The Impact of Clostridioides Difficile Infection in Hospitalized Patients: What Changed during the Pandemic?
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. General Analysis of Patient Characteristics
3.2. High-Risk Medication for CDI Analysis
3.3. Paraclinical Assessment Analysis
3.4. Hospitalization Period and Evolution of CDI Patients Analysis
3.5. Associated Risk Factors Analysis
3.6. Risk Factors for Negative Outcome Analysis
3.7. Associated Severity of COVID-19 Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, M.M.; Chen, L.N.; Qian, J.M. Gastrointestinal Manifestations and Possible Mechanisms of COVID-19 in Different Periods. J. Dig. Dis. 2021, 22, 683–694. [Google Scholar] [CrossRef] [PubMed]
- Zaim, S.; Chong, J.H.; Sankaranarayanan, V.; Harky, A. COVID-19 and Multiorgan Response. Curr. Probl. Cardiol. 2020, 45, 100618. [Google Scholar] [CrossRef] [PubMed]
- Fulchand, S. COVID-19 and Cardiovascular Disease. BMJ 2020, 369, m1997. [Google Scholar] [CrossRef]
- Asadi-Pooya, A.A.; Simani, L. Central Nervous System Manifestations of COVID-19: A Systematic Review. J. Neurol. Sci. 2020, 413, 116832. [Google Scholar] [CrossRef] [PubMed]
- Fanelli, V.; Fiorentino, M.; Cantaluppi, V.; Gesualdo, L.; Stallone, G.; Ronco, C.; Castellano, G. Acute Kidney Injury in SARS-CoV-2 Infected Patients. Crit. Care 2020, 24, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guarneri, C.; Rullo, E.V.; Pavone, P.; Berretta, M.; Ceccarelli, M.; Natale, A.; Nunnari, G. Silent COVID-19: What Your Skin Can Reveal. Lancet Infect. Dis. 2021, 21, 24–25. [Google Scholar] [CrossRef] [PubMed]
- Giannis, D.; Ziogas, I.A.; Gianni, P. Coagulation Disorders in Coronavirus Infected Patients: COVID-19, SARS-CoV-1, MERS-CoV and Lessons from the Past. J. Clin. Virol. 2020, 127, 104362. [Google Scholar] [CrossRef]
- Reveles, K.R.; Lee, G.C.; Boyd, N.K.; Frei, C.R. The Rise in Clostridium Difficile Infection Incidence among Hospitalized Adults in the United States: 2001–2010. Am. J. Infect. Control 2014, 42, 1028–1032. [Google Scholar] [CrossRef]
- Zimlichman, E.; Henderson, D.; Tamir, O.; Franz, C.; Song, P.; Yamin, C.K.; Keohane, C.; Denham, C.R.; Bates, D.W. Health Care–Associated Infections: A Meta-Analysis of Costs and Financial Impact on the US Health Care System. JAMA Intern. Med. 2013, 173, 2039. [Google Scholar] [CrossRef]
- Loo, V.G.; Bourgault, A.-M.; Poirier, L.; Lamothe, F.; Michaud, S.; Turgeon, N.; Toye, B.; Beaudoin, A.; Frost, E.H.; Gilca, R.; et al. Host and Pathogen Factors for Clostridium Difficile Infection and Colonization. N. Engl. J. Med. 2011, 365, 1693–1703. [Google Scholar] [CrossRef]
- Hensgens, M.P.M.; Goorhuis, A.; Dekkers, O.M.; Kuijper, E.J. Time Interval of Increased Risk for Clostridium Difficile Infection after Exposure to Antibiotics. J. Antimicrob. Chemother. 2012, 67, 742–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McFarland, L.V.; Mulligan, M.E.; Kwok, R.Y.Y.; Stamm, W.E. Nosocomial Acquisition of Clostridium Difficile Infection. N. Engl. J. Med. 1989, 320, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Anand, A.; Glatt, A.E. Clostridium Difficile Infection Associated with Antineoplastic Chemotherapy: A Review. Clin. Infect. Dis. 1993, 17, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Bilgrami, S.; Feingold, J.; Dorsky, D.; Edwards, R.; Bona, R.; Khan, A.; Rodriguez-Pinero, F.; Clive, J.; Tutschka, P. Incidence and Outcome of Clostridium Difficile Infection Following Autologous Peripheral Blood Stem Cell Transplantation. Bone Marrow Transplant. 1999, 23, 1039–1042. [Google Scholar] [CrossRef] [Green Version]
