Inferior Vena Cava Edge Tracking Echocardiography: A Promising Tool with Applications in Multiple Clinical Settings
Abstract
:1. Introduction
2. Physiological Dynamic Changes in IVC Size
3. Critical Issues in RAP Assessment Using IVC
4. Standardization of RAP Measurement
5. RAP as a Marker of Congestion: Current Advanced Technique of Congestion Assessment and Prognostic Implications
- (1)
- Availability: The IVC measurement only needs a US machine with sector/convex probes that are available in many clinical settings, both in and out of the hospital, even in low resources settings [44]. Indeed, IVC edge tracking echocardiography is a low-cost solution that only needs the acquisition of a new software to be ready for clinical use.
- (2)
- (3)
- Adoption by non-physicians users: Trained nurses may successfully use US for IVC assessment [47]. Thus, IVC edge tracking echocardiography may be easily managed by nurses, giving them more autonomy and personal skills. This aspect could have a foreseeable impact on resource optimization and it could contribute to fight against nurses’ widespread job dissatisfaction [48].
- (4)
- Autonomy: The physician that works in an outpatient chronic HF clinic approaches the patients with different management models across different countries [49]. Indeed, the assessment of cardiac biomarkers of congestions may not always be readily available to guide HF management [50]. Conversely, the edge tracking technique for IVC diameter assessment could be quickly performed by the physician himself during the ambulatory evaluation or by trained nurses, as mentioned above, independently from other services (such as the laboratory department for the biomarker dosage).
6. RAP in Advanced Heart Failure and Pulmonary Hypertension
7. Usefulness of IVC Edge Tracking Technique at the Emergency Department
8. IVC in Children with Nephrotic Syndrome
9. IVC Assessment in Patients Undergoing Dialysis
10. Other Techniques for RAP Assessment
11. Future Directions
12. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pellicori, P.; Cleland, J.G.F.; Zhang, J.; Kallvikbacka-Bennett, A.; Urbinati, A.; Shah, P.; Kazmi, S.; Clark, A.L. Cardiac Dysfunction, Congestion and Loop Diuretics: Their Relationship to Prognosis in Heart Failure. Cardiovasc. Drugs Ther. 2016, 30, 599–609. [Google Scholar] [CrossRef] [Green Version]
- Rudski, L.G.; Lai, W.W.; Afilalo, J.; Hua, L.; Handschumacher, M.D.; Chandrasekaran, K.; Solomon, S.D.; Louie, E.K.; Schiller, N.B. Guidelines for the Echocardiographic Assessment of the Right Heart in Adults: A Report from the American Society of Echocardiography. Endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology. J. Am. Soc. Echocardiogr. 2010, 23, 685–713. [Google Scholar] [CrossRef] [PubMed]
- Kircher, B.J.; Himelman, R.B.; Schiller, N.B. Noninvasive estimation of right atrial pressure from the inspiratory collapse of the inferior vena cava. Am. J. Cardiol. 1990, 66, 493–496. [Google Scholar] [CrossRef]
- Brennan, J.M.; Blair, J.E.; Goonewardena, S.; Ronan, A.; Shah, D.; Vasaiwala, S.; Kirkpatrick, J.N.; Spencer, K.T. Reappraisal of the Use of Inferior Vena Cava for Estimating Right Atrial Pressure. J. Am. Soc. Echocardiogr. 2007, 20, 857–861. [Google Scholar] [CrossRef]
- Moreno, F.L.; Hagan, A.D.; Holmen, J.R.; Pryor, T.A.; Strickland, R.D.; Castle, C.H. Evaluation of size and dynamics of the inferior vena cava as an index of right-sided cardiac function. Am. J. Cardiol. 1984, 53, 579–585. [Google Scholar] [CrossRef]
