Using the Indocyanine Green (ICG) Lymphography to Screen Breast Cancer Patients at High Risk for Lymphedema
Abstract
:1. Introduction
2. Methods
2.1. Patients
2.2. ICG Lymphography
2.3. Lymphedema Assessment and Follow-Up Data Collection
2.4. Statistical Analyses
3. Results
3.1. Patients
3.2. Correlation between Clinicopathological Features and Lymphedema
3.3. Analysis of ICG Lymphography
3.4. Using ICG Lymphography to Predict the Occurrence of Lymphedema
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Azhar, S.H.; Lim, H.Y.; Tan, B.K.; Angeli, V. The Unresolved Pathophysiology of Lymphedema. Front. Physiol. 2020, 11, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Executive Committee of the International Society of Lymphology. The diagnosis and treatment of peripheral lymphedema: 2020 Consensus Document of the International Society of Lymphology. Lymphology 2020, 53, 3–19. [Google Scholar]
- Czerniec, S.A.; Ward, L.C.; Refshauge, K.M.; Beith, J.; Lee, M.J.; York, S.; Kilbreath, S.L. Assessment of breast cancer-related arm lymphedema--comparison of physical measurement methods and self-report. Cancer Investig. 2010, 28, 54–62. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, S.A.; Staley, A.C.; Vicini, F.; Thiruchelvam, P.; Hutchison, N.A.; Mendez, J.; MacNeill, F.; Rockson, S.G.; DeSnyder, S.M.; Klimberg, S.; et al. Considerations for Clinicians in the Diagnosis, Prevention, and Treatment of Breast Cancer-Related Lymphedema: Recommendations from a Multidisciplinary Expert ASBrS Panel: Part 1: Definitions, Assessments, Education, and Future Directions. Ann. Surg. Oncol. 2017, 24, 2818–2826. [Google Scholar] [CrossRef]
- Sayegh, H.E.; Asdourian, M.S.; Swaroop, M.N.; Brunelle, C.L.; Skolny, M.N.; Salama, L.; Taghian, A.G. Diagnostic Methods, Risk Factors, Prevention, and Management of Breast Cancer-Related Lymphedema: Past, Present, and Future Directions. Curr. Breast Cancer Rep. 2017, 9, 111–121. [Google Scholar] [CrossRef]
- Binay Safer, V.; Safer, U.; Tasci, I. Bioimpedance analysis—The shortcomings. Obes. Res. Clin. Pract. 2014, 8, e403–e404. [Google Scholar] [CrossRef] [PubMed]
- Qin, E.S.; Bowen, M.J.; Chen, W.F. Diagnostic accuracy of bioimpedance spectroscopy in patients with lymphedema: A retrospective cohort analysis. J. Plast. Reconstr. Aesthet. Surg. 2018, 71, 1041–1050. [Google Scholar] [CrossRef] [PubMed]
- Shaitelman, S.F.; Cromwell, K.D.; Rasmussen, J.C.; Stout, N.L.; Armer, J.M.; Lasinski, B.B.; Cormier, J.N. Recent progress in the treatment and prevention of cancer-related lymphedema. CA Cancer J. Clin 2015, 65, 55–81. [Google Scholar] [CrossRef] [PubMed]
