Prognostic Values of Inflammation-Based Scores and Fibrosis Markers in Patients with Hepatocellular Carcinoma Treated with Transarterial Chemoembolization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. TACE Procedure
2.3. Statistical Analyses
3. Results
3.1. Baseline Characteristics and Outcomes
3.2. The Prognostic Values of the Inflammation-Based Scores and Fibrosis Markers after TACE
3.3. High NLR and FIB-4 Levels Predict a Shorter TTP after TACE
3.4. High NLR and FIB-4 Levels Associated with Poor OS after TACE
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hernandez-Gea, V.; Toffanin, S.; Friedman, S.L.; Llovet, J.M. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology 2013, 144, 512–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hann, A.; Oo, Y.H.; Perera, M. Regulatory T-Cell Therapy in Liver Transplantation and Chronic Liver Disease. Front. Immunol. 2021, 12, 719954. [Google Scholar] [CrossRef] [PubMed]
- Granito, A.; Muratori, L.; Lalanne, C.; Quarneti, C.; Ferri, S.; Guidi, M.; Lenzi, M.; Muratori, P. Hepatocellular carcinoma in viral and autoimmune liver diseases: Role of CD4+ CD25+ Foxp3+ regulatory T cells in the immune microenvironment. World J. Gastroenterol. 2021, 27, 2994–3009. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.K.; Chen, D.; Li, S.Q.; Fu, S.J.; Peng, B.G.; Liang, L.J. Prognostic significance of neutrophil-lymphocyte ratio in hepatocellular carcinoma: A meta-analysis. BMC Cancer 2014, 14, 117. [Google Scholar] [CrossRef] [Green Version]
- McMillan, D.C. Systemic inflammation, nutritional status and survival in patients with cancer. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 223–226. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.Y.; Friedman, S.L. Fibrosis-dependent mechanisms of hepatocarcinogenesis. Hepatology 2012, 56, 769–775. [Google Scholar] [CrossRef]
- Choi, W.M.; Lee, J.H.; Ahn, H.; Cho, H.; Cho, Y.Y.; Lee, M.; Yoo, J.J.; Cho, Y.; Lee, D.H.; Lee, Y.B.; et al. Forns index predicts recurrence and death in patients with hepatitis B-related hepatocellular carcinoma after curative resection. Liver Int. 2015, 35, 1992–2000. [Google Scholar] [CrossRef]
- Chung, H.A.; Kim, J.H.; Hwang, Y.; Choi, H.S.; Ko, S.Y.; Choe, W.H.; Kwon, S.Y. Noninvasive fibrosis marker can predict recurrence of hepatocellular carcinoma after radiofrequency ablation. Saudi J. Gastroenterol. 2016, 22, 57–63. [Google Scholar] [CrossRef]
- Bruix, J.; Sherman, M.; American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: An update. Hepatology 2011, 53, 1020–1022. [Google Scholar] [CrossRef]
- Wai, C.T.; Greenson, J.K.; Fontana, R.J.; Kalbfleisch, J.D.; Marrero, J.A.; Conjeevaram, H.S.; Lok, A.S. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology 2003, 38, 518–526. [Google Scholar] [CrossRef] [Green Version]
- Cho, E.; Kim, H.C.; Lee, J.H.; Jeong-Ju, Y.; Choi, W.M.; Cho, Y.Y.; Lee, M.J.; Cho, Y.; Lee, D.H.; Lee, Y.B.; et al. Serum insulin-like growth factor-1 predicts disease progression and survival in patients with hepatocellular carcinoma who undergo transarterial chemoembolization. PLoS ONE 2014, 9, e90862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lencioni, R.; Llovet, J.M. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin. Liver Dis. 2010, 30, 52–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heagerty, P.J.; Lumley, T.; Pepe, M.S. Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics 2000, 56, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Cassatella, M.A.; Costantini, C.; Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol. 2011, 11, 519–531. [Google Scholar] [CrossRef] [PubMed]
