Blood Plasma Exosomes Contain Circulating DNA in Their Crown
Abstract
:1. Introduction
2. Materials and Methods
2.1. Blood Treatment and Exosome Isolation
2.2. Exosome Characterization
2.3. DNA Isolation and Quantification
2.4. Examination of exoDNA Topology
2.5. Dot Immunoassay
2.6. Identification of Exosomal Proteins by MALDI-TOF Mass-Spectrometry
2.7. Data Analysis
3. Results
3.1. Characterization of Exosomes
3.2. Circulating DNA in Blood Plasma
3.3. DNA Cargo of Blood Exosomes
3.4. Identification of DNA-Binding and Histone-Binding Proteins in Plasma Exosomes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hudečková, M.; Koucký, V.; Rottenberg, J.; Gál, B. Gene Mutations in Circulating Tumour DNA as a Diagnostic and Prognostic Marker in Head and Neck Cancer-A Systematic Review. Biomedicines 2021, 9, 1548. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Qin, L.; Zhang, X.; Ye, G.; Huang, T. Epigenetic Silencing of the MLH1 Promoter in Relation to the Development of Gastric Cancer and its Use as a Biomarker for Patients with Microsatellite Instability: A Systematic Analysis. Cell. Physiol. Biochem. 2018, 45, 148–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedemann, M.; Horn, F.; Gutewort, K.; Tautz, L.; Jandeck, C.; Bechmann, N.; Sukocheva, O.; Wirth, M.P.; Fuessel, S.; Menschikowski, M. Increased Sensitivity of Detection of RASSF1A and GSTP1 DNA Fragments in Serum of Prostate Cancer Patients: Optimisation of Diagnostics Using OBBPA-ddPCR. Cancers 2021, 13, 4459. [Google Scholar] [CrossRef] [PubMed]
- Bryzgunova, O.; Bondar, A.; Ruzankin, P.; Laktionov, P.; Tarasenko, A.; Kurilshikov, A.; Epifanov, R.; Zaripov, M.; Kabilov, M.; Laktionov, P. Locus-Specific Methylation of GSTP1, RNF219, and KIAA1539 Genes with Single Molecule Resolution in Cell-Free DNA from Healthy Donors and Prostate Tumor Patients: Application in Diagnostics. Cancers 2021, 13, 6234. [Google Scholar] [CrossRef] [PubMed]
- Pu, W.-Y.; Zhang, R.; Xiao, L.; Wu, Y.-Y.; Gong, W.; Lv, X.-D.; Zhong, F.-Y.; Zhuang, Z.-X.; Bai, X.-M.; Li, K.; et al. Prediction of Cancer Progression in a Group of 73 Gastric Cancer Patients by Circulating Cell-Free DNA. BMC Cancer 2016, 16, 943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camus, V.; Jardin, F. Cell-Free DNA for the Management of Classical Hodgkin Lymphoma. Pharmaceuticals 2021, 14, 207. [Google Scholar] [CrossRef]
- Duffy, M.J.; Crown, J. Use of Circulating Tumour DNA (ctDNA) for Measurement of Therapy Predictive Biomarkers in Patients with Cancer. J. Pers. Med. 2022, 12, 99. [Google Scholar] [CrossRef]
- Sant, M.; Bernat-Peguera, A.; Felip, E.; Margelí, M. Role of ctDNA in Breast Cancer. Cancers 2022, 14, 310. [Google Scholar] [CrossRef]
- Peng, Y.; Mei, W.; Ma, K.; Zeng, C. Circulating Tumor DNA and Minimal Residual Disease (MRD) in Solid Tumors: Current Horizons and Future Perspectives. Front. Oncol. 2021, 11, 763790. [Google Scholar] [CrossRef]
- Li, M.; Xie, S.; Lu, C.; Zhu, L.; Zhu, L. Application of Data Science in Circulating Tumor DNA Detection: A Promising Avenue Towards Liquid Biopsy. Front. Oncol. 2021, 11, 692322. [Google Scholar] [CrossRef]
