Characteristics of urinary and serum soluble Klotho protein in patients with different degrees of chronic kidney disease. BMC Nephrol. 2012, 13, 155. [Google Scholar] [CrossRef]
- Kim, H.R.; Nam, B.Y.; Kim, D.W.; Kang, M.W.; Han, J.H.; Lee, M.J.; Han, S.H. Circulating α-klotho levels in CKD and relationship to progression. Am. J. Kidney Dis. 2013, 61, 899–909. [Google Scholar] [CrossRef]
- Silva, A.P.; Mendes, F.; Pereira, L.; Fragoso, A.; Gonçalves, R.B.; Santos, N.; Neves, P.L. Klotho levels: Association with insulin resistance and albumin-to-creatinine ratio in type 2 diabetic patients. Int. Urol. Nephrol. 2017, 49, 1809–1814. [Google Scholar] [CrossRef]
- Kurosu, H.; Yamamoto, M.; Clark, J.D.; Pastor, J.V.; Nandi, A.; Gurnani, P.; Kuro-o, M. Suppression of aging in mice by the hormone Klotho. Science 2005, 309, 1829–1833. [Google Scholar] [CrossRef] [PubMed]
- Mundel, P.; Reiser, J. Proteinuria: An enzymatic disease of the podocyte? Kidney Int. 2010, 77, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Audzeyenka, I.; Rachubik, P.; Rogacka, D.; Typiak, M.; Kulesza, T.; Angielski, S.; Piwkowska, A. Cathepsin C is a novel mediator of podocyte and renal injury induced by hyperglycemia. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2020, 1867, 118723. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Song, J.; Liang, J.; Ma, H.; Wu, W.; Zhang, Y.; Zhang, A. Reduced Lon protease 1 expression in podocytes contributes to the pathogenesis of podocytopathy. Kidney Int. 2021, 99, 854–869. [Google Scholar] [CrossRef]
- Garsen, M.; Rops, A.L.W.M.M.; Dijkman, H.; Willemsen, B.; van Kuppevelt, T.H.; Russel, F.G.; van der Vlag, J. Cathepsin L is crucial for the development of early experimental diabetic nephropathy. Kidney Int. 2016, 90, 1012–1022. [Google Scholar] [CrossRef]
- Sharma, R.; Waller, A.P.; Agrawal, S.; Wolfgang, K.J.; Luu, H.; Shahzad, K.; Kerlin, B.A. Thrombin-Induced Podocyte Injury Is Protease-Activated Receptor Dependent. J. Am. Soc. Nephrol. 2017, 28, 2618–2630. [Google Scholar] [CrossRef]
- Rinschen, M.M.; Huesgen, P.F.; Koch, R.E. The podocyte protease web: Uncovering the gatekeepers of glomerular disease. Am. J. Physiol. Renal Physiol. 2018, 315, F1812–F1816. [Google Scholar] [CrossRef]
- Ford, B.M.; Eid, A.A.; Göoz, M.; Barnes, J.L.; Gorin, Y.C.; Abboud, H.E. ADAM17 mediates Nox4 expression and NADPH oxidase activity in the kidney cortex of OVE26 mice. Am. J. Physiol. Renal Physiol. 2013, 305, F323–F332. [Google Scholar] [CrossRef]
- Bell, H.L.; Gööz, M. ADAM-17 is activated by the mitogenic protein kinase ERK in a model of kidney fibrosis. Am. J. Med. Sci. 2010, 339, 105–107. [Google Scholar]
- Dey, M.; Baldys, A.; Sumter, D.B.; Göőz, P.; Luttrell, L.M.; Raymond, J.R.; Göőz, M. Bradykinin decreases podocyte permeability through ADAM17-dependent epidermal growth factor receptor activation and zonula occludens-1 rearrangement. J. Pharmacol. Exp. Ther. 2010, 334, 775–783. [Google Scholar] [CrossRef]
