Comparison of Different Nutritional Assessment Tools in Detecting Malnutrition and Sarcopenia among Cirrhotic Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Population Selection and Study Design
2.2. Nutritional Assessment Tools
2.3. Anthropometric Measurements
2.4. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Prevalence of Malnutrition/Sarcopenia
3.3. Malnutrition-Associated Factors
3.4. Comparison between the Used Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mahaeshi, B.; Sharma, C.; Srivastava, S. Malnutrition in cirrhosis increases morbidity and mortality. J. Gastroenterol. Hepatol. 2015, 30, 1507–1513. [Google Scholar] [CrossRef] [PubMed]
- Bunchorntavakul, C.; Reddy, K.R. Review article: Malnutrition/sarcopenia and frailty in patients with cirrhosis. Aliment. Pharmacol. Ther. 2020, 51, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Cederholm, T.; Barazzoni, R.; Austin, P.; Ballmer, P.; Biolo, G.; Bischoff, S.C.; Compher, C.; Correia, I.; Higashiguchi, T.; Holst, M.; et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin. Nutr. 2018, 36, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.; Gonzale, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM criteria for the diagnosis of malnutrition: A consensus report from the global clinical nutrition community. Clin. Nutr. 2019, 38, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.C.; Tandon, P.; Bernal, W.; Tapper, E.B.; Ekong, U.; Dasarathy, S.; Carey, E.J. Malnutrition, Frailty, and Sarcopenia in Patients With Cirrhosis: 2021 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2021, 74, 1611–1644. [Google Scholar] [CrossRef] [PubMed]
- Merli, M.; Berzigotti, A.; Zelber-Sagi, S.; Dasarathy, S.; Montagnese, S.; Genton, L. EASL Clinical Practice Guidelines on nutrition in chronic liver disease. J. Hepatol. 2019, 70, 171–193. [Google Scholar] [CrossRef] [PubMed]
- Fink, J.S.; Daniel de Mello, P.; Daniel de Mello, E. Subjective Global Asssessment of nutritional status—A sistematic review of the literature. Clin. Nutr. 2015, 34, 785–792. [Google Scholar] [CrossRef]
- Wishart, E.; Taylor, L.; Lam, L.; Marr, J.K.; Stapleton, M.; Fitzgerald, Q.; Chiu, E.; Tandon, P.; Raman, M. Exploring relationships between handgrip strength, mid-upper arm circumference, subjective global assessment and adverse clinical outcomes in cirrhosis: A prospective cohort study. J. Can. Assoc. Gastroenterol. 2019, 2 (Suppl. 2), 352–353. [Google Scholar] [CrossRef]
- Marr, K.J.; Shaheen, A.A.; Lam, L.; Stapleton, M.; Burak, K.; Raman, M. Nutritional status and the performance of multiple bedside tools for nutrition assessment among patients waiting for liver transplantation: A Canadian experience. Clin. Nutr. ESPEN 2017, 17, 68–74. [Google Scholar] [CrossRef]
- Moctezuma-Velazquez, C.; Ebadi, M.; Bhanji, R.A.; Stirnimann, G.; Tandon, P.; Montano-Loza, A.J. Limited performance of subjective global assessment compared to computed tomography-determined sarcopenia in predicting adverse clinical outcomes in patients with cirrhosis. Clin. Nutr. 2019, 38, 2696–2703. [Google Scholar] [CrossRef]
- Borhofen, S.M.; Gerner, C.; Lehmann, J.; Fimmers, R.; Görtzen, J.; Hey, B.; Geiser, F.; Strassburg, C.P.; Trebicka, J. The Royal Free Hospital-Nutritional Prioritizing Tool is an independent predictor of deterioration of liver function and survival in cirrhosis. Dig. Dis. Sci. 2016, 61, 1735–1743. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.; et al. Sarcopenia: Revised European Consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, M.; Chapman, B.; Hoermann, R.; Angus, P.W.; Testro, A.; Scodellaro, T.; Gow, P.J. Handgrip strength adds more prognostic value to the Model for End-Stage Liver Disease score than imaging- based measures of muscle mass in men with cirrhosis. Liver Transplant. 2019, 25, 1480–1487. [Google Scholar] [CrossRef] [PubMed]