- Warren, J.; Xiong, W.; Bunker, A.; Vaughn, C.; Furtado, L.; Roberts, W.; Fang, J.; Samowitz, W.; Heichman, K. Septin 9 Methylated DNA is a Sensitive and Specific Blood Test for Colorectal Cancer. BMC Med. 2011, 9, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, B.; Liebenberg, V.; Dietrich, D.; Schlegel, T.; Kneip, C.; Seegebarth, A.; Flemming, N.; Seemann, S.; Distler, J.; Lewin, J.; et al. SHOX2 DNA Methylation is a Biomarker for the Diagnosis of Lung Cancer Based on Bronchial Aspirates. BMC Cancer 2010, 10, 600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grabuschnig, S.; Bronkhorst, A.J.; Holdenrieder, S.; Rosales Rodriguez, I.; Schliep, K.P.; Schwendenwein, D.; Ungerer, V.; Sensen, C.W. Putative Origins of Cell-Free DNA in Humans: A Review of Active and Passive Nucleic Acid Release Mechanisms. Int. J. Mol. Sci. 2020, 21, 8062. [Google Scholar] [CrossRef] [PubMed]
- Thierry, A.R.; El Messaoudi, S.; Gahan, P.B.; Anker, P.; Stroun, M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev. 2016, 35, 347–376. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Domínguez, I.J.; Manzo-Merino, J.; Taja-Chayeb, L.; Dueñas-González, A.; Pérez-Cárdenas, E.; Trejo-Becerril, C. The role of extracellular DNA (exDNA) in cellular processes. Cancer Biol. Ther. 2021, 22, 267–278. [Google Scholar] [CrossRef]
- Holdenrieder, S.; Stieber, P. Therapy Control in Oncology by Circulating Nucleosomes. Ann. N. Y. Acad. Sci. 2004, 1022, 211–216. [Google Scholar] [CrossRef]
- Tamkovich, S.N.; Laktionov, P.P. Cell-Surface-Bound Circulating DNA in the Blood: Biology and Clinical Application. IUBMB Life 2019, 71, 1201–1210. [Google Scholar] [CrossRef]
- Kononova, I.V.; Mamaeva, S.N.; Alekseev, V.A.; Nikolaeva, N.A.; Afanasyeva, L.N.; Nikifirov, P.V.; Vasilyeva, N.A.; Vasiliev, I.V.; Maximov, G.V. Simultaneous Detection of the HPV L1 Gene and the Human β-Globin Gene in the Blood Components of Cervical Cancer Patients Living in Yakutia. Int. J. Biomed. 2022, 12, 109–114. [Google Scholar] [CrossRef]
- Tamkovich, S.; Bryzgunova, O. Protease Activity and Cell-Free DNA in Blood Plasma of Healthy Donors and Breast Cancer Patients. J. Immunoass. Immunochem. 2016, 37, 141–153. [Google Scholar] [CrossRef]
- Kalavska, K.; Minarik, T.; Vlkova, B.; Manasova, D.; Kubickova, M.; Jurik, A.; Mardiak, J.; Sufliarsky, J.; Celec, P.; Mego, M. Prognostic Value of Various Subtypes of Extracellular DNA in Ovarian Cancer Patients. J. Ovarian Res. 2018, 11, 85. [Google Scholar] [CrossRef]
- Yunusova, N.; Kolegova, E.; Sereda, E.; Kolomiets, L.; Villert, A.; Patysheva, M.; Rekeda, I.; Grigor’eva, A.; Tarabanovskaya, N.; Kondakova, I.; et al. Plasma Exosomes of Patients with Breast and Ovarian Tumors Contain an Inactive 20S Proteasome. Molecules 2021, 26, 6965. [Google Scholar] [CrossRef]
- Fischer, S.; Cornils, K.; Speiseder, T.; Badbaran, A.; Reimer, R.; Indenbirken, D.; Grundhoff, A.; Brunswig-Spickenheier, B.; Alawi, M.; Lange, C. Indication of Horizontal DNA Gene Transfer by Extracellular Vesicles. PLoS ONE 2016, 11, e0163665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawamura, Y.; Yamamoto, Y.; Sato, T.-A.; Ochiya, T. Extracellular Vesicles as Trans-Genomic Agents: Emerging Roles in Disease and Evolution. Cancer Sci. 2017, 108, 824–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sisirak, V.; Sally, B.; D’Agati, V.; Martinez-Ortiz, W.; Özçakar, Z.B.; David, J.; Rashidfarrokhi, A.; Yeste, A.; Panea, C.; Chida, A.S. Digestion of Chromatin in Apoptotic Cell Microparticles Prevents Autoimmunity. Cell 2016, 166, 88–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maisano, D.; Mimmi, S.; Dattilo, V.; Marino, F.; Gentile, M.; Vecchio, E.; Fiume, G.; Nisticò, N.; Aloisio, A.; de Santo, M.P.; et al. A Novel Phage Display Based Platform for Exosome Diversity Characterization. Nanoscale 2022, 14, 2998–3003. [Google Scholar] [CrossRef] [PubMed]