- Franco, A.T.; Corken, A.; Ware, J. Platelets at the interface of thrombosis, inflammation, and cancer. Blood 2015, 126, 582–588. [Google Scholar] [CrossRef] [Green Version]
- Beyer, M.; Schultze, J.L. Regulatory T cells in cancer. Blood 2006, 108, 804–811. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.U.; Jung, K.S.; Lee, S.; Park, J.Y.; Kim, D.Y.; Ahn, S.H.; Choi, G.H.; Kim, K.S.; Choi, J.S.; Han, K.H.; et al. Histological subclassification of cirrhosis can predict recurrence after curative resection of hepatocellular carcinoma. Liver Int. 2014, 34, 1008–1017. [Google Scholar] [CrossRef]
- Teng, W.; Hsieh, Y.C.; Lui, K.W.; Chen, W.T.; Hung, C.F.; Huang, C.H.; Chen, Y.C.; Jeng, W.J.; Lin, C.C.; Lin, C.Y.; et al. Eradication of hepatitis C virus profoundly prolongs survival in hepatocellular carcinoma patients receiving transarterial chemoembolization. J. Viral. Hepat. 2017, 24, 1160–1167. [Google Scholar] [CrossRef]
- Pang, Q.; Zhang, J.Y.; Xu, X.S.; Song, S.D.; Chen, W.; Zhou, Y.Y.; Miao, R.C.; Qu, K.; Liu, S.S.; Dong, Y.F.; et al. The prognostic values of 12 cirrhosis-relative noninvasive models in patients with hepatocellular carcinoma. Scand. J. Clin. Lab. Investig. 2015, 75, 73–84. [Google Scholar] [CrossRef]
- Kadalayil, L.; Benini, R.; Pallan, L.; O’Beirne, J.; Marelli, L.; Yu, D.; Hackshaw, A.; Fox, R.; Johnson, P.; Burroughs, A.K.; et al. A simple prognostic scoring system for patients receiving transarterial embolisation for hepatocellular cancer. Ann. Oncol. 2013, 24, 2565–2570. [Google Scholar] [CrossRef]
- Sieghart, W.; Hucke, F.; Pinter, M.; Graziadei, I.; Vogel, W.; Müller, C.; Heinzl, H.; Trauner, M.; Peck-Radosavljevic, M. The ART of decision making: Retreatment with transarterial chemoembolization in patients with hepatocellular carcinoma. Hepatology 2013, 57, 2261–2273. [Google Scholar] [CrossRef] [PubMed]
- Hucke, F.; Pinter, M.; Graziadei, I.; Bota, S.; Vogel, W.; Müller, C.; Heinzl, H.; Waneck, F.; Trauner, M.; Peck-Radosavljevic, M.; et al. How to STATE suitability and START transarterial chemoembolization in patients with intermediate stage hepatocellular carcinoma. J. Hepatol. 2014, 61, 1287–1296. [Google Scholar] [CrossRef] [PubMed]
- Pinato, D.J.; Arizumi, T.; Allara, E.; Jang, J.W.; Smirne, C.; Kim, Y.W.; Kudo, M.; Pirisi, M.; Sharma, R. Validation of the hepatoma arterial embolization prognostic score in European and Asian populations and proposed modification. Clin. Gastroenterol. Hepatol. 2015, 13, 1204–1208.e1202. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xia, D.; Bai, W.; Wang, E.; Sun, J.; Huang, M.; Mu, W.; Yin, G.; Li, H.; Zhao, H.; et al. Development of a prognostic score for recommended TACE candidates with hepatocellular carcinoma: A multicentre observational study. J. Hepatol. 2019, 70, 893–903. [Google Scholar] [CrossRef] [PubMed]
- Granito, A.; Facciorusso, A.; Sacco, R.; Bartalena, L.; Mosconi, C.; Cea, U.V.; Cappelli, A.; Antonino, M.; Modestino, F.; Brandi, N.; et al. TRANS-TACE: Prognostic Role of the Transient Hypertransaminasemia after Conventional Chemoembolization for Hepatocellular Carcinoma. J. Pers Med. 2021, 11, 1041. [Google Scholar] [CrossRef]
Variables | Patients (n = 605) |
---|---|
Age (years) | 57 (50–64) |
Male | 497 (82.1) |
Cirrhosis | 511 (84.5) |
Etiology | |
HBV | 439 (72.6) |
HCV | 85 (14.0) |
Non-viral | 81 (13.4) |
WBC (/mm3) | 5200 (4065–6500) |
Platelets (×103/mm3) | 127 (82–177) |
Child-Pugh score | 6 (5–7) |
MELD-Na | 10 (8–13) |
Serum AFP (ng/mL) | 110 (13–2150) |
NLR | 2.0 (1.4–3.1) |
PLR | 84.1 (63.1–125.2) |
SII | 248.3 (140.9–445.3) |
APRI | 1.3 (0.8–2.3) |
FIB-4 | 4.4 (2.9–7.9) |
Size of the largest tumor (cm) | 3.7 (2.0–7.6) |
