Association between Hepatic Venous Congestion and Adverse Outcomes after Cardiac Surgery †
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Definitions and Measurements (Variables and Data Sources and Grouping)
2.3. Ultrasound Analysis
2.4. Outcome Variables
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galindo, P.; Gasca, C.; Argaiz, E.R.; Koratala, A. Point of care venous Doppler ultrasound: Exploring the missing piece of bedside hemodynamic assessment. World J. Crit. Care Med. 2021, 10, 310–322. [Google Scholar] [CrossRef] [PubMed]
- De Backer, D.; Aissaoui, N.; Cecconi, M.; Chew, M.S.; Denault, A.; Hajjar, L.; Hernandez, G.; Messina, A.; Myatra, S.N.; Ostermann, M.; et al. How can assessing hemodynamics help to assess volume status? Intensive Care Med. 2022. [Google Scholar] [CrossRef] [PubMed]
- Malbrain, M.; Martin, G.; Ostermann, M. Everything you need to know about deresuscitation. Intensive Care Med. 2022. [Google Scholar] [CrossRef] [PubMed]
- Iliesiu, A.M.; Hodorogea, A.S.; Balahura, A.M.; Badila, E. Non-Invasive Assessment of Congestion by Cardiovascular and Pulmonary Ultrasound and Biomarkers in Heart Failure. Diagnostics 2022, 12, 962. [Google Scholar] [CrossRef]
- Oleynikov, V.; Salyamova, L.; Kvasova, O.; Burko, N. Prediction of Adverse Post-Infarction Left Ventricular Remodeling Using a Multivariate Regression Model. Diagnostics 2022, 12, 770. [Google Scholar] [CrossRef]
- Cecconi, M.; Hernandez, G.; Dunser, M.; Antonelli, M.; Baker, T.; Bakker, J.; Duranteau, J.; Einav, S.; Groeneveld, A.B.J.; Harris, T.; et al. Correction to: Fluid administration for acute circulatory dysfunction using basic monitoring: Narrative review and expert panel recommendations from an ESICM task force. Intensive Care Med. 2019, 45, 136. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, H.; Sekino, M.; Funaoka, H.; Sato, S.; Araki, H.; Egashira, T.; Yano, R.; Matsumoto, S.; Ichinomiya, T.; Higashijima, U.; et al. Association between enterocyte injury and fluid balance in patients with septic shock: A post hoc exploratory analysis of a prospective observational study. BMC Anesthesiol. 2021, 21, 293. [Google Scholar] [CrossRef]
- Eke, C.; Szabó, A.; Nagy, Á.; Párkányi, B.; Kertai, M.D.; Fazekas, L.; Kovács, A.; Lakatos, B.; Hartyánszky, I.; Gál, J.; et al. Association between Preoperative Retrograde Hepatic Vein Flow and Acute Kidney Injury after Cardiac Surgery. Diagnostics 2022, 12, 699. [Google Scholar] [CrossRef]
- Beaubien-Souligny, W.; Benkreira, A.; Robillard, P.; Bouabdallaoui, N.; Chassé, M.; Desjardins, G.; Lamarche, Y.; White, M.; Bouchard, J.; Denault, A. Alterations in Portal Vein Flow and Intrarenal Venous Flow Are Associated With Acute Kidney Injury After Cardiac Surgery: A Prospective Observational Cohort Study. J. Am. Heart Assoc. 2018, 7, e009961. [Google Scholar] [CrossRef] [Green Version]
- Beaubien-Souligny, W.; Rola, P.; Haycock, K.; Bouchard, J.; Lamarche, Y.; Spiegel, R.; Denault, A.Y. Quantifying systemic congestion with Point-Of-Care ultrasound: Development of the venous excess ultrasound grading system. Ultrasound. J. 2020, 12, 16. [Google Scholar] [CrossRef]
- Argaiz, E.R. VExUS Nexus: Bedside Assessment of Venous Congestion. Adv. Chronic. Kidney Dis. 2021, 28, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Rola, P.; Miralles-Aguiar, F.; Argaiz, E.; Beaubien-Souligny, W.; Haycock, K.; Karimov, T.; Dinh, V.A.; Spiegel, R. Clinical applications of the venous excess ultrasound (VExUS) score: Conceptual review and case series. Ultrasound. J. 2021, 13, 32. [Google Scholar] [CrossRef] [PubMed]
- Guinot, P.G.; Bahr, P.A.; Andrei, S.; Popescu, B.A.; Caruso, V.; Mertes, P.M.; Berthoud, V.; Nguyen, M.; Bouhemad, B. Maxime Nguyen & Belaid Bouhemad Doppler study of portal vein and renal venous velocity predict the appropriate fluid response to diuretic in ICU: A prospective observational echocardiographic evaluation. Crit. Care Med. 2022, 26, 305. [Google Scholar]
- Koratala, A. Venous congestion assessment using point-of-care Doppler ultrasound: Welcome to the future of volume status assessment. Clin. Case Rep. 2021, 9, 1805–1807. [Google Scholar] [CrossRef]