- Tamkovich, S.; Tutanov, O.; Efimenko, A.; Grigor’eva, A.; Ryabchikova, E.; Kirushina, N.; Vlassov, V.; Tkachuk, V.; Laktionov, P. Blood Circulating Exosomes Contain Distinguishable Fractions of Free and Cell-Surface-Associated Vesicles. Curr. Mol. Med. 2019, 19, 273–285. [Google Scholar] [CrossRef]
- Bryzgunova, O.; Bondar, A.; Morozkin, E.; Mileyko, V.; Vlassov, V.; Laktionov, P. A Reliable Method to Concentrate Circulating DNA. Anal. Biochem. 2011, 408, 354–356. [Google Scholar] [CrossRef]
- Tamkovich, S.N.; Serdukov, D.S.; Tutanov, O.S.; Duzhak, T.G.; Laktionov, P.P. Identification of Proteins in Blood Nucleoprotein Complexes. Russ. J. Bioorg. Chem. 2015, 41, 617–625. [Google Scholar] [CrossRef]
- Blum, M.; Chang, H.; Chuguransky, S.; Grego, T.; Kandasaamy, S.; Mitchell, A.; Nuka, G.; Paysan-Lafosse, T.; Qureshi, M.; Raj, S.; et al. The InterPro Protein Families and Domains Database: 20 Years on. Nucleic Acids Res. 2021, 49, 344–354. [Google Scholar] [CrossRef]
- Lässer, C.; Alikhani, V.C.; Ekström, K.; Eldh, M.; Paredes, P.T.; Bossios, A.; Sjöstrand, M.; Gabrielsson, S.; Lötvall, J.; Valadi, H. Human Saliva, Plasma and Breast Milk Exosomes Contain RNA: Uptake by Macrophages. J. Transl. Med. 2011, 14, 9. [Google Scholar] [CrossRef] [Green Version]
- Ungerer, V.; Bronkhorst, A.J.; Holdenrieder, S. Preanalytical Variables that Affect the Outcome of Cell-Free DNA Measurements. Crit. Rev. Clin. Lab. Sci. 2020, 57, 484–507. [Google Scholar] [CrossRef] [PubMed]
- Jahr, S.; Hentze, H.; English, S. DNA Fragments in the Blood Plasma of Cancer Patients: Quantitations and Evidence for Their Origin from Apoptotic and Necrotic Cells. Cancer Res. 2001, 61, 1659–1665. [Google Scholar] [PubMed]
- Holdenrieder, S.; Burges, A.; Reich, O.; Spelsberg, F.W.; Stieber, P. DNA Integrity in Plasma and Serum of Patients with Malignant and Benign Diseases. Ann. N. Y. Acad. Sci. 2008, 1137, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zeringer, E.; Barta, T.; Schageman, J.; Cheng, A.; Vlassov, A.V. Analysis of the RNA Content of the Exosomes Derived from Blood Serum and Urine and its Potential as Biomarkers. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20130502. [Google Scholar] [CrossRef]
- Tamkovich, S.N.; Litviakov, N.V.; Bryzgunova, O.E.; Dobrodeev, A.Y.; Rykova, E.Y.; Tuzikov, S.A.; Zav’ialov, A.A.; Vlassov, V.V.; Cherdyntseva, N.V.; Laktionov, P.P. Cell-Surface-Bound Circulating DNA as a Prognostic Factor in Lung Cancer. Ann. N. Y. Acad. Sci. 2008, 1137, 214–217. [Google Scholar] [CrossRef]
- Kolesnikova, E.V.; Tamkovich, S.N.; Bryzgunova, O.E.; Shelestyuk, P.I.; Permyakova, V.I.; Vlassov, V.V.; Tuzikov, A.S.; Laktionov, P.P.; Rykova, E.Y. Circulating DNA in the Blood of Gastric Cancer Patients. Ann. N. Y. Acad. Sci. 2008, 1137, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Bryzgunova, O.E.; Tamkovich, S.N.; Cherepanova, A.V.; Yarmoshchuk, S.V.; Permyakova, V.I.; Anykeeva, O.Y.; Laktionov, P.P. Redistribution of Free- and Cell-Surface-Bound DNA in Blood of Benign and Malignant Prostate Tumor Patients. Acta Nat. 2015, 7, 115–118. [Google Scholar] [CrossRef]