- Gorschlüter, M.; Glasmacher, A.; Hahn, C.; Schakowski, F.; Ziske, C.; Molitor, E.; Marklein, G.; Sauerbruch, T.; Schmidt-Wolf, I.G.H. Clostridium Difficile Infection in Patients with Neutropenia. Clin. Infect. Dis. 2001, 33, 786–791. [Google Scholar] [CrossRef] [Green Version]
- Kwok, C.S.; Arthur, A.K.; Anibueze, C.I.; Singh, S.; Cavallazzi, R.; Loke, Y.K. Risk of Clostridium Difficile Infection With Acid Suppressing Drugs and Antibiotics: Meta-Analysis. Am. J. Gastroenterol. 2012, 107, 1011–1019. [Google Scholar] [CrossRef]
- Janarthanan, S.; Ditah, I.; Adler, D.G.; Ehrinpreis, M.N. Clostridium Difficile -Associated Diarrhea and Proton Pump Inhibitor Therapy: A Meta-Analysis. Am. J. Gastroenterol. 2012, 107, 1001–1010. [Google Scholar] [CrossRef]
- Dudzicz, S.; Adamczak, M.; Więcek, A. Clostridium Difficile Infection in the Nephrology Ward. Kidney Blood Press. Res. 2017, 42, 844–852. [Google Scholar] [CrossRef]
- Bliss, D.Z. Acquisition of Clostridium Difficile-Associated Diarrhea in Hospitalized Patients Receiving Tube Feeding. Ann. Intern. Med. 1998, 129, 1012. [Google Scholar] [CrossRef]
- Thibault, A.; Miller, M.A.; Gaese, C. Risk Factors for the Development of Clostridium Difficile -Associated Diarrhea During a Hospital Outbreak. Infect. Control Hosp. Epidemiol. 1991, 12, 345–348. [Google Scholar] [CrossRef]
- McDonald, L.C.; Gerding, D.N.; Johnson, S.; Bakken, J.S.; Carroll, K.C.; Coffin, S.E.; Dubberke, E.R.; Garey, K.W.; Gould, C.V.; Kelly, C.; et al. Clinical Practice Guidelines for Clostridium Difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin. Infect. Dis. 2018, 66, 987–994. [Google Scholar] [CrossRef] [PubMed]
- Salamanna, F.; Maglio, M.; Landini, M.P.; Fini, M. Body Localization of ACE-2: On the Trail of the Keyhole of SARS-CoV-2. Front. Med. 2020, 7, 594495. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.; Ni, Z.; Hu, Y.; Liang, W.; Ou, C.; He, J.; Liu, L.; Shan, H.; Lei, C.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and Clinical Characteristics of 99 Cases of 2019 Novel Coronavirus Pneumonia in Wuhan, China: A Descriptive Study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061. [Google Scholar] [CrossRef]
- Ferrey, A.J.; Choi, G.; Hanna, R.M.; Chang, Y.; Tantisattamo, E.; Ivaturi, K.; Park, E.; Nguyen, L.; Wang, B.; Tonthat, S.; et al. A Case of Novel Coronavirus Disease 19 in a Chronic Hemodialysis Patient Presenting with Gastroenteritis and Developing Severe Pulmonary Disease. Am. J. Nephrol. 2020, 51, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, A.; Alqusairi, R.; Adams, A.; Paul, M.; Kothari, N.; Peters, S.; DeBenedet, A.T. SARS-CoV-2 Gastrointestinal Infection Causing Hemorrhagic Colitis: Implications for Detection and Transmission of COVID-19 Disease. Am. J. Gastroenterol. 2020, 115, 942–946. [Google Scholar] [CrossRef]
- Sandhu, A.; Tillotson, G.; Polistico, J.; Salimnia, H.; Cranis, M.; Moshos, J.; Cullen, L.; Jabbo, L.; Diebel, L.; Chopra, T. Clostridioides Difficile in COVID-19 Patients, Detroit, Michigan, USA, March–April 2020. Emerg. Infect. Dis. 2020, 26, 2272–2274. [Google Scholar] [CrossRef]