- Vourvouri, E.C.; Schinkel, A.F.L.; Roelandt, J.R.T.C.; Boomsma, F.; Sianos, G.; Bountioukos, M.; Sozzi, F.B.; Rizzello, V.; Bax, J.J.; Karvounis, H.I.; et al. Screening for left ventricular dysfunction using a hand-carried cardiac ultrasound device. Eur. J. Heart Fail. 2003, 5, 767–774. [Google Scholar] [CrossRef] [Green Version]
- Milan, A.; Magnino, C.; Veglio, F. Echocardiographic Indexes for the Non-Invasive Evaluation of Pulmonary Hemodynamics. J. Am. Soc. Echocardiogr. 2010, 23, 225–239. [Google Scholar] [CrossRef]
- Mesin, L.; Albani, S.; Policastro, P.; Pasquero, P.; Porta, M.; Melchiorri, C.; Leonardi, G.; Albera, C.; Scacciatella, P.; Pellicori, P.; et al. Assessment of Phasic Changes of Vascular Size by Automated Edge Tracking-State of the Art and Clinical Perspectives. Front. Cardiovasc. Med. 2022. [Google Scholar] [CrossRef]
- Long, E.; Oakley, E.; Duke, T.; Babl, F.E. Does Respiratory Variation in Inferior Vena Cava Diameter Predict Fluid Responsiveness: A Systematic Review and Meta-Analysis. Shock 2017, 47, 550–559. [Google Scholar] [CrossRef]
- Orso, D.; Paoli, I.; Piani, T.; Cilenti, F.L.; Cristiani, L.; Guglielmo, N. Accuracy of Ultrasonographic Measurements of Inferior Vena Cava to Determine Fluid Responsiveness: A Systematic Review and Meta-Analysis. J. Intensive Care Med. 2020, 35, 354–363. [Google Scholar] [CrossRef]
- Si, X.; Xu, H.; Liu, Z.; Wu, J.; Cao, D.; Chen, J.; Chen, M.; Liu, Y.; Guan, X. Does Respiratory Variation in Inferior Vena Cava Diameter Predict Fluid Responsiveness in Mechanically Ventilated Patients? A Systematic Review and Meta-analysis. Anesth. Analg. 2018, 127, 1157–1164. [Google Scholar] [CrossRef]
- Blehar, D.J.; Resop, D.; Chin, B.; Dayno, M.; Gaspari, R. Inferior vena cava displacement during respirophasic ultrasound imaging. Crit. Ultrasound J. 2012, 4, 18. [Google Scholar] [CrossRef] [Green Version]
- Murphy, E.H.; Arko, F.R.; Trimmer, C.K.; Phangureh, V.S.; Fogarty, T.J.; Zarins, C.K. Volume associated dynamic geometry and spatial orientation of the inferior vena cava. J. Vasc. Surg. 2009, 50, 835–843. [Google Scholar] [CrossRef] [Green Version]
- Mesin, L.; Pasquero, P.; Roatta, S. Multi-directional Assessment of Respiratory and Cardiac Pulsatility of the Inferior Vena Cava From Ultrasound Imaging in Short Axis. Ultrasound Med. Biol. 2020, 46, 3475–3482. [Google Scholar] [CrossRef] [PubMed]
- Mesin, L.; Roatta, S.; Pasquero, P.; Porta, M. Automated Volume Status Assessment Using Inferior Vena Cava Pulsatility. Electronics 2020, 9, 1671. [Google Scholar] [CrossRef]
- Nakamura, K.; Tomida, M.; Ando, T.; Sen, K.; Inokuchi, R.; Kobayashi, E.; Nakajima, S.; Sakuma, I.; Yahagi, N. Cardiac variation of inferior vena cava: New concept in the evaluation of intravascular blood volume. J. Med. Ultrason. 2013, 40, 205–209. [Google Scholar] [CrossRef]
- Sonoo, T.; Nakamura, K.; Ando, T.; Sen, K.; Maeda, A.; Kobayashi, E.; Sakuma, I.; Doi, K.; Nakajima, S.; Yahagi, N. Prospective analysis of cardiac collapsibility of inferior vena cava using ultrasonography. J. Crit. Care 2015, 30, 945–948. [Google Scholar] [CrossRef] [PubMed]