- Tamkovich, S.N.; Kirushina, N.A.; Voytsitskiy, V.E.; Tkachuk, V.A.; Laktionov, P.P. Features of Circulating DNA Fragmentation in Blood of Healthy Females and Breast Cancer Patients. Adv. Exp. Med. Biol. 2016, 924, 47–51. [Google Scholar]
- Garcia, M.F.; Moore, C.D.; Schulz, K.N.; Harrison, M.M.; Zhu, H.; Zaret, K.S. Structural Features of Transcription Factors Associating with Nucleosome Binding. Mol. Cell 2019, 75, 921–932. [Google Scholar] [CrossRef]
- Bryzgunova, O.E.; Konoshenko, M.Y.; Laktionov, P.P. Concentration of Cell-Free DNA in Different Tumor Types. Expert Rev. Mol. Diagn. 2021, 21, 63–75. [Google Scholar] [CrossRef]
- Roth, C.; Pantel, K.; Müller, V.; Rack, B.; Kasimir-Bauer, S.; Janni, W.; Schwarzenbach, H. Apoptosis-Related Deregulation of Proteolytic Activities and High Serum Levels of Circulating Nucleosomes and DNA in Blood Correlate with Breast Cancer Progression. BMC Cancer 2011, 11, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoch, S.O. DNA-binding Domains of Fbronectin Probed Using Western blots. Biochem. Biophys. Res. Commun. 1982, 106, 1353–1358. [Google Scholar] [CrossRef]
- Butler, P.J.; Tennent, G.A.; Pepys, M.B. Pentraxinchromatin Interactions: Serum Amyloid P Component Specifically Displaces H1-type Histones and Solubilizes Native Long Chromatin. J. Exp. Med. 1990, 172, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Tamkovich, S.N.; Tutanov, O.S.; Serdukov, D.S.; Belenikin, M.S.; Shlikht, A.G.; Kirushina, N.A.; Voytsitskiy, V.E.; Tsentalovich, Y.P.; Tkachuk, V.A.; Laktionov, P.P. Protein Content of Circulating Nucleoprotein Complexes. Adv. Exp. Med. Biol. 2016, 924, 133–136. [Google Scholar] [PubMed]
- Buzas, E.I.; Toth, E.A.; Sodar, B.W.; Szabo-Taylor, K.E. Molecular Interactions at the Surface of Extracellular Vesicles. Semin Immunopathol. 2018, 40, 453–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bitto, N.J.; Chapman, R.; Pidot, S.; Costin, A.; Lo, C.; Choi, J.; D’cruze, T.; Reynolds, E.C.; Dashper, S.G.; Turnbull, L. Bacterial Membrane Vesicles Transport Their DNA Cargo Into Host Cells. Sci. Rep. 2017, 7, 7072. [Google Scholar] [CrossRef]
- Benimetskaya, L.; Loike, J.D.; Khaled, Z.; Loike, G.; Silverstein, S.C.; Cao, L.; el Khoury, J.; Cai, T.Q.; Stein, C.A. Mac-1 (CD11b/CD18) is an Oligodeoxynucleotide-Binding Protein. Nat. Med. 1997, 3, 414–420. [Google Scholar] [CrossRef]
- Kimura, Y.; Sonehara, K.; Kuramoto, E.; Makino, T.; Yamamoto, S.; Yamamoto, T.; Kataoka, T.; Tokunaga, T. Binding of Oligoguanylate to Scavenger Receptors is Required for Oligonucleotides to Augment NK Cell Activity and Induce IFN. J. Biochem. 1994, 116, 991–994. [Google Scholar] [CrossRef]
- Yakubov, L.A.; Deeva, E.A.; Zarytova, V.F.; Ivanova, E.M.; Ryte, A.S.; Yurchenko, L.V.; Vlassov, V.V. Mechanism of Oligonucleotide Uptake by Cells: Involvement of Specific Receptors? Proc. Natl. Acad. Sci. USA 1989, 86, 6454–6458. [Google Scholar] [CrossRef] [Green Version]
- Chelobanov, B.P.; Laktionov, P.P.; Vlasov, V.V. Proteins Involved in Binding and Cellular Uptake of Nucleic Acids. Biochemistry 2006, 71, 583–596. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, C.; Shi, J.; Wen, K.; Wang, X. AIM2 Inhibits the Proliferation, Invasion and Migration, and Promotes the Apoptosis of Osteosarcoma Cells by Inactivating the PI3K/AKT/mTOR Signaling Pathway. Mol. Med. Rep. 2022, 25, 53. [Google Scholar]