- Gooz, P.; Dang, Y.; Higashiyama, S.; Twal, W.O.; Haycraft, C.J.; Gooz, M. A disintegrin and metalloenzyme (ADAM) 17 activation is regulated by α5β1 integrin in kidney mesangial cells. PLoS ONE 2012, 7, e33350. [Google Scholar] [CrossRef] [PubMed]
- Gutwein, P.; Schramme, A.; Abdel-Bakky, M.S.; Doberstein, K.; Hauser, I.A.; Ludwig, A.; Pfeilschifter, J. ADAM10 is expressed in human podocytes and found in urinary vesicles of patients with glomerular kidney diseases. J. Biomed. Sci. 2010, 17, 3. [Google Scholar] [CrossRef] [PubMed]
- Petrica, L.; Ursoniu, S.; Gadalean, F.; Vlad, A.; Gluhovschi, G.; Dumitrascu, V.; Popescu, R. Urinary podocyte-associated mRNA levels correlate with proximal tubule dysfunction in early diabetic nephropathy of type 2 diabetes mellitus. Diabetol. Metab. Syndr. 2017, 9, 31. [Google Scholar] [CrossRef] [PubMed]
- Baricos, W.H.; Cortez, S.L.; Le, Q.C.; Wu, L.T.; Shaw, E.; Hanada, K.; Shah, S.V. Evidence suggesting a role for cathepsin L in an experimental model of glomerulonephritis. Arch. Biochem. Biophys. 1991, 288, 468–472. [Google Scholar] [CrossRef]
- Khalil, R.; Koop, K.; Kreutz, R.; Spaink, H.P.; Hogendoorn, P.C.; Bruijn, J.A.; Baelde, H.J. Increased dynamin expression precedes proteinuria in glomerular disease. J. Pathol. 2019, 247, 177–185. [Google Scholar] [CrossRef]
- Schiffer, M.; Teng, B.; Gu, C.; Shchedrina, V.A.; Kasaikina, M.; Pham, V.A.; Sever, S. Pharmacological targeting of actin-dependent dynamin oligomerization ameliorates chronic kidney disease in diverse animal models. Nat. Med. 2015, 21, 601–609. [Google Scholar] [CrossRef]
- Yamamoto-Nonaka, K.; Koike, M.; Asanuma, K.; Takagi, M.; Trejo, J.A.O.; Seki, T.; Tomino, Y. Cathepsin D in Podocytes Is Important in the Pathogenesis of Proteinuria and CKD. J. Am. Soc. Nephrol. 2016, 27, 2685–2700. [Google Scholar] [CrossRef]
- Liu, L.; Chen, B.; Zhang, X.; Tan, L.; Wang, D.W. Increased Cathepsin D Correlates with Clinical Parameters in Newly Diagnosed Type 2 Diabetes. Dis. Markers 2017, 2017, 5286408. [Google Scholar] [CrossRef]
- Reddy, S.; Amutha, A.; Rajalakshmi, R.; Bhaskaran, R.; Monickaraj, F.; Rangasamy, S.; Balasubramanyam, M. Association of increased levels of MCP-1 and cathepsin-D in young onset type 2 diabetes patients (T2DM-Y) with severity of diabetic retinopathy. J. Diabetes Complicat. 2017, 31, 804–809. [Google Scholar] [CrossRef]
- Farmer, L.K.; Rollason, R.; Whitcomb, D.J.; Ni, L.; Goodliff, A.; Lay, A.C.; Welsh, G.I. TRPC6 Binds to and activates calpain, independent of its channel activity, and regulates podocyte cytoskeleton, cell adhesion, and motility. J. Am. Soc. Nephrol. 2019, 30, 1910–1924. [Google Scholar] [CrossRef]
- Verheijden, K.A.T.; Sonneveld, R.; Bakker-van Bebber, M.; Wetzels, J.F.M.; Van Der Vlag, J.; Nijenhuis, T. The Calcium-Dependent Protease Calpain-1 Links TRPC6 Activity to Podocyte Injury. J. Am. Soc. Nephrol. 2018, 29, 2099–2109. [Google Scholar] [CrossRef] [PubMed]
- Szrejder, M.; Rachubik, P.; Rogacka, D.; Audzeyenka, I.; Rychłowski, M.; Kreft, E.; Piwkowska, A. Metformin reduces TRPC6 expression through AMPK activation and modulates cytoskeleton dynamics in podocytes under diabetic conditions. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2020, 1866, 165610. [Google Scholar] [CrossRef] [PubMed]