- Folino, A.; Benzo, M.; Pasquero, P.; Laguzzi, A.; Mesin, L.; Messere, A.; Porta, M.; Roatta, S. Vena Cava Responsiveness to Controlled Isovolumetric Respiratory Efforts. J. Ultrasound Med. Off. J. Am. Inst. Ultrasound Med. 2017, 36, 2113–2123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesin, L.; Giovinazzo, T.; D’Alessandro, S.; Roatta, S.; Raviolo, A.; Chiacchiarini, F.; Porta, M.; Pasquero, P. Improved Repeatability of the Estimation of Pulsatility of Inferior Vena Cava. Ultrasound Med. Biol. 2019, 45, 2830–2843. [Google Scholar] [CrossRef] [PubMed]
- Sisini, F.; Toro, E.; Gambaccini, M.; Zamboni, P. The Oscillating Component of the Internal Jugular Vein Flow: The Overlooked Element of Cerebral Circulation. Behav. Neurol. 2015, 2015, 170756. [Google Scholar] [CrossRef] [Green Version]
- Appleton, C.P.; Hatle, L.K.; Popp, R.L. Superior vena cava and hepatic vein Doppler echocardiography in healthy adults. J. Am. Coll. Cardiol. 1987, 10, 1032–1039. [Google Scholar] [CrossRef] [Green Version]
- García-López, I.; Rodriguez-Villegas, E. Extracting the Jugular Venous Pulse from Anterior Neck Contact Photoplethysmography. Sci. Rep. 2020, 10, 3466. [Google Scholar] [CrossRef] [PubMed]
- Joseph, A.A.; Voit, D.; Frahm, J. Inferior vena cava revisited-Real-time flow MRI of respiratory maneuvers. NMR Biomed. 2020, 33, e4232. [Google Scholar] [CrossRef] [Green Version]
- Mesin, L.; Pasquero, P.; Roatta, S. Tracking and Monitoring Pulsatility of a Portion of Inferior Vena Cava from Ultrasound Imaging in Long Axis. Ultrasound Med. Biol. 2019, 45, 1338–1343. [Google Scholar] [CrossRef]
- Ermini, L.; Seddone, S.; Policastro, P.; Mesin, L.; Pasquero, P.; Roatta, S. The cardiac caval index. Improving non-invasive assessment of cardiac preload. J Ultras Med. 2021; in press. [Google Scholar] [CrossRef]
- Mesin, L.; Albani, S.; Sinagra, G. Non-invasive Estimation of Right Atrial Pressure Using Inferior Vena Cava Echography. Ultrasound Med. Biol. 2019, 45, 1331–1337. [Google Scholar] [CrossRef]
- Wallace, D.J.; Allison, M.; Stone, M.B. Inferior Vena Cava Percentage Collapse During Respiration Is Affected by the Sampling Location: An Ultrasound Study in Healthy Volunteers. Acad. Emerg. Med. 2010, 17, 96–99. [Google Scholar] [CrossRef]
- Beigel, R.; Cercek, B.; Luo, H.; Siegel, R.J. Noninvasive evaluation of right atrial pressure. J. Am. Soc. Echocardiogr. 2013, 26, 1033–1042. [Google Scholar] [CrossRef]
- Albani, S.; Pinamonti, B.; Giovinazzo, T.; de Scordilli, M.; Fabris, E.; Stolfo, D.; Perkan, A.; Gregorio, C.; Barbati, G.; Geri, P.; et al. Accuracy of right atrial pressure estimation using a multi-parameter approach derived from inferior vena cava semi-automated edge-tracking echocardiography: A pilot study in patients with cardiovascular disorders. Int. J. Cardiovasc. Imaging 2020, 36, 1213–1225. [Google Scholar] [CrossRef]
- Mesin, L.; Pasquero, P.; Albani, S.; Porta, M.; Roatta, S. Semi-automated tracking and continuous monitoring of inferior vena cava diameter in simulated and experimental ultrasound imaging. Ultrasound Med. Biol. 2015, 41, 845–857. [Google Scholar] [CrossRef] [Green Version]
- Magnino, C.; Omedè, P.; Avenatti, E.; Presutti, D.; Iannaccone, A.; Chiarlo, M.; Moretti, C.; Gaita, F.; Veglio, F.; Milan, A. Inaccuracy of Right Atrial Pressure Estimates Through Inferior Vena Cava Indices. Am. J. Cardiol. 2017, 120, 1667–1673. [Google Scholar] [CrossRef]
- Nakamura, K.; Qian, K.; Ando, T.; Inokuchi, R.; Doi, K.; Kobayashi, E.; Sakuma, I.; Nakajima, S.; Yahagi, N. Cardiac Variation of Internal Jugular Vein for the Evaluation of Hemodynamics. Ultrasound Med. Biol. 2016, 42, 1764–1770. [Google Scholar] [CrossRef] [PubMed]