Tumor number | |
Single | 276 (45.6) |
Multiple | 329 (54.4) |
Vascular invasion | 189 (31.2) |
BCLC | |
0 | 43 (7.1) |
A | 179 (29.6) |
B | 92 (15.2) |
C | 291 (48.1) |
Variables | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | |
Age (≥60 vs. <60 years) | 1.00 (0.99–1.01) | 0.40 | ||
Sex (male vs. female) | 1.08 (0.89–1.34) | 0.51 | ||
Etiology | 0.07 | |||
HBV | 0.87 (0.67–1.11) | |||
HCV | 0.69 (0.50–0.95) | |||
Non-viral | 1 (ref) | |||
Child-Pugh score | 1.05 (0.98–1.11) | 0.15 | ||
AFP (≥200 vs. <200 ng/mL) | 1.57 (1.32–1.86) | <0.001 | 1.23 (1.02–1.48) | 0.03 |
Tumor size (≥5 vs. <5 cm) | 2.45 (2.04–2.94) | <0.001 | 1.90 (1.53–2.36) | <0.001 |
Tumor number (≥ multiple vs. single) | 1.73 (1.45–2.05) | <0.001 | 1.68 (1.41–2.02) | <0.001 |
Vascular invasion | 2.48 (2.05–3.01) | <0.001 | 1.52 (1.20–1.93) | <0.001 |
BCLC stage | <0.001 | - | 0.20 | |
0 | 1 (ref) | |||
A | 1.34 (0.95–1.89) | |||
B | 2.05 (1.41–2.98) | |||
C | 3.04 (2.17–4.26) | |||
D | 2.24 (1.33–3.78) | |||
NLR | 1.12 (1.07–1.16) | <0.001 | 1.06 (1.02–1.11) | 0.007 |
PLR | 1.00 (1.00–1.00) | <0.001 | - | 0.86 |
SII | 1.00 (1.00–1.00) | <0.001 | - | 0.27 |
APRI | 1.03 (1.02–1.05) | <0.001 | - | 0.06 |
FIB-4 | 1.01 (1.00–1.03) | 0.03 | 1.02 (1.01–1.04) | 0.008 |
Variables | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | |
Age (≥60 vs. <60 years) | 1.00 (0.99–1.01) | 0.46 | ||
Sex (male vs. female) | 1.19 (0.92–1.54) | 0.19 | ||
Etiology | 0.39 | |||
HBV | 0.89 (0.67–1.17) | |||
HCV | 0.78 (0.55–1.11) | |||
Non-viral | 1 (ref) | |||
Child-Pugh score | 1.32 (1.24–1.40) | <0.001 | 1.35 (1.26–1.45) | <0.001 |
AFP (≥200 vs. <200 ng/mL) | 2.09 (1.73–2.54) | <0.001 | 1.45 (1.17–1.80) | 0.001 |
Tumor size (≥5 vs. <5 cm) | 3.31 (2.69–4.06) | <0.001 | 2.40 (1.87–3.08) | <0.001 |
Tumor number (≥multiple vs. single) | 1.68 (1.38–2.04) | <0.001 | 1.53 (1.24–1.89) | <0.001 |
Vascular invasion | 3.05 (2.50–3.72) | <0.001 | 1.86 (1.45–2.38) | <0.001 |
BCLC stage | <0.001 | - | 0.16 | |
0 | 1 (ref) | |||
A | 2.04 (1.19–3.50) | |||
B | 3.43 (1.95–6.02) | |||
C | 6.09 (3.60–10.31) | |||
D | 10.05 (5.33–18.98) | |||
NLR | 1.18 (1.15–1.22) | <0.001 | 1.09 (1.05–1.13) | <0.001 |
PRL | 1.00 (1.00–1.00) | <0.001 | - | 0.25 |
SII | 1.00 (1.00–1.00) | <0.001 | - | 0.08 |
APRI | 1.03 (1.02–1.05) | <0.001 | - | 0.14 |
FIB-4 | 1.03 (1.01–1.04) | 0.001 | 1.02 (1.00–1.04) | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, E.J.; Yu, S.J.; Lee, Y.B.; Lee, J.-H.; Kim, Y.J.; Yoon, J.-H. Prognostic Values of Inflammation-Based Scores and Fibrosis Markers in Patients with Hepatocellular Carcinoma Treated with Transarterial Chemoembolization. Diagnostics 2022, 12, 1170. https://doi.org/10.3390/diagnostics12051170
Cho EJ, Yu SJ, Lee YB, Lee J-H, Kim YJ, Yoon J-H. Prognostic Values of Inflammation-Based Scores and Fibrosis Markers in Patients with Hepatocellular Carcinoma Treated with Transarterial Chemoembolization. Diagnostics. 2022; 12(5):1170. https://doi.org/10.3390/diagnostics12051170
Chicago/Turabian StyleCho, Eun Ju, Su Jong Yu, Yun Bin Lee, Jeong-Hoon Lee, Yoon Jun Kim, and Jung-Hwan Yoon. 2022. "Prognostic Values of Inflammation-Based Scores and Fibrosis Markers in Patients with Hepatocellular Carcinoma Treated with Transarterial Chemoembolization" Diagnostics 12, no. 5: 1170. https://doi.org/10.3390/diagnostics12051170
APA StyleCho, E. J., Yu, S. J., Lee, Y. B., Lee, J.-H., Kim, Y. J., & Yoon, J.-H. (2022). Prognostic Values of Inflammation-Based Scores and Fibrosis Markers in Patients with Hepatocellular Carcinoma Treated with Transarterial Chemoembolization. Diagnostics, 12(5), 1170. https://doi.org/10.3390/diagnostics12051170