- Moreau, R.; Sicot, C. Evaluation du pronostic à court terme des cirrhotiques admis en réanimation, à l’aide de 4 indices de gravité [Evaluation of the short-term prognosis of cirrhotic patients admitted to intensive care, using 4 scoring systems]. Gastroenterol. Clin. Biol. 1985, 9, 871–876. (In French) [Google Scholar] [PubMed]
- Onaca, N.N.; Levy, M.F.; Sanchez, E.Q.; Chinnakotla, S.; Fasola, C.G.; Thomas, M.J.; Weinstein, J.S.; Murray, N.G.; Goldstein, R.M.; Klintmalm, G.B. A correlation between the pretransplantation MELD score and mortality in the first two years after liver transplantation. Liver Transplant. 2003, 9, 117–123. [Google Scholar] [CrossRef]
- Morgan, M.Y.; Madden, A.M.; Soulsby, C.T.; Morris, R.W. Derivation and validation of a new global method for assessing nutritional status in patients with cirrhosis. Hepatology 2006, 44, 823–835. [Google Scholar] [CrossRef]
- McDowell, M.; Fryar, C.; Ogden, C.; Flegal, K. Anthropometric reference data for children and adults: United States, 2003–2006. Natl. Health Stat. Rep. 2008, 10, 5. [Google Scholar]
- Frisancho, A.R. New standards of weight and body composition by frame size and height for assessment of nutritional status of adults and the elderly. Am. J. Clin. Nutr. 1984, 40, 808–819. [Google Scholar] [CrossRef]
- Blackburn, G.L.; Harvey, K.B. Prognostic strength of nutritional assessment. Prog. Clin. Biol. Res. 1981, 77, 689–697. [Google Scholar]
- Giovanni, M.; Sinan, S.; Giulio, V.; Rita, G.; Davide, F.; Antonio, C.; Renzulli, M. Imaging Software- Based Sarcopenia Assessment in Gastroenterology: Evolution and Clinical Meaning. Can. J. Gastroenterol. Hepatol. 2021, 2021, 6669480. [Google Scholar] [CrossRef]
- Hassan, M.S.; Rehim, A.S.E.A.; Khalil, M.A.; Osman, Y.A.M. Nutritional assessment of cirrhotic patients with variable severity. J. Curr. Med. Res. Pract. 2019, 4, 144–151. [Google Scholar] [CrossRef]
- Nunes, G.; Santos, C.A.; Barosa, R.; Fonseca, C.; Barata, A.T.; Fonseca, J. Outcome and nutritional assessment of chronic liver disease patients using anthropometry and subjective global assessment. Arq. Gastroenterol. 2017, 54, 224–231. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tandon, P.; Low, G.; Mourtzakis, M.; Zenith, L.; Myers, R.P.; Abraldes, J.G.; Shaheen AA, M.; Qamar, H.; Mansoor, N.; Carbonneau, M.; et al. A model to identify Sarcopenia in Patients with cirrhosis. Clin. Gastroenterol. Hepatol. 2016, 14, 1473–1480. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, A.; Papatheodoridis, G.V.; Alexopoulou, A.; Deutsch, M.; Vlachogiannakos, I.; Ioannidou, P.; Ioannidou, P.; Papageorgiou, M.V.; Papadopoulos, N.; Tsibouris, P.; et al. Evaluation of the effective-ness of eight screening tools in detecting risk of malnutrition in cirrhotic patients: The KIRRHOS study. Br. J. Nutr. 2019, 122, 1368–1376. [Google Scholar] [CrossRef] [PubMed]
- Tapper, E.B.; Derstine, B.; Baki, J.; Su, G.L. Bedside Measures of Frailty and Cognitive Function Correlate with Sarcopenia in Patients with Cirrhosis. Dig. Dis. Sci. 2019, 64, 3652–3659. [Google Scholar] [CrossRef]
- Carvalho, L.; Parise, E.R. Evaluation of nutritional status of non-hospitalized patients with liver cirrhosis. Arq. Gastroenterol. 2006, 43, 269–274. [Google Scholar] [CrossRef]
- Fozouni, L.; Wang, C.W.; Lai, L.C. Sex Differences in the Association Between Frailty and Sarcopenia in Patients With Cirrhosis. Clin. Transl. Gastroenterol. 2019, 10, e00102. [Google Scholar] [CrossRef]