- Tokunaga, K.; Nakamura, K.; Inokuchi, R.; Hayase, N.; Terada, R.; Tomioka, Y.; Ikeda, T.; Kobayashi, E.; Okazaki, H.; Sakuma, I.; et al. Cardiac Variation of Internal Jugular Vein as a Marker of Volume Change in Hemorrhagic Shock. Shock 2020, 54, 717–722. [Google Scholar] [CrossRef]
- Hung, J.; Lang, R.; Flachskampf, F.; Shernan, S.K.; McCulloch, M.L.; Adams, D.B.; Thomas, J.; Vannan, M.; Ryan, T. 3D echocardiography: A review of the current status and future directions. J. Am. Soc. Echocardiogr. Off. Publ. Am. Soc. Echocardiogr. 2007, 20, 213–233. [Google Scholar] [CrossRef] [PubMed]
- Huguet, R.; Fard, D.; d’Humieres, T.; Brault-Meslin, O.; Faivre, L.; Nahory, L.; Dubois-Randé, J.L.; Ternacle, J.; Oliver, L.; Lim, P. Three-Dimensional Inferior Vena Cava for Assessing Central Venous Pressure in Patients with Cardiogenic Shock. J. Am. Soc. Echocardiogr. 2018, 31, 1034–1043. [Google Scholar] [CrossRef]
- Pellicori, P.; Shah, P.; Cuthbert, J.; Urbinati, A.; Zhang, J.; Kallvikbacka-Bennett, A.; Clark, A.L.; Cleland, J.G.F. Prevalence, pattern and clinical relevance of ultrasound indices of congestion in outpatients with heart failure. Eur. J. Heart Fail. 2019, 21, 904–916. [Google Scholar] [CrossRef]
- Selvaraj, S.; Claggett, B.; Pozzi, A.; McMurray, J.J.V.; Jhund, P.S.; Packer, M.; Desai, A.S.; Lewis, E.F.; Vaduganathan, M.; Lefkowitz, M.P.; et al. Prognostic Implications of Congestion on Physical Examination among Contemporary Patients with Heart Failure and Reduced Ejection Fraction: PARADIGM-HF. Circulation 2019, 140, 1369–1379. [Google Scholar] [CrossRef] [Green Version]
- Simonavičius, J.; Sanders van-Wijk, S.; Rickenbacher, P.; Maeder, M.T.; Pfister, O.; Kaufmann, B.A.; Pfisterer, M.; Čelutkienė, J.; Puronaitė, R.; Knackstedt, C.; et al. Prognostic Significance of Longitudinal Clinical Congestion Pattern in Chronic Heart Failure: Insights From TIME-CHF Trial. Am. J. Med. 2019, 132, e679–e692. [Google Scholar] [CrossRef]
- Ambrosy, A.P.; Pang, P.S.; Khan, S.; Konstam, M.A.; Fonarow, G.C.; Traver, B.; Maggioni, A.P.; Cook, T.; Swedberg, K.; Burnett, J.C.; et al. Clinical course and predictive value of congestion during hospitalization in patients admitted for worsening signs and symptoms of heart failure with reduced ejection fraction: Findings from the EVEREST trial. Eur. Heart J. 2013, 34, 835–843. [Google Scholar] [CrossRef] [Green Version]
- Girerd, N.; Seronde, M.F.; Coiro, S.; Chouihed, T.; Bilbault, P.; Braun, F.; Kenizou, D.; Maillier, B.; Nazeyrollas, P.; Roul, G.; et al. Integrative Assessment of Congestion in Heart Failure Throughout the Patient Journey. JACC Hear. Fail. 2018, 6, 273–285. [Google Scholar] [CrossRef]
- Goonewardena, S.N.; Gemignani, A.; Ronan, A.; Vasaiwala, S.; Blair, J.; Brennan, J.M.; Shah, D.P.; Spencer, K.T. Comparison of Hand-Carried Ultrasound Assessment of the Inferior Vena Cava and N-Terminal Pro-Brain Natriuretic Peptide for Predicting Readmission After Hospitalization for Acute Decompensated Heart Failure. JACC Cardiovasc. Imaging 2008, 1, 595–601. [Google Scholar] [CrossRef] [Green Version]
- Pellicori, P.; Carubelli, V.; Zhang, J.; Castiello, T.; Sherwi, N.; Clark, A.L.; Cleland, J.G.F. IVC diameter in patients with chronic heart failure: Relationships and prognostic significance. JACC Cardiovasc. Imaging 2013, 6, 16–28. [Google Scholar] [CrossRef]