- Mihara, M.; Hara, H.; Araki, J.; Kikuchi, K.; Narushima, M.; Yamamoto, T.; Iida, T.; Yoshimatsu, H.; Murai, N.; Mitsui, K.; et al. Indocyanine green (ICG) lymphography is superior to lymphoscintigraphy for diagnostic imaging of early lymphedema of the upper limbs. PLoS ONE 2012, 7, e38182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, D.W.; Suami, H.; Skoracki, R. A prospective analysis of 100 consecutive lymphovenous bypass cases for treatment of extremity lymphedema. Plast. Reconstr. Surg. 2013, 132, 1305–1314. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, N.; Gao, P.; Liu, P.; Yang, H.; Xie, F.; Wang, S.; Liu, M.; Wang, S. Using the axillary reverse mapping technique to screen breast cancer patients with a high risk of lymphedema. World J. Surg. Oncol. 2020, 18, 118. [Google Scholar] [CrossRef] [PubMed]
- Soran, A.; Menekse, E.; Girgis, M.; DeGore, L.; Johnson, R. Breast cancer-related lymphedema after axillary lymph node dissection: Does early postoperative prediction model work? Supportive Care Cancer Off. J. Multinatl. Assoc. Supportive Care Cancer 2016, 24, 1413–1419. [Google Scholar] [CrossRef] [PubMed]
- Ogata, F.; Azuma, R.; Kikuchi, M.; Koshima, I.; Morimoto, Y. Novel Lymphography Using Indocyanine Green Dye for Near-Infrared Fluorescence Labeling. Ann. Plast. Surg. 2007, 58, 652–655. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Yamamoto, N.; Doi, K.; Oshima, A.; Yoshimatsu, H.; Todokoro, T.; Ogata, F.; Mihara, M.; Narushima, M.; Iida, T.; et al. Indocyanine green-enhanced lymphography for upper extremity lymphedema: A novel severity staging system using dermal backflow patterns. Plast. Reconstr. Surg. 2011, 128, 941–947. [Google Scholar] [CrossRef] [PubMed]
- Akita, S.; Nakamura, R.; Yamamoto, N.; Tokumoto, H.; Ishigaki, T.; Yamaji, Y.; Sasahara, Y.; Kubota, Y.; Mitsukawa, N.; Satoh, K. Early Detection of Lymphatic Disorder and Treatment for Lymphedema following Breast Cancer. Plast. Reconstr. Surg. 2016, 138, 192e–202e. [Google Scholar] [CrossRef] [PubMed]
- Abdelfattah, U.; Jaimez, P.M.; Clavero, J.A.; Bellantonio, V.; Pons, G.; Masia, J. Correlation between superficial and deep lymphatic systems using magnetic resonance lymphangiography in breast cancer-related lymphedema: Clinical implications. J Plast. Reconstr. Aesthet. Surg. 2020, 73, 1018–1024. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.F.; Lu, Q.; Jiang, Z.H.; Wang, C.G.; Zhou, J.G. Anatomic and functional evaluation of the lymphatics and lymph nodes in diagnosis of lymphatic circulation disorders with contrast magnetic resonance lymphangiography. J. Vasc. Surg. 2009, 49, 980–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asdourian, M.S.; Skolny, M.N.; Brunelle, C.; Seward, C.E.; Salama, L.; Taghian, A.G. Precautions for breast cancer-related lymphoedema: Risk from air travel, ipsilateral arm blood pressure measurements, skin puncture, extreme temperatures, and cellulitis. Lancet Oncol. 2016, 17, e392–e405. [Google Scholar] [CrossRef]
- Ferguson, C.M.; Swaroop, M.N.; Horick, N.; Skolny, M.N.; Miller, C.L.; Jammallo, L.S.; Brunelle, C.; O’Toole, J.A.; Salama, L.; Specht, M.C.; et al. Impact of Ipsilateral Blood Draws, Injections, Blood Pressure Measurements, and Air Travel on the Risk of Lymphedema for Patients Treated for Breast Cancer. J. Clin. Oncol. 2016, 34, 691–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Lymphedema Group (n = 91) | Non-Lymphedema Group (n = 88) | p-Value |