- Azimirad, M.; Noori, M.; Raeisi, H.; Yadegar, A.; Shahrokh, S.; Asadzadeh Aghdaei, H.; Bentivegna, E.; Martelletti, P.; Petrosillo, N.; Zali, M.R. How Does COVID-19 Pandemic Impact on Incidence of Clostridioides Difficile Infection and Exacerbation of Its Gastrointestinal Symptoms? Front. Med. 2021, 8, 775063. [Google Scholar] [CrossRef]
- Khanna, S.; Kraft, C.S. The Interplay of SARS-CoV-2 and Clostridioides Difficile Infection. Future Microbiol. 2021, 16, 439–443. [Google Scholar] [CrossRef]
- Yadav, S.S.; Sinha, S.; Das, V.K. Infection of Gastro-Intestinal Tract by SARS-CoV-2 and Its Potential for Faecal-Oral Transmission: A Literature Review. J Crit Rev. 2020, 7, 1061–1065. [Google Scholar] [CrossRef]
- Maslennikov, R.; Ivashkin, V.; Ufimtseva, A.; Poluektova, E.; Ulyanin, A. Clostridioides difficile co-infection in patients with COVID-19. Future Microbiol. 2022, 17, 653–663. [Google Scholar] [CrossRef] [PubMed]
- Laszkowska, M.; Kim, J.; Faye, A.S.; Joelson, A.M.; Ingram, M.; Truong, H.; Silver, E.R.; May, B.; Greendyke, W.G.; Zucker, J.; et al. Prevalence of Clostridioides difficile and Other Gastrointestinal Pathogens in Patients with COVID-19. Dig. Dis. Sci. 2021, 12, 4398–4405. [Google Scholar] [CrossRef] [PubMed]
- Israel, S.; Harpaz, K.; Radvogin, E.; Schwartz, C.; Gross, I.; Mazeh, H.; Cohen, M.J.; Benenson, S. Dramatically Improved Hand Hygiene Performance Rates at Time of Coronavirus Pandemic. Clin. Microbiol. Infect. 2020, 26, 1566–1568. [Google Scholar] [CrossRef] [PubMed]
- Roshan, R.; Feroz, A.S.; Rafique, Z.; Virani, N. Rigorous Hand Hygiene Practices Among Health Care Workers Reduce Hospital-Associated Infections During the COVID-19 Pandemic. J. Prim. Care Community Health 2020, 11, 215013272094333. [Google Scholar] [CrossRef] [PubMed]
- Bentivegna, E.; Alessio, G.; Spuntarelli, V.; Luciani, M.; Santino, I.; Simmaco, M.; Martelletti, P. Impact of COVID-19 Prevention Measures on Risk of Health Care-Associated Clostridium Difficile Infection. Am. J. Infect. Control 2021, 49, 640–642. [Google Scholar] [CrossRef]
- Ochoa-Hein, E.; Rajme-López, S.; Rodríguez-Aldama, J.C.; Huertas-Jiménez, M.A.; Chávez-Ríos, A.R.; de Paz-García, R.; Haro-Osnaya, A.; González-Colín, K.K.; González-González, R.; González-Lara, M.F.; et al. Substantial Reduction of Healthcare Facility-Onset Clostridioides Difficile Infection (HO-CDI) Rates after Conversion of a Hospital for Exclusive Treatment of COVID-19 Patients. Am. J. Infect. Control 2021, 49, 966–968. [Google Scholar] [CrossRef]
- Yadlapati, S.; Jarrett, S.A.; Lo, K.B.; Sweet, J.; Judge, T.A. Examining the Rate of Clostridioides (Formerly Clostridium) Difficile Infection Pre- and Post-COVID-19 Pandemic: An Institutional Review. Cureus 2021, 13, e20397. [Google Scholar] [CrossRef]
- Lewandowski, K.; Rosołowski, M.; Kaniewska, M.; Kucha, P.; Meler, A.; Wierzba, W.; Rydzewska, G. Clostridioides Difficile Infection in Coronavirus Disease 2019: An Underestimated Problem? Pol. Arch. Intern. Med. 2020, 131, 121–127. [Google Scholar] [CrossRef]
- Granata, G.; Petrosillo, N.; Al Moghazi, S.; Caraffa, E.; Puro, V.; Tillotson, G.; Cataldo, M.A. The Burden of Clostridioides Difficile Infection in COVID-19 Patients: A Systematic Review and Meta-Analysis. Anaerobe 2022, 74, 102484. [Google Scholar] [CrossRef]