- Jobs, A.; Vonthein, R.; König, I.R.; Schäfer, J.; Nauck, M.; Haag, S.; Fichera, C.F.; Stiermaier, T.; Ledwoch, J.; Schneider, A.; et al. Inferior vena cava ultrasound in acute decompensated heart failure: Design rationale of the CAVA-ADHF-DZHK10 trial. ESC Hear. Fail. 2020, 7, 973–983. [Google Scholar] [CrossRef]
- Stewart, K.A.; Navarro, S.M.; Kambala, S.; Tan, G.; Poondla, R.; Lederman, S.; Barbour, K.; Lavy, C. Trends in Ultrasound Use in Low and Middle Income Countries: A Systematic Review. Int. J. Matern. Child. Heal. AIDS 2020, 9, 103–120. [Google Scholar] [CrossRef] [PubMed]
- Brennan, J.M.; Ronan, A.; Goonewardena, S.; Blair, J.E.A.; Hammes, M.; Shah, D.; Vasaiwala, S.; Kirkpatrick, J.N.; Spencer, K.T. Handcarried ultrasound measurement of the inferior vena cava for assessment of intravascular volume status in the outpatient hemodialysis clinic. Clin. J. Am. Soc. Nephrol. 2006, 1, 749–753. [Google Scholar] [CrossRef] [Green Version]
- Khandwalla, R.M.; Birkeland, K.T.; Zimmer, R.; Henry, T.D.; Nazarian, R.; Sudan, M.; Mirocha, J.; Cha, J.; Kedan, I. Usefulness of Serial Measurements of Inferior Vena Cava Diameter by VscanTM to Identify Patients With Heart Failure at High Risk of Hospitalization. Am. J. Cardiol. 2017, 119, 1631–1636. [Google Scholar] [CrossRef]
- Kimori, K.; Tamura, Y. Feasibility of Using a Pocket-Sized Ultrasound Device to Measure the Inferior Vena Cava Diameter of Patients With Heart Failure in the Community Setting: A Pilot Study. J. Prim. Care Community Heal. 2020, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- McHugh, M.D.; Kutney-Lee, A.; Cimiotti, J.P.; Sloane, D.M.; Aiken, L.H. Nurses’ widespread job dissatisfaction, burnout, and frustration with health benefits signal problems for patient care. Health Aff. 2011, 30, 202–210. [Google Scholar] [CrossRef]
- Callender, T.; Woodward, M.; Roth, G.; Farzadfar, F.; Lemarie, J.C.; Gicquel, S.; Atherton, J.; Rahimzadeh, S.; Ghaziani, M.; Shaikh, M.; et al. Heart failure care in low- and middle-income countries: A systematic review and meta-analysis. PLoS Med. 2015, 11. [Google Scholar] [CrossRef] [Green Version]
- Cowie, M.R. The heart failure epidemic: A UK perspective. Echo Res. Pract. 2017, 4, R15–R20. [Google Scholar] [CrossRef] [Green Version]
- Palardy, M.; Nohria, A.; Rivero, J.; Lakdawala, N.; Campbell, P.; Kato, M.; Griffin, L.M.; Smith, C.M.; Couper, G.S.; Stevenson, L.W.; et al. Right ventricular dysfunction during intensive pharmacologic unloading persists after mechanical unloading. J. Card. Fail. 2010, 16, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Frea, S.; Bovolo, V.; Bergerone, S.; D’Ascenzo, F.; Antolini, M.; Capriolo, M.; Canavosio, F.G.; Morello, M.; Gaita, F. Echocardiographic evaluation of right ventricular stroke work index in advanced heart failure: A new index? J. Card. Fail. 2012, 18, 886–893. [Google Scholar] [CrossRef]
- Frea, S.; Centofanti, P.; Pidello, S.; Giordana, F.; Bovolo, V.; Baronetto, A.; Franco, B.; Cingolani, M.M.; Attisani, M.; Morello, M.; et al. Noninvasive Assessment of Hemodynamic Status in HeartWare Left Ventricular Assist Device Patients: Validation of an Echocardiographic Approach. JACC Cardiovasc. Imaging 2019, 12, 1121–1131. [Google Scholar] [CrossRef] [PubMed]