- Sharkovska, Y.; Reichetzeder, C.; Alter, M.; Tsuprykov, O.; Bachmann, S.; Secher, T.; Hocher, B. Blood pressure and glucose independent renoprotective effects of dipeptidyl peptidase-4 inhibition in a mouse model of type-2 diabetic nephropathy. J. Hypertens. 2014, 32, 2211–2223. [Google Scholar] [CrossRef] [PubMed]
- Hasan, A.A.; Hocher, B. Role of soluble and membrane-bound dipeptidyl peptidase-4 in diabetic nephropathy. J. Mol. Endocrinol. 2017, 59, R1–R10. [Google Scholar] [CrossRef] [PubMed]
- Krochmal, M.; Kontostathi, G.; Magalhães, P.; Makridakis, M.; Klein, J.; Husi, H.; Vlahou, A. Urinary peptidomics analysis reveals proteases involved in diabetic nephropathy. Sci. Rep. 2017, 7, 15160. [Google Scholar] [CrossRef]
- Gonzales, P.A.; Pisitkun, T.; Hoffert, J.D.; Tchapyjnikov, D.; Star, R.A.; Kleta, R.; Knepper, M.A. Large-scale proteomics and phosphoproteomics of urinary exosomes. J. Am. Soc. Nephrol. 2009, 20, 363–379. [Google Scholar] [CrossRef]
- Lian, H.; Cheng, Y.; Wu, X. TMEM16A exacerbates renal injury by activating P38/JNK signaling pathway to promote podocyte apoptosis in diabetic nephropathy mice. Biochem. Biophys. Res. Commun. 2017, 487, 201–208. [Google Scholar] [CrossRef]
- Shahzad, K.; Bock, F.; Gadi, I.; Kohli, S.; Nazir, S.; Ghosh, S.; Isermann, B. Caspase-1, but Not Caspase-3, Promotes Diabetic Nephropathy. J. Am. Soc. Nephrol. 2016, 27, 2270–2275. [Google Scholar] [CrossRef]
- Rondeau, E.; Vigneau, C.; Berrou, J. Role of thrombin receptors in the kidney: Lessons from PAR1 knock-out mice. Nephrol. Dial. Transplant. 2001, 16, 1529–1531. [Google Scholar] [CrossRef][Green Version]
- Mohr, A.M.; Mott, J.L. Overview of microRNA biology. Semin. Liver Dis. 2015, 35, 3–11. [Google Scholar] [CrossRef]
- Peng, H.; Zhong, M.; Zhao, W.; Wang, C.; Zhang, J.; Liu, X.; Lou, T. Urinary miR-29 correlates with albuminuria and carotid intima-media thickness in type 2 diabetes patients. PLoS ONE 2013, 8, e82607. [Google Scholar] [CrossRef] [PubMed]
- Argyropoulos, C.; Wang, K.; McClarty, S.; Huang, D.; Bernardo, J.; Ellis, D.; Johnson, J. Urinary microRNA profiling in the nephropathy of type 1 diabetes. PLoS ONE 2013, 8, e54662. [Google Scholar] [CrossRef]
- Delić, D.; Eisele, C.; Schmid, R.; Baum, P.; Wiech, F.; Gerl, M.; Urquhart, R. Urinary Exosomal miRNA Signature in Type II Diabetic Nephropathy Patients. PLoS ONE 2016, 11, e0150154. [Google Scholar] [CrossRef] [PubMed]
- Eissa, S.; Matboli, M.; Aboushahba, R.; Bekhet, M.M.; Soliman, Y. Urinary exosomal microRNA panel unravels novel biomarkers for diagnosis of type 2 diabetic kidney disease. J. Diabetes Complicat. 2016, 30, 1585–1592. [Google Scholar] [CrossRef] [PubMed]
- Barutta, F.; Bruno, G.; Matullo, G.; Chaturvedi, N.; Grimaldi, S.; Schalkwijk, C.; Gruden, G. MicroRNA-126 and micro-/macrovascular complications of type 1 diabetes in the EURODIAB Prospective Complications Study. Acta Diabetol. 2017, 54, 133–139. [Google Scholar] [CrossRef]