- Chen, T.; Wu, D.; Chen, H.; Yan, W.; Yang, D.; Chen, G.; Ma, K.; Xu, D.; Yu, H.; Wang, H.; et al. Clinical Characteristics of 113 Deceased Patients with Coronavirus Disease 2019: Retrospective Study. BMJ 2020, 368, m1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaughn, V.M.; Gandhi, T.N.; Petty, L.A.; Patel, P.K.; Prescott, H.C.; Malani, A.N.; Ratz, D.; McLaughlin, E.; Chopra, V.; Flanders, S.A. Empiric Antibacterial Therapy and Community-Onset Bacterial Coinfection in Patients Hospitalized With Coronavirus Disease 2019 (COVID-19): A Multi-Hospital Cohort Study. Clin. Infect. Dis. 2021, 72, e533–e541. [Google Scholar] [CrossRef] [PubMed]
- Chedid, M.; Waked, R.; Haddad, E.; Chetata, N.; Saliba, G.; Choucair, J. Antibiotics in Treatment of COVID-19 Complications: A Review of Frequency, Indications, and Efficacy. J. Infect. Public Health 2021, 14, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Cox, M.J.; Loman, N.; Bogaert, D.; O’Grady, J. Co-Infections: Potentially Lethal and Unexplored in COVID-19. Lancet Microbe 2020, 1, e11. [Google Scholar] [CrossRef]
- Huttner, B.D.; Catho, G.; Pano-Pardo, J.R.; Pulcini, C.; Schouten, J. COVID-19: Don’t Neglect Antimicrobial Stewardship Principles! Clin. Microbiol. Infect. 2020, 26, 808–810. [Google Scholar] [CrossRef]
- Hawes, A.M.; Desai, A.; Patel, P.K. Did Clostridioides Difficile Testing and Infection Rates Change during the COVID-19 Pandemic? Anaerobe 2021, 70, 102384. [Google Scholar] [CrossRef]
- Ponce-Alonso, M.; Sáez de la Fuente, J.; Rincón-Carlavilla, A.; Moreno-Nunez, P.; Martínez-García, L.; Escudero-Sánchez, R.; Pintor, R.; García-Fernández, S.; Cobo, J. Impact of the Coronavirus Disease 2019 (COVID-19) Pandemic on Nosocomial Clostridioides Difficile Infection. Infect. Control Hosp. Epidemiol. 2021, 42, 406–410. [Google Scholar] [CrossRef]
- Páramo-Zunzunegui, J.; Ortega-Fernández, I.; Calvo-Espino, P.; Diego-Hernández, C.; Ariza-Ibarra, I.; Otazu-Canals, L.; Danés-Grases, J.; Menchero-Sánchez, A. Severe Clostridium Difficile Colitis as Potential Late Complication Associated with COVID-19. Ann. R. Coll. Surg. Engl. 2020, 102, e176–e179. [Google Scholar] [CrossRef]
- Sheikh, A.A.E.; Sheikh, A.B.; Shah, I.; Khair, A.H.; Javed, N.; Shekhar, R. COVID-19 and Fulminant Clostridium Difficile Colitis Co-Infection. Eur. J. Case Rep. Intern. Med. 2021, 8, 002771. [Google Scholar] [CrossRef]
- Spigaglia, P. Clostridioides Difficile Infection (CDI) during the COVID-19 Pandemic. Anaerobe 2022, 74, 102518. [Google Scholar] [CrossRef]
- Marinescu, A.R.; Laza, R.; Musta, V.F.; Cut, T.G.; Dumache, R.; Tudor, A.; Porosnicu, M.; Lazureanu, V.E.; Licker, M. Clostridium Difficile and COVID-19: General Data, Ribotype, Clinical Form, Treatment-Our Experience from the Largest Infectious Diseases Hospital in Western Romania. Medicina (Mex.) 2021, 57, 1099. [Google Scholar] [CrossRef] [PubMed]
- Granata, G.; Bartoloni, A.; Codeluppi, M.; Contadini, I.; Cristini, F.; Fantoni, M.; Ferraresi, A.; Fornabaio, C.; Grasselli, S.; Lagi, F.; et al. The Burden of Clostridioides Difficile Infection during the COVID-19 Pandemic: A Retrospective Case-Control Study in Italian Hospitals (CloVid). J. Clin. Med. 2020, 9, 3855. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.W.; Ha, E.K.; Yeniova, A.Ö.; Moon, S.Y.; Kim, S.Y.; Koh, H.Y.; Yang, J.M.; Jeong, S.J.; Moon, S.J.; Cho, J.Y.; et al. Severe Clinical Outcomes of COVID-19 Associated with Proton Pump Inhibitors: A Nationwide Cohort Study with Propensity Score Matching. Gut 2021, 70, 76–84. [Google Scholar] [CrossRef]