- Nageh, M.F.; Kopelen, H.A.; Zoghbi, W.A.; Quiñones, M.A.; Nagueh, S.F. Estimation of mean right atrial pressure using tissue Doppler imaging. Am. J. Cardiol. 1999, 84, 1448–1451. [Google Scholar] [CrossRef]
- Ommen, S.R.; Nishimura, R.A.; Hurrell, D.G.; Klarich, K.W. Assessment of Right Atrial Pressure With 2-Dimensional and Doppler Echocardiography: A Simultaneous Catheterization and Echocardiographic Study. Mayo Clin. Proc. 2000, 75, 24–29. [Google Scholar] [CrossRef]
- Toma, M.; Giovinazzo, S.; Crimi, G.; Masoero, G.; Balbi, M.; Montecucco, F.; Canepa, M.; Porto, I.; Ameri, P. Multiparametric vs. Inferior Vena Cava–Based Estimation of Right Atrial Pressure. Front. Cardiovasc. Med. 2021, 8, 1–8. [Google Scholar] [CrossRef]
- D’Alonzo, G.E.; Barst, R.J.; Ayres, S.M.; Bergofsky, E.H.; Brundage, B.H.; Detre, K.M.; Fishman, A.P.; Goldring, R.M.; Groves, B.M.; Kernis, J.T. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann. Intern. Med. 1991, 115, 343–349. [Google Scholar] [CrossRef]
- Lee, W.-T.N.; Ling, Y.; Sheares, K.K.; Pepke-Zaba, J.; Peacock, A.J.; Johnson, M.K. Predicting survival in pulmonary arterial hypertension in the UK. Eur. Respir. J. 2012, 40, 604–611. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, C.J.; Steigner, M.L.; Piazza, G.; Goldhaber, S.Z. Collaborative Cardiology and Pulmonary Management of Pulmonary Hypertension. Chest 2019, 156, 200–202. [Google Scholar] [CrossRef] [Green Version]
- Stolfo, D.; Albani, S.; Biondi, F.; De Luca, A.; Barbati, G.; Howard, L.; Lo Giudice, F.; Tsampasian, V.; Pasanisi, E.M.; Airò, E.; et al. Global Right Heart Assessment with Speckle-Tracking Imaging Improves the Risk Prediction of a Validated Scoring System in Pulmonary Arterial Hypertension. J. Am. Soc. Echocardiogr. Off. Publ. Am. Soc. Echocardiogr. 2020, 33, 1334–1344. [Google Scholar] [CrossRef]
- Thomas, C.A.; Anderson, R.J.; Condon, D.F.; de Jesus Perez, V.A. Diagnosis and Management of Pulmonary Hypertension in the Modern Era: Insights from the 6th World Symposium. Pulm. Ther. 2020, 6, 9–22. [Google Scholar] [CrossRef] [Green Version]
- Murphy, S.P.; Ibrahim, N.E.; Januzzi, J.L. Heart Failure with Reduced Ejection Fraction: A Review. JAMAJ. Am. Med. Assoc. 2020, 324, 488–504. [Google Scholar] [CrossRef]
- Caughey, M.C.; Sueta, C.A.; Stearns, S.C.; Shah, A.M.; Rosamond, W.D.; Chang, P.P. Recurrent Acute Decompensated Heart Failure Admissions for Patients With Reduced Versus Preserved Ejection Fraction (from the Atherosclerosis Risk in Communities Study). Am. J. Cardiol. 2018, 122, 108–114. [Google Scholar] [CrossRef]
- Dunlay, S.M.; Roger, V.L.; Redfield, M.M. Epidemiology of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 2017, 14, 591–602. [Google Scholar] [CrossRef]
- Ilieșiu, A.M.; Hodorogea, A.S. Treatment of heart failure with preserved ejection fraction. In Advances in Experimental Medicine and Biology; Springer: New York, NY, USA, 2018; Volume 1067, pp. 67–87. [Google Scholar]
- Ahmed, A.; Husain, A.; Love, T.E.; Gambassi, G.; Dell’Italia, L.J.; Francis, G.S.; Gheorghiade, M.; Allman, R.M.; Meleth, S.; Bourge, R.C. Heart failure, chronic diuretic use, and increase in mortality and hospitalization: An observational study using propensity score methods. Eur. Heart J. 2006, 27, 1431–1439. [Google Scholar] [CrossRef] [Green Version]
- Braunschweig, F.; Cowie, M.R.; Auricchio, A. What are the costs of heart failure? Europace 2011, 13, ii13–ii17. [Google Scholar] [CrossRef]