---|---|---|---|
Age (years) | 60.43 ± 11.56 | 54.20 ± 11.47 | 0.001 |
BMI (kg/m2) | 25.02 ± 3.52 | 25.12 ± 3.29 | 0.841 |
Affected limb | 0.600 | ||
Right | 44 | 46 | |
Left | 47 | 42 | |
Breast Surgery | 0.001 | ||
BCS | 11 | 30 | |
Mastectomy | 80 | 58 | |
Axillary surgery | 0.000 | ||
SLNB | 1 | 31 | |
ALND | 90 | 57 | |
Chemotherapy | 0.030 | ||
Yes | 86 | 74 | |
No | 5 | 14 | |
Radiotherapy | 0.011 | ||
Yes | 71 | 53 | |
No | 20 | 35 | |
Time since BC surgery (months) | 67.45 ± 85.72 | 22.48 ± 18.39 | 0.000 |
Characteristic | β | S.E | p | OR | 95% CI |
---|---|---|---|---|---|
Age | 0.042 | 0.019 | 0.026 | 1.043 | 1.005–1.082 |
Breast Surgery | −0.674 | 0.534 | 0.207 | 0.510 | 0.179–1.452 |
Axillary surgery | 3.564 | 1.131 | 0.002 | 35.308 | 3.849–323.874 |
Radiotherapy | 1.274 | 0.457 | 0.005 | 3.574 | 1.460–8.746 |
Chemotherapy | −0.512 | 0.797 | 0.520 | 0.599 | 0.126–2.856 |
Time since BC surgery | 0.024 | 0.008 | 0.004 | 1.024 | 1.008–1.041 |
Variable | No. | Events | Mean Follow-Up without LE (Months) | p-Value | HR | 95% CI |
---|---|---|---|---|---|---|
Group | ||||||
ICG+ | 47 | 9 | 22.06 | 0.027 | 10.437 | 1.313–82.994 |
ICG− | 41 | 1 | 29.02 | |||
Age (years) | ||||||
≥60 years | 29 | 5 | 25.51 | 0.311 | 1.904 | 0.548–6.611 |
<60 years | 59 | 5 | 25.20 | |||
BMI (kg/m2) | ||||||
≥24 | 54 | 9 | 23.04 | 0.068 | 6.904 | 0.869–54.832 |
<24 | 34 | 1 | 28.90 | |||
Affected limb | ||||||
Right | 46 | 8 | 24.93 | 0.099 | 3.680 | 0.781–17.334 |
Left | 42 | 2 | 25.71 | |||
Breast Surgery | ||||||
Mastectomy | 58 | 9 | 23.80 | 0.107 | 5.489 | 0.694–43.415 |
BCS | 30 | 1 | 28.20 | |||
Axillary surgery | ||||||
ALND | 57 | 10 | 24.87 | 0.159 | 44.630 | 0.225–8859.097 |
SLNB | 31 | 0 | 26.10 | |||
Chemotherapy | ||||||
Yes | 74 | 10 | 24.23 | 0.325 | 29.056 | 0.035–23894.466 |
No | 14 | 0 | 30.98 | |||
Radiotherapy | ||||||
Yes | 53 | 9 | 25.51 | 0.086 | 6.106 | 0.773–48.200 |
No | 35 | 1 | 24.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Liu, S.; Zhao, Q.; Cui, Y.; Chen, J.; Wang, S. Using the Indocyanine Green (ICG) Lymphography to Screen Breast Cancer Patients at High Risk for Lymphedema. Diagnostics 2022, 12, 983. https://doi.org/10.3390/diagnostics12040983
Liu M, Liu S, Zhao Q, Cui Y, Chen J, Wang S. Using the Indocyanine Green (ICG) Lymphography to Screen Breast Cancer Patients at High Risk for Lymphedema. Diagnostics. 2022; 12(4):983. https://doi.org/10.3390/diagnostics12040983
Chicago/Turabian StyleLiu, Miao, Siyao Liu, Quanping Zhao, Ying Cui, Jin Chen, and Shu Wang. 2022. "Using the Indocyanine Green (ICG) Lymphography to Screen Breast Cancer Patients at High Risk for Lymphedema" Diagnostics 12, no. 4: 983. https://doi.org/10.3390/diagnostics12040983
APA StyleLiu, M., Liu, S., Zhao, Q., Cui, Y., Chen, J., & Wang, S. (2022). Using the Indocyanine Green (ICG) Lymphography to Screen Breast Cancer Patients at High Risk for Lymphedema. Diagnostics, 12(4), 983. https://doi.org/10.3390/diagnostics12040983