- Luxenburger, H.; Sturm, L.; Biever, P.; Rieg, S.; Duerschmied, D.; Schultheiss, M.; Neumann-Haefelin, C.; Thimme, R.; Bettinger, D. Treatment with Proton Pump Inhibitors Increases the Risk of Secondary Infections and ARDS in Hospitalized Patients with COVID-19: Coincidence or Underestimated Risk Factor? J. Intern. Med. 2021, 289, 121–124. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, P.; Perisetti, A.; Gajendran, M.; Jean-Louis, F.; Bansal, P.; Dwivedi, A.K.; Goyal, H. Pre-Hospitalization Proton Pump Inhibitor Use and Clinical Outcomes in COVID-19. Eur. J. Gastroenterol. Hepatol. 2022, 34, 137–141. [Google Scholar] [CrossRef]
- Shupp, B.; Mehta, S.V.; Chirayath, S.; Patel, N.; Aiad, M.; Sapin, J.; Stoltzfus, J.; Schneider, Y. Proton Pump Inhibitor Therapy Usage and Associated Hospitalization Rates and Critical Care Outcomes of COVID-19 Patients. Sci. Rep. 2022, 12, 7596. [Google Scholar] [CrossRef]
- The RECOVERY Collaborative Group. Dexamethasone in Hospitalized Patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef]
- Furuya-Kanamori, L.; Stone, J.C.; Clark, J.; McKenzie, S.J.; Yakob, L.; Paterson, D.L.; Riley, T.V.; Doi, S.A.R.; Clements, A.C. Comorbidities, Exposure to Medications, and the Risk of Community-Acquired Clostridium Difficile Infection: A Systematic Review and Meta-Analysis. Infect. Control Hosp. Epidemiol. 2015, 36, 132–141. [Google Scholar] [CrossRef] [Green Version]
- Razik, R.; Rumman, A.; Bahreini, Z.; McGeer, A.; Nguyen, G.C. Recurrence of Clostridium Difficile Infection in Patients with Inflammatory Bowel Disease: The RECIDIVISM Study. Am. J. Gastroenterol. 2016, 111, 1141–1146. [Google Scholar] [CrossRef]
- Messick, C.A.; Hammel, J.P.; Hull, T. Risk Factors that Predict Recurrent Clostridium difficile Infections in Surgical Patients. Am Surg. 2017, 83, 653–659. [Google Scholar] [CrossRef]
- Wojciechowski, A.L.; Parameswaran, G.I.; Mattappallil, A.; Mergenhagen, K.A. Corticosteroid Use Is Associated with a Reduced Incidence of Clostridium Difficile-Associated Diarrhea: A Retrospective Cohort Study. Anaerobe 2014, 30, 27–29. [Google Scholar] [CrossRef] [PubMed]
- Morales-Marroquin, E.; Xie, L.; Uppuluri, M.; Almandoz, J.P.; de la Cruz-Muñoz, N.; Messiah, S.E. Immunosuppression and Clostridioides (Clostridium) Difficile Infection Risk in Metabolic and Bariatric Surgery Patients. J. Am. Coll. Surg. 2021, 233, 223–231. [Google Scholar] [CrossRef]
- Carlson, T.J.; Gonzales-Luna, A.J.; Wilcox, M.F.; Theriault, S.G.; Alnezary, F.S.; Patel, P.; Ahn, B.K.; Zasowski, E.J.; Garey, K.W. Corticosteroids Do Not Increase the Likelihood of Primary Clostridioides Difficile Infection in the Setting of Broad-Spectrum Antibiotic Use. Open Forum Infect. Dis. 2021, 8, ofab419. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Chen, F.; Wang, T.; Luo, F.; Liu, X.; Wu, Q.; He, Q.; Wang, Z.; Liu, Y.; Liu, L.; et al. Obesity and COVID-19 Severity in a Designated Hospital in Shenzhen, China. Diabetes Care 2020, 43, 1392–1398. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.A.; Mantzoros, C.; Sowers, J.R. Commentary: COVID-19 in Patients with Diabetes. Metabolism 2020, 107, 154217. [Google Scholar] [CrossRef] [PubMed]