- Ricciardi, E.; La Malfa, G.; Guglielmi, G.; Cenni, E.; Micali, M.; Corsello, L.M.; Lopena, P.; Manco, L.; Pontremoli, R.; Moscatelli, P.; et al. Characteristics of current heart failure patients admitted to internal medicine vs. cardiology hospital units: The VASCO study. Intern. Emerg. Med. 2020, 15, 1219–1229. [Google Scholar] [CrossRef]
- Pellicori, P.; Kallvikbacka-Bennett, A.; Khaleva, O.; Carubelli, V.; Costanzo, P.; Castiello, T.; Wong, K.; Zhang, J.; Cleland, J.G.F.; Clark, A.L. Global longitudinal strain in patients with suspected heart failure and a normal ejection fraction: Does it improve diagnosis and risk stratification? Int. J. Cardiovasc. Imaging 2014, 30, 69–79. [Google Scholar] [CrossRef]
- Curbelo, J.; Aguilera, M.; Rodriguez-Cortes, P.; Gil-Martinez, P.; Suarez Fernandez, C. Usefulness of inferior vena cava ultrasonography in outpatients with chronic heart failure. Clin. Cardiol. 2018, 41, 510–517. [Google Scholar] [CrossRef]
- Pufulete, M.; Maishman, R.; Dabner, L.; Higgins, J.P.T.; Rogers, C.A.; Dayer, M.; MacLeod, J.; Purdy, S.; Hollingworth, W.; Schou, M.; et al. B-type natriuretic peptide-guided therapy for heart failure (HF): A systematic review and meta-analysis of individual participant data (IPD) and aggregate data. Syst. Rev. 2018, 7, 112. [Google Scholar] [CrossRef] [Green Version]
- Carbone, F.; Bovio, M.; Rosa, G.M.; Ferrando, F.; Scarrone, A.; Murialdo, G.; Quercioli, A.; Vuilleumier, N.; Mach, F.; Viazzi, F.; et al. Inferior vena cava parameters predict re-admission in ischaemic heart failure. Eur. J. Clin. Invest. 2014, 44, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Veilleux, R.P.; Wight, J.N.; Cannon, A.; Whalen, M.; Bachman, D. Home diuretic protocol for heart failure: Partnering with home health to improve outcomes and reduce readmissions. Perm. J. 2014, 18, 44–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gundersen, G.H.; Norekval, T.M.; Haug, H.H.; Skjetne, K.; Kleinau, J.O.; Graven, T.; Dalen, H. Adding point of care ultrasound to assess volume status in heart failure patients in a nurse-led outpatient clinic. A randomised study. Heart 2016, 102, 29–34. [Google Scholar] [CrossRef]
- Siddall, E.C.; Radhakrishnan, J. The pathophysiology of edema formation in the nephrotic syndrome. Kidney Int. 2012, 82, 635–642. [Google Scholar] [CrossRef] [Green Version]
- Kapur, G.; Valentini, R.P.; Imam, A.A.; Mattoo, T.K. Treatment of severe edema in children with nephrotic syndrome with diuretics alone—A prospective study. Clin. J. Am. Soc. Nephrol. 2009, 4, 907–913. [Google Scholar] [CrossRef] [Green Version]
- Tabel, Y.; Mungan, I.; Karakurt, C.; Kocak, G.; Gungor, S. Is edema in minimal change disease of childhood really hypovolemic? Int. Urol. Nephrol. 2008, 40, 757–761. [Google Scholar] [CrossRef]
- Dönmez, O.; Mir, S.; Özyürek, R.; Cura, A.; Kabasakal, C. Inferior vena cava indices determine volume load in minimal lesion nephrotic syndrome. Pediatr. Nephrol. 2001, 16, 251–255. [Google Scholar] [CrossRef]
- Gurgoze, M.K.; Gunduz, Z.; Poyrazoglu, M.H.; Dursun, I.; Uzum, K.; Dusunsel, R. Role of sodium during formation of edema in children with nephrotic syndrome. Pediatr. Int. 2011, 53, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Hypo- and Hypervolemic Edema in Children with Steroid Sensitive Nephrotic Syndrome—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/25790549/ (accessed on 26 May 2021).