- Corona, R.I.; Seo, J.H.; Lin, X.; Hazelett, D.J.; Reddy, J.; Fonseca, M.A.S.; Abassi, F.; Lin, Y.G.; Mhawech-Fauceglia, P.Y.; Shah, S.P.; et al. Non-Coding Somatic Mutations Converge on the PAX8 Pathway in Ovarian Cancer. Nat. Commun. 2020, 11, 2020. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Wang, A.; Li, C.; Sun, J.; Yi, G.; Cheng, H.; Liu, X.; Wang, Z.; Zhou, Y.; Yao, G.; et al. Methylation-Induced Silencing of ALDH2 Facilitates Lung Adenocarcinoma Bone Metastasis by Activating the MAPK Pathway. Front. Oncol. 2020, 10, 1141. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Ma, X.; Meruvu, S.; Hugendubler, L.; Mueller, E. The Adipogenic Transcriptional Cofactor ZNF638 Interacts with Splicing Regulators and Influences Alternative Splicing. J. Lipid Res. 2014, 55, 1886–1896. [Google Scholar] [CrossRef] [Green Version]
No (%) | ||
---|---|---|
Tumor Stage | T1 | 4 (57%) |
T2 | 3 (43%) | |
Nodal Status | N0 | 7 (100%) |
M0 | 7 (100%) | |
ER and Pr Receptor Status | Positive | 7 (100%) |
HER2 Status | Positive | 7 (100%) |
Infiltrative Ductal Carcinoma | 7 (100%) | |
Total Patients | 7 (100%) |
Uniprot ID | Gene Name | Protein Name | DNA-Binding Domain | Source of Exosomes | Score | Peptides Matched |
---|---|---|---|---|---|---|
O95831 | AIFM1 | Apoptosis-inducing factor 1, mitochondrial | FAD/NAD(P)-binding domain | HFs | 59 | 15 |
O14862 | AIM2 | Interferon-inducible protein AIM2 | N/A | HFs | 57 | 5 |
Q8TDI0 | CHD5 | Chromodomain-helicase-DNA-binding protein 5 | CHD subfamily II, SANT-like domain; CHD, C-terminal 2; Zinc finger, PHD-type; Zinc finger, PHD-finger | HFs | 47 | 17 |
O96004 | HAND1 | Heart- and neural crest derivatives-expressed protein 1 | basic helix-loop-helix (bHLH) domain | HFs | 61 | 6 |
P01871 | IGHM | Ig mu chain C region | Immunoglobulin-like domain | HFs | 75 | 11 |
P40938 | RFC3 | Replication factor C subunit 3 | N/A | HFs | 64 | 25 |
Q9Y2P0 | ZNF835 | Zinc finger protein 835 | Zinc finger C2H2-type | HFs | 110 | 10 |
O43309 | ZSCAN12 | Zinc finger and SCAN domain-containing protein 12 | Zinc finger C2H2-type | HFs | 57 | 7 |
P02768 | ALB | Serum albumin | N/A | HFs, BCPs | 62 | 23 |
O75531 | BANF1 | Barrier-to-autointegration factor | 2 non-specific dsDNA-binding sites | HFs, BCPs | 60 | 5 |
Q15776 | ZKSCAN8 | Zinc finger protein with KRAB and SCAN domains 8 | Zinc finger C2H2-type | HF, BCPs | 55 | 12 |
Q9Y2W7 | KCNIP3 | Calsenilin | EF-hand domain | BCPs | 58 | 8 |
Q14966 | ZNF638 | Zinc finger protein 638 | Matrin/U1-C, C2H2-type zinc finger; RNA recognition motif domain | BCPs | 65 | 46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tutanov, O.; Shtam, T.; Grigor’eva, A.; Tupikin, A.; Tsentalovich, Y.; Tamkovich, S. Blood Plasma Exosomes Contain Circulating DNA in Their Crown. Diagnostics 2022, 12, 854. https://doi.org/10.3390/diagnostics12040854
Tutanov O, Shtam T, Grigor’eva A, Tupikin A, Tsentalovich Y, Tamkovich S. Blood Plasma Exosomes Contain Circulating DNA in Their Crown. Diagnostics. 2022; 12(4):854. https://doi.org/10.3390/diagnostics12040854
Chicago/Turabian StyleTutanov, Oleg, Tatiana Shtam, Alina Grigor’eva, Alexey Tupikin, Yuri Tsentalovich, and Svetlana Tamkovich. 2022. "Blood Plasma Exosomes Contain Circulating DNA in Their Crown" Diagnostics 12, no. 4: 854. https://doi.org/10.3390/diagnostics12040854