- Cummings, M.J.; Baldwin, M.R.; Abrams, D.; Jacobson, S.D.; Meyer, B.J.; Balough, E.M.; Aaron, J.G.; Claassen, J.; Rabbani, L.E.; Hastie, J.; et al. Epidemiology, Clinical Course, and Outcomes of Critically Ill Adults with COVID-19 in New York City: A Prospective Cohort Study. Lancet 2020, 395, 1763–1770. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical Course and Risk Factors for Mortality of Adult Inpatients with COVID-19 in Wuhan, China: A Retrospective Cohort Study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Giacobbe, D.R.; Battaglini, D.; Enrile, E.M.; Dentone, C.; Vena, A.; Robba, C.; Ball, L.; Bartoletti, M.; Coloretti, I.; Di Bella, S.; et al. Incidence and Prognosis of Ventilator-Associated Pneumonia in Critically Ill Patients with COVID-19: A Multicenter Study. J. Clin. Med. 2021, 10, 555. [Google Scholar] [CrossRef]
- Allegretti, J.R.; Nije, C.; McClure, E.; Redd, W.D.; Wong, D.; Zhou, J.C.; Bazarbashi, A.N.; McCarty, T.R.; Hathorn, K.E.; Shen, L.; et al. Prevalence and Impact of Clostridioides difficile Infection among Hospitalized Patients with Coranavirus Disease 2019. JGH Open 2021, 5, 622–625. [Google Scholar] [CrossRef]
- Abou Chakra, C.N.; Pepin, J.; Sirard, S.; Valiquette, L. Risk Factors for Recurrence, Complications and Mortality in Clostridium Difficile Infection: A Systematic Review. PLoS ONE 2014, 9, e98400. [Google Scholar] [CrossRef]
- Yamada, T.; Wakabayashi, M.; Yamaji, T.; Chopra, N.; Mikami, T.; Miyashita, H.; Miyashita, S. Value of Leukocytosis and Elevated C-Reactive Protein in Predicting Severe Coronavirus 2019 (COVID-19): A Systematic Review and Meta-Analysis. Clin. Chim. Acta 2020, 509, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Li, R.; Wu, X.; Zhao, Y.; Wang, T.; Zheng, Z.; Zeng, S.; Ding, X.; Nie, H. Clinical Features in 52 Patients with COVID-19 Who Have Increased Leukocyte Count: A Retrospective Analysis. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 2279–2287. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.-H.; Qin, C.; Chen, M.; Wang, W.; Tian, D.-S. D-Dimer Level Is Associated with the Severity of COVID-19. Thromb. Res. 2020, 195, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, K.; Fadel, H.J.; Tande, A.J.; Pardi, D.S.; Khanna, S. Outcomes in Patients with SARS-CoV-2 and Clostridioides Difficile Coinfection. Infect. Drug Resist. 2021, 14, 1645–1648. [Google Scholar] [CrossRef]
- Lakkasani, S.; Chan, K.H.; Shaaban, H.S. Clostridiodes Difficile in COVID-19 Patients, Detroit, Michigan, USA, March–April 2020. Emerg. Infect. Dis. 2020, 26, 2299–2300. [Google Scholar] [CrossRef]
Characteristic | CDI-COVID-19 Patients (n = 88) | CDI Patients (n = 100) | p Value |
---|---|---|---|
Age (years) | |||
mean ± SD | 69.56 ± 12.389 | 64.84 ± 15.78 | 0.025 * |
Sex, no (%) | |||
Female | 42 (47.7%) | 51 (51%) | |
Male gender | 46 (52.3%) | 49 (49%) | 0.654 ** |
Charlson comorbidity index, no (%) | |||
0 | 3 (3%) | 10 (10%) | |
1–2 | 1(1%) | 7 (7%) | 0.0031 ** |
3–4 | 11 (13%) | 24 (24%) | |
≥5 | 73 (83%) | 59 (59%) | |
Previous hospitalization, no (%) | 35 (39.8%) | 64 (64%) | 0.001 ** |
Recent surgery, no (%) | 16 (18.2%) | 9 (9%) | 0.064 ** |
Medication exposure, no (%) | |||
Proton pump inhibitors | 16 (18.2%) | 21 (21%) | 0.62 ** |
H2 RA | 0 (0%) | 50 (50%) | - |
Antibiotics | 76 (86.3%) | 66 (66%) | 0.0021 ** |
Corticosteroids | 58 (65.9%) | 13 (13%) | 0.00001 ** |