- Özdemir, K.; Mir, M.S.; Dinçel, N.; Bozabali, S.; Bulut, İ.K.; Yilmaz, E.; Bözeri, S. Bioimpedance for assessing volume status in children with nephrotic syndrome-PubMed. Turk. J. Med. Sci 2015, 45, 339–344. [Google Scholar] [CrossRef]
- Modi, P.; Glavis-Bloom, J.; Nasrin, S.; Guy, A.; Chowa, E.P.; Dvor, N.; Dworkis, D.A.; Oh, M.; Silvestri, D.M.; Strasberg, S.; et al. Accuracy of inferior vena cava ultrasound for predicting dehydration in children with acute diarrhea in resource-limited settings. PLoS ONE 2016, 11, e0146859. [Google Scholar] [CrossRef] [Green Version]
- Hwang, M.; Piskunowicz, M.; Darge, K. Advanced ultrasound techniques for pediatric imaging. Pediatrics 2019, 143, 143. [Google Scholar] [CrossRef] [Green Version]
- Cheriex, E.C.; Leunissen, K.M.; Janssen, J.H.; Mooy, J.M.; van Hooff, J.P. Echography of the inferior vena cava is a simple and reliable tool for estimation of “dry weight” in haemodialysis patients. Nephrol. Dial. Transplant. 1989, 4, 563–568. [Google Scholar]
- Kaptein, M.J.; Kaptein, J.S.; Oo, Z.; Kaptein, E.M. Relationship of inferior vena cava collapsibility to ultrafiltration volume achieved in critically ill hemodialysis patients. Int. J. Nephrol. Renovasc. Dis. 2018, 11, 195–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, R.; Bouldin, J.M.; Light, R.P.; Garg, A. Inferior Vena Cava Diameter and Left Atrial Diameter Measure Volume but Not Dry Weight. Clin. J. Am. Soc. Nephrol. 2011, 6, 1066–1072. [Google Scholar] [CrossRef] [Green Version]
- Steinwandel, U.; Gibson, N.; Towell, A.; Rippey, J.J.R.; Rosman, J. Can a renal nurse assess fluid status using ultrasound on the inferior vena cava? A cross-sectional interrater study. Hemodial. Int. 2018, 22, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Pellicori, P.; Kallvikbacka-Bennett, A.; Zhang, J.; Khaleva, O.; Warden, J.; Clark, A.L.; Cleland, J.G.F. Revisiting a classical clinical sign: Jugular venous ultrasound. Int. J. Cardiol. 2014, 170, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Pellicori, P.; Clark, A.L.; Kallvikbacka-Bennett, A.; Zhang, J.; Urbinati, A.; Monzo, L.; Dierckx, R.; Anker, S.D.; Cleland, J.G. Non-invasive measurement of right atrial pressure by near-infrared spectroscopy: Preliminary experience. A report from the SICA-HF study. Eur. J. Heart Fail. 2017, 19, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chubuchny, V.; Pugliese, N.R.; Taddei, C.; Poggianti, E.; Spini, V.; Barison, A.; Formichi, B.; Airò, E.; Bauleo, C.; Prediletto, R.; et al. A novel echocardiographic method for estimation of pulmonary artery wedge pressure and pulmonary vascular resistance. ESC Hear. Fail. 2021, 8, 1216–1229. [Google Scholar] [CrossRef] [PubMed]
Author | Number of Patients in the Study | Number of Patients Meeting the Proposed Criteria | Parameter | To Predict | Cut Off | Sensitivity | Specificity |
---|---|---|---|---|---|---|---|
Kircher 1990 [3] | 83 | 47 | IVC inspiratory (With “sniff” maneuver) | RAP > 10 mmHg | <50% | 87% | 82% |
Brennan 2007 [4] | 102 | 46 | IVC expiratory diameter | RAP > 10 mmHg | >20 mm | 73% | 85% |
Brennan 2007 [4] | 102 | 46 | IVC inspiratory (With “sniff” maneuver) | RAP < 10 mm | <12 mm | 91% | 94% |
Moreno 1984 [5] | 175 | 65 | IVC Caval Index | RAP < 7 mm | >40% | 91% | 90% |
Vourvouri 2003 [6] | 88 | 20 | IVC inspiratory (With “sniff” maneuver) | RAP > 10 mmHg | <50% | 87% | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albani, S.; Mesin, L.; Roatta, S.; De Luca, A.; Giannoni, A.; Stolfo, D.; Biava, L.; Bonino, C.; Contu, L.; Pelloni, E.; et al. Inferior Vena Cava Edge Tracking Echocardiography: A Promising Tool with Applications in Multiple Clinical Settings. Diagnostics 2022, 12, 427. https://doi.org/10.3390/diagnostics12020427
Albani S, Mesin L, Roatta S, De Luca A, Giannoni A, Stolfo D, Biava L, Bonino C, Contu L, Pelloni E, et al. Inferior Vena Cava Edge Tracking Echocardiography: A Promising Tool with Applications in Multiple Clinical Settings. Diagnostics. 2022; 12(2):427. https://doi.org/10.3390/diagnostics12020427
Chicago/Turabian StyleAlbani, Stefano, Luca Mesin, Silvestro Roatta, Antonio De Luca, Alberto Giannoni, Davide Stolfo, Lorenza Biava, Caterina Bonino, Laura Contu, Elisa Pelloni, and et al. 2022. "Inferior Vena Cava Edge Tracking Echocardiography: A Promising Tool with Applications in Multiple Clinical Settings" Diagnostics 12, no. 2: 427. https://doi.org/10.3390/diagnostics12020427