- Eslamparast, T.; Montano-Loza, A.J.; Raman, M.; Tandon, P. Sarcopenic obesity in cirrhosis—The confluence of 2 prognostic titans. Liver Int. 2018, 38, 1706–1717. [Google Scholar] [CrossRef]
Parameter | Values |
---|---|
Age [years] (mean ± SD) • <40 years • 40–60 years • >60 years | 61.8 ± 8.7 0 64 (41%) 92 (59%) |
Gender–Men n (%) | 96 (61.5%) |
Child-Pugh classification | |
| 34 (21.8%) 61 (39.1%) 61 (39.1%) |
Mean Child Pugh score (points) | 8.7 ± 2.2 |
Mean MELD score (points) | 14 (19) |
Ascites n (%) | |
| 53 (34.0%) 103 (66.0%) |
Etiology of cirrhosis n (%) | |
| 18 (11.5%) 40 (25.6%) 89 (57.1%) 3 (1.9%) 6 (3.9%) |
Esophageal varices present—n (%) | 104 (66.7%) |
Mean BMI (kg/m2) | 25.9 |
| 4 (2.7%) 67 (42.9%) 85 (54.4%) |
Mean Albumin (g/L ± SD) | 2.6 ± 0.7 |
Mean Hemoglobin level (g/L ± SD) | 10.4 ± 2.6 |
Parameter (Reference Category) | Odds Ratio (95% CI) | p Value |
---|---|---|
Age over 60 years | 0.92 (0.91–0.99) | 0.006 |
Child-Pugh score * | 1.38 (1.18–1.63) | 0.0009 |
MELD score | 1.05 (1.00–1.10) | 0.01 |
| 0.18 (0.08–0.43) 1.02 (0.53–1.98) 3.50 (1.20–4.25) | 0.09 0.05 <0.0001 |
Lower serum albumin levels * | 0.34 (0.20–0.58) | ˂0.0001 |
Vitamin D deficiency * | 5.66 (2.18–14.70) | ˂0.0001 |
Gender (male) | 3.42 (1.66–7.04) | 0.0008 |
Etiologies | ||
| 1.44 (0.75–2.75) 1.06 (0.33–3.40) 0.46 (0.21–0.99) | <0.0001 0.01 0.001 |
Parameter | AUROC | Sensibility (%) | Specificity (%) | Positive Predictive Value (%) | Negative Predictive Value (%) | p-Value |
---|---|---|---|---|---|---|
RFH-NPT score | 0.86 * | 76.6 | 88.7 | 91.1 | 71.4 | <0.0001 |
MUAC | 0.81 | 80.8 | 72.5 | 81.7 | 71.4 | <0.0001 |
MUMC | 0.79 | 90.4 | 58.0 | 75.2 | 79.1 | <0.0001 |
SGA score | 0.71 | 81.9 | 61.2 | 76.2 | 69.1 | <0.0001 |
DRY BMI | 0.68 | 42.5 | 91.9 | 83.7 | 50.5 | <0.0001 |
TSF | 0.63 | 41.4 | 80.6 | 76.5 | 47.6 | 0.002 |
BMI | 0.62 | 32.9 | 90.3 | 83.8 | 47.1 | 0.005 |
Diagnostic Methods | SGA | RFH-NPT | MUAC | MAMC | TSF | HGS |
---|---|---|---|---|---|---|
BMI | 0.74 | 0.87 | 0.81 | 0.79 | 0.64 | 0.16 |
SGA | 0.88 | 0.83 | 0.83 | 0.75 | 0.41 | |
RFH-NPT | 0.89 * | 0.89 * | 0.87 | −0.44 | ||
MUAC | 0.82 | 0.82 | 0.30 | |||
MUMC | 0.82 | 0.22 | ||||
TSF | 0.19 |
Diagnostic Methods | SGA | RFH-NPT | MUAC | MAMC | TSF | HGS | SMI + HGS |
---|---|---|---|---|---|---|---|
BMI | 0.03 | 0.06 | 0.06 | 0.11 | 0.11 | 0.05 | 0.04 |
SGA | 0.45 | 0.36 | 0.23 | 0.30 | 0.40 | 0.44 | |
RFH-NPT | 0.41 | 0.32 | 0.27 | −0.44 | 0.62 * | ||
MUAC | 0.54 | 0.41 | 0.29 | 0.47 | |||
MUMC | 0.12 | 0.20 | 0.39 | ||||
TSF | 0.17 | 0.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Topan, M.-M.; Sporea, I.; Dănilă, M.; Popescu, A.; Ghiuchici, A.-M.; Lupușoru, R.; Șirli, R. Comparison of Different Nutritional Assessment Tools in Detecting Malnutrition and Sarcopenia among Cirrhotic Patients. Diagnostics 2022, 12, 893. https://doi.org/10.3390/diagnostics12040893
Topan M-M, Sporea I, Dănilă M, Popescu A, Ghiuchici A-M, Lupușoru R, Șirli R. Comparison of Different Nutritional Assessment Tools in Detecting Malnutrition and Sarcopenia among Cirrhotic Patients. Diagnostics. 2022; 12(4):893. https://doi.org/10.3390/diagnostics12040893
Chicago/Turabian StyleTopan, Mirabela-Madalina, Ioan Sporea, Mirela Dănilă, Alina Popescu, Ana-Maria Ghiuchici, Raluca Lupușoru, and Roxana Șirli. 2022. "Comparison of Different Nutritional Assessment Tools in Detecting Malnutrition and Sarcopenia among Cirrhotic Patients" Diagnostics 12, no. 4: 893. https://doi.org/10.3390/diagnostics12040893
APA StyleTopan, M.-M., Sporea, I., Dănilă, M., Popescu, A., Ghiuchici, A.-M., Lupușoru, R., & Șirli, R. (2022). Comparison of Different Nutritional Assessment Tools in Detecting Malnutrition and Sarcopenia among Cirrhotic Patients. Diagnostics, 12(4), 893. https://doi.org/10.3390/diagnostics12040893