Laboratory findings: | |||
Hemoglobin (g/dL), mean ± SD | 12.29 ± 3.09 | 11.34 ± 2.36 | 0.020 * |
White blood cell count (/μL), mean ± SD | 12,798.20 ± 6708.15 | 11,921.11 ± 6451.56 | 0.37 * |
Platelet count (/μL), mean ± SD | 233,741.76 ± 107,770.27 | 266,612.05 ± 156,617.24 | 0.098 * |
CRP (mg/L), median (min–max) | 17.10 (0.02–283.56) | 33 (0.05–302) | 0.027 *** |
Ferritin (μg/L), median (min–max) | 965.4 (96–4893) | 47.5 (3–147) | 0.0001 *** |
Albumin (g/L), median (min–max) | 28.28 ± 5.47 | 26.54 ± 8.09 | 0.34 * |
Creatinine (mg/L), median (min–max) | 0.82 (0.5–6) | 0.80 (0.4–10) | 0.27 *** |
Length of hospital stay (days), median (min–max) | 15 (4–50) | 8 (1–33) | 0.0001 *** |
Negative outcomes, no (%) | |||
ICU care | 29 (33%) | 13 (13%) | 0.001 ** |
Organ failure | 68 (77.2%) | 24 (24%) | 0.0001 ** |
Death, no (%) | 21 (23.9%) | 13 (13%) | 0.053 ** |
Toxic megacolon, no (%) | 0 | 1 (1%) | - |
Discharged, no (%) | 67 (76.1%) | 87 (87%) | 0.059 ** |
Recurrent CDI, no (%) | 4 (4.5%) | 17 (17%) | 0.007 ** |
No (%) | 88 (100%) |
---|---|
Antibiotics | |
Prior to admission | 15 (17%) |
Total (prior to admission and during hospital stay) | 76 (86.3%) |
No bacteriologic confirmation | 59 (77.63%) |
Respiratory culture | 14 (18.42%) |
Urine culture | 13 (17.1%) |
Blood culture | 2 (2.63%) |
Type of antibiotic | |
Cephalosporins | 51 (57.9%) |
Penicillins | 6 (6.8%) |
Fluoroquinolones | 4 (4.5%) |
Macrolides | 2 (2.27%) |
Carbapenems | 11 (12.5%) |
Corticosteroids | |
Prior to admission | 11 (12.5%) |
Total (prior to admission and during hospital stay) | 58 (65.9%) |
Covariate | CDI + COVID-19 Patients (n = 88) | CDI Patients (n = 100) | Chi Square Test |
---|---|---|---|
Sex | |||
Female | 8 (38.1%) | 7 (53.8%) | 0.311 |
Male | 13 (61.9%) | 6 (46.2%) | |
Comorbidities | |||
Diabetes mellitus | 7 (33.3%) | 6 (46.2%) | 0.024 |
Cardiovascular disease | 19 (90.5%) | 4 (30.8%) | 0.359 |
Pulmonary disease | 12 (57.1%) | 1 (7.7%) | 0.083 |
Kidney disease | 6 (28.6%) | 1 (7.7%) | 0.878 |
Cancer | 3 (14.3%) | - | - |
Cirrhosis | 1 (4.8%) | 5 (38.5%) | 0.027 |
Obesity | 38 (43.1%) | - | - |
Medication exposure | |||
Proton pump inhibitors | 21 (58.6%) | 3 (23.1%) | 0.01 |
H2 RA | 3 (14.3%) | 12 (92.3%) | 0.032 |
Antibiotics | 18 (85.7%) | 12 (92.3%) | 0.974 |
Steroids | 15 (71.4%) | 2 (15.4%) | 0.0126 |
Recurrent CDI | 1 (4.8%) | 2 (15.4%) | 0.956 |
Complications | |||
Admission in ICU | 16 (76.2%) | 12 (92.3%) | 0 |
Respiratory insufficiency | 21 (100%) | 9 (69.2%) | 0.003 |
Cardiac failure | 9 (42.9%) | 13 (100%) | 0.001 |
Kidney failure | 9 (42.9%) | 7 (53.8%) | 0.002 |
Liver failure | 0 (0%) | 6 (46.2%) | - |
Sepsis | 3 (14.3%) | 8 (61.5%) | 0.014 |
MOF | 6 (28.6%) | 1(7.7%) | 0.009 |
ICU Admission | Longer Hospital Stays | |||||
---|---|---|---|---|---|---|
Covariate | OR | 95% CI | p Value | OR | 95% CI | p Value |
Age > 65 years | 0.88 | 0.33–2.34 | 0.79 | 1.32 | 0.52–3.31 | 0.54 |
Male gender | 1.81 | 0.73–4.51 | 0.19 | 1.08 | 0.46–2.50 | 0.85 |
Comorbidities | 2.25 | 0.34–14.83 | 0.39 | 0.79 | 0.18–3.37 | 0.75 |
Severe/critical COVID | - | - | - | 3.42 | 1.41–8.31 | 0.0064 |
CCI ≥ 5 | 0.86 | 0.18–4.10 | 0.85 | 1.75 | 0.32–9.43 | 0.51 |
Hgb < 9 g/dL | 2.97 | 0.38–22.87 | 0.29 | 0.39 | 0.04–3.35 | 0.39 |
WBC > 15,000/μL | 1.54 | 0.35–6.69 | 0.55 | 16.01 | 1.76–145.48 | 0.0137 |
D-dimer > 0.5 μg/mL | 6.26 | 1.41–27.81 | 0.0157 | 1.95 | 0.39–9.65 | 0.41 |