- Vasu, S.; Kumano, K.; Darden, C.M.; Rahman, I.; Lawrence, M.C.; Naziruddin, B. MicroRNA Signatures as Future Biomarkers for Diagnosis of Diabetes States. Cells 2019, 8, 1533. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 11. Chronic Kidney Disease and Risk Management: Standards of Medical Care in Diabetes—2022. Diabetes Care 2022, 45, S175–S184. [Google Scholar] [CrossRef]
- Mcguire, D.K.; Shih, W.J.; Cosentino, F.; Charbonnel, B.; Cherney, D.Z.; Dagogo-Jack, S.; Cannon, C.P. Association of SGLT2 Inhibitors with Cardiovascular and Kidney Outcomes in Patients with Type 2 Diabetes A Meta-analysis Supplemental content. JAMA Cardiol. 2021, 6, 148–158. [Google Scholar] [CrossRef]
- Li, J.; Albajrami, O.; Zhuo, M.; Hawley, C.E.; Paik, J.M. Decision Algorithm for Prescribing SGLT2 Inhibitors and GLP-1 Receptor Agonists for Diabetic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2020, 15, 1678–1688. [Google Scholar] [CrossRef]
- Heerspink, H.J.L.; Jongs, N.; Chertow, G.M.; Langkilde, A.M.; McMurray, J.J.; Correa-Rotter, R.; Committees, D.C.T. Effect of dapagliflozin on the rate of decline in kidney function in patients with chronic kidney disease with and without type 2 diabetes: A prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol. 2021, 9, 743–754. [Google Scholar] [CrossRef]
- Fahal, I.H. Design, recruitment, and baseline characteristics of the EMPA-KIDNEY trial. Nephrol. Dial. Transplant. 2022, 16, 518–524. [Google Scholar]
- Zelniker, T.A.; Wiviott, S.D.; Raz, I.; Im, K.; Goodrich, E.L.; Furtado, R.H.; Sabatine, M.S. Comparison of the Effects of Glucagon-Like Peptide Receptor Agonists and Sodium-Glucose Cotransporter 2 Inhibitors for Prevention of Major Adverse Cardiovascular and Renal Outcomes in Type 2 Diabetes Mellitus. Circulation 2019, 139, 2022–2031. [Google Scholar] [CrossRef] [PubMed]
- Filippatos, G.; Anker, S.D.; Agarwal, R.; Pitt, B.; Ruilope, L.M.; Rossing, P.; FIDELIO-DKD Investigators. Finerenone and cardiovascular outcomes in patients with chronic kidney disease and type 2 diabetes. Circulation 2021, 143, 540–552. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piwkowska, A.; Zdrojewski, Ł.; Heleniak, Z.; Dębska-Ślizień, A. Novel Markers in Diabetic Kidney Disease—Current State and Perspectives. Diagnostics 2022, 12, 1205. https://doi.org/10.3390/diagnostics12051205
Piwkowska A, Zdrojewski Ł, Heleniak Z, Dębska-Ślizień A. Novel Markers in Diabetic Kidney Disease—Current State and Perspectives. Diagnostics. 2022; 12(5):1205. https://doi.org/10.3390/diagnostics12051205
Chicago/Turabian StylePiwkowska, Agnieszka, Łukasz Zdrojewski, Zbigniew Heleniak, and Alicja Dębska-Ślizień. 2022. "Novel Markers in Diabetic Kidney Disease—Current State and Perspectives" Diagnostics 12, no. 5: 1205. https://doi.org/10.3390/diagnostics12051205
APA StylePiwkowska, A., Zdrojewski, Ł., Heleniak, Z., & Dębska-Ślizień, A. (2022). Novel Markers in Diabetic Kidney Disease—Current State and Perspectives. Diagnostics, 12(5), 1205. https://doi.org/10.3390/diagnostics12051205