Albumin < 3 g/L | 0.72 | 0.14–3.67 | 0.69 | 0.34 | 0.03–3.48 | 0.36 |
Organ Failure | Death | |||||
Covariate | OR | 95% CI | p value | OR | 95% CI | p value |
Age > 65 years | 0.99 | 0.32–3.03 | 0.99 | 2.07 | 0.62–6.91 | 0.23 |
Male gender | 2.49 | 0.88–7.04 | 0.08 | 1.67 | 0.61–4.56 | 0.31 |
Comorbidities | 0.33 | 0.03–3.16 | 0.34 | 2.71 | 0.31–23.04 | 0.36 |
Severe/critical COVID | 8.59 | 2.54–28.98 | 0.0005 | 25.19 | 3.18–199.5 | 0.002 |
CCI ≥ 5 | 0.86 | 0.19–3.80 | 0.84 | 1.63 | 0.47–5.60 | 0.43 |
Hgb < 9 g/dL | 0.84 | 0.14–4.82 | 0.85 | 0.17 | 0.01–2.00 | 0.15 |
WBC > 15,000/μL | 0.54 | 0.06–4.65 | 0.57 | 4.93 | 0.71–33.93 | 0.10 |
D-dimer > 0.5 μg/mL | 5.50 | 0.50–59.58 | 0.16 | 1.82 | 0.45–7.31 | 0.39 |
Albumin < 3 g/L | 0.00 | 0.00–0.00 | 0.99 | 6.56 | 0.87–49.51 | 0.06 |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
OR | 95% CI | p Value | OR | 95% CI | p Value | |
Death | 24.66 | 3.12–194.56 | 0.002 | 16.40 | 1.97–136.38 | 0.009 |
Organ failure | 8.36 | 2.49–27.98 | 0.0006 | 4.97 | 1.36–18.12 | 0.01 |
MOF | 4.11 | 0.45–36.75 | 0.20 | 2.88 | 0.30–27.32 | 0.35 |
Prolonged hospitalization | 3.41 | 1.41–8.28 | 0.006 | 3.79 | 1.32–10.84 | 0.01 |
ICU Admission | Longer Hospital Stays | |||||
---|---|---|---|---|---|---|
Covariate | OR | 95% CI | p Value | OR | 95% CI | p Value |
Age > 65 years | 0.22 | 0.02–1.62 | 0.13 | 2.48 | 0.76–8.06 | 0.12 |
Male gender | 2.16 | 0.44–10.60 | 0.34 | 0.59 | 0.22–1.54 | 0.28 |
Comorbidities | 0.41 | 0.02–6.32 | 0.52 | 1.93 | 0.55–6.71 | 0.29 |
CCI ≥ 5 | 5.27 | 1.31–17.33 | 0.02 | 0.30 | 0.08–1.13 | 0.05 |
Hgb < 9 g/dL | 0.14 | 0.01–1.57 | 0.11 | 0.17 | 0.06–0.46 | 0.0004 |
WBC > 15,000/μL | 5.16 | 2.40–9.81 | 0.003 | 1.79 | 0.64–5.00 | 0.26 |
Organ Failure | Death | |||||
Covariate | OR | 95% CI | pvalue | OR | 95% CI | pvalue |
Age > 65 years | 0.08 | 0.01–0.50 | 0.006 | 0.25 | 0.03–1.66 | 0.15 |
Male gender | 2.80 | 0.83–9.46 | 0.09 | 2.06 | 0.45–9.42 | 0.34 |
Comorbidities | 0.55 | 0.09–3.05 | 0.49 | 0.54 | 0.04–7.21 | 0.64 |
CCI ≥ 5 | 11.88 | 1.75–80.66 | 0.01 | 10.93 | 1.16–102.98 | 0.03 |
Hgb < 9 g/dL | 0.20 | 0.04–0.93 | 0.04 | 0.16 | 0.01–1.60 | 0.12 |
WBC > 15,000/μL | 3.97 | 1.27–12.41 | 0.01 | 7.19 | 1.49–34.67 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boeriu, A.; Roman, A.; Dobru, D.; Stoian, M.; Voidăzan, S.; Fofiu, C. The Impact of Clostridioides Difficile Infection in Hospitalized Patients: What Changed during the Pandemic? Diagnostics 2022, 12, 3196. https://doi.org/10.3390/diagnostics12123196
Boeriu A, Roman A, Dobru D, Stoian M, Voidăzan S, Fofiu C. The Impact of Clostridioides Difficile Infection in Hospitalized Patients: What Changed during the Pandemic? Diagnostics. 2022; 12(12):3196. https://doi.org/10.3390/diagnostics12123196
Chicago/Turabian StyleBoeriu, Alina, Adina Roman, Daniela Dobru, Mircea Stoian, Septimiu Voidăzan, and Crina Fofiu. 2022. "The Impact of Clostridioides Difficile Infection in Hospitalized Patients: What Changed during the Pandemic?" Diagnostics 12, no. 12: 3196. https://doi.org/10.3390/diagnostics12123196
APA StyleBoeriu, A., Roman, A., Dobru, D., Stoian, M., Voidăzan, S., & Fofiu, C. (2022). The Impact of Clostridioides Difficile Infection in Hospitalized Patients: What Changed during the Pandemic? Diagnostics, 12(12), 3196. https://doi.org/10.3390/diagnostics12123196