- Bhardwaj, V.; Vikneswaran, G.; Rola, P.; Raju, S.; Bhat, R.S.; Jayakumar, A.; Alva, A. Combination of Inferior Vena Cava Diameter, Hepatic Venous Flow, and Portal Vein Pulsatility Index: Venous Excess Ultrasound Score (VEXUS Score) in Predicting Acute Kidney Injury in Patients with Cardiorenal Syndrome: A Prospective Cohort Study. Indian J. Crit. Care Med. 2020, 24, 783–789. [Google Scholar] [CrossRef]
- Barili, F.; Pacini, D.; D’Ovidio, M.; Dang, N.C.; Alamanni, F.; Di Bartolomeo, R.; Grossi, C.; Davoli, M.; Fusco, D.; Parolari, A. The Impact of EuroSCORE II Risk Factors on Prediction of Long-Term Mortality. Ann. Thorac. Surg. 2016, 102, 1296–1303. [Google Scholar] [CrossRef] [Green Version]
- Perez-Navero, J.L.; Merino-Cejas, C.; Ibarra de la Rosa, I.; Jaraba-Caballero, S.; Frias-Perez, M.; Gomez-Guzman, E.; Gil-Campos, M.; de la Torre-Aguilar, M.J. Evaluation of the vasoactive-inotropic score, mid-regional pro-adrenomedullin and cardiac troponin I as predictors of low cardiac output syndrome in children after congenital heart disease surgery. Med. Intensiva (Engl. Ed.) 2019, 43, 329–336. [Google Scholar] [CrossRef]
- Pinto, F.J.; Wranne, B.; St Goar, F.G.; Schnittger, I.; Popp, R.L. Hepatic venous flow assessed by transesophageal echocardiography. J. Am. Coll. Cardiol. 1991, 17, 1493–1498. [Google Scholar] [CrossRef] [Green Version]
- Sakoda, S.; Mitsunami, K.; Kinoshita, M. Evaluation of hepatic venous flow patterns using a pulsed Doppler technique. J. Cardiol. 1990, 20, 193–208. [Google Scholar]
- Klein, A.L.; Leung, D.Y.; Murray, R.D.; Urban, L.H.; Bailey, K.R.; Tajik, A.J. Effects of age and physiologic variables on right ventricular filling dynamics in normal subjects. Am. J. Cardiol. 1999, 84, 440–448. [Google Scholar] [CrossRef]
- Korytnikov, K.I. Possibility of the evaluation of right ventricular failure in ischemic heart disease based on pulse Doppler ultrasonography of large hepatic veins. Klin. Med. (Mosk.) 1992, 70, 34–37. [Google Scholar]
- Acar, E.; Izci, S.; Inanir, M.; Yilmaz, M.F.; Izgi, I.A.; Gokce, M.; Kirma, C. Hepatic venous Doppler assessment can anticipate simplified pulmonary embolism severity index and right ventricle dysfunction in patients with acute pulmonary embolism. J. Clin. Ultrasound. 2020, 48, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Sugawara, Y.; Yoshihisa, A.; Ishibashi, S.; Matsuda, M.; Yamadera, Y.; Ohara, H.; Ichijo, Y.; Watanabe, K.; Hotsuki, Y.; Anzai, F.; et al. Liver Congestion Assessed by Hepatic Vein Waveforms in Patients With Heart Failure. CJC Open 2021, 3, 778–786. [Google Scholar] [CrossRef] [PubMed]
- Hori, T.; Yagi, S.; Iida, T.; Taniguchi, K.; Yamagiwa, K.; Yamamoto, C.; Hasegawa, T.; Yamakado, K.; Kato, T.; Saito, K.; et al. Stability of cirrhotic systemic hemodynamics ensures sufficient splanchnic blood flow after living-donor liver transplantation in adult recipients with liver cirrhosis. World J. Gastroenterol. 2007, 13, 5918–5925. [Google Scholar] [CrossRef] [PubMed]
- Iida, N.; Seo, Y.; Sai, S.; Machino-Ohtsuka, T.; Yamamoto, M.; Ishizu, T.; Kawakami, Y.; Aonuma, K. Clinical Implications of Intrarenal Hemodynamic Evaluation by Doppler Ultrasonography in Heart Failure. JACC Heart Fail. 2016, 4, 674–682. [Google Scholar] [CrossRef]
- Henderson, J.M.; Gilmore, G.T.; Mackay, G.J.; Galloway, J.R.; Dodson, T.F.; Kutner, M.H. Hemodynamics during liver transplantation: The interactions between cardiac output and portal venous and hepatic arterial flows. Hepatology 1992, 16, 715–718. [Google Scholar] [CrossRef]
- Yoo, S.J.; Prsa, M.; Schantz, D.; Grosse-Wortmann, L.; Seed, M.; Kim, T.K.; Wald, R.; Chaturvedi, R. MR assessment of abdominal circulation in Fontan physiology. Int. J. Cardiovasc. Imaging 2014, 30, 1065–1072. [Google Scholar] [CrossRef]
- Hsia, T.Y.; Khambadkone, S.; Redington, A.N.; Migliavacca, F.; Deanfield, J.E.; de Leval, M.R. Effects of respiration and gravity on infradiaphragmatic venous flow in normal and Fontan patients. Circulation 2000, 102, Iii148–Iii153. [Google Scholar] [CrossRef]
- Hulin, J.; Aslanian, P.; Desjardins, G.; Belaidi, M.; Denault, A. The Critical Importance of Hepatic Venous Blood Flow Doppler Assessment for Patients in Shock. A A Case Rep. 2016, 6, 114–120. [Google Scholar] [CrossRef]
Parameters | All Patients (n = 41) | No Retrograde VTI Growth (n = 17) | Retrograde VTI Growth (n = 24) | p |
---|---|---|---|---|
Age (years) | 65.9 (10.8) | 63.7 (11.3) | 67.1 (10.4) | 0.272 |
Weight (kg) | 72.0 (10.2) | 73.4 (11.1) | 71.1 (10.3) | 0.845 |
Diabetes | 19 (46.3%) | 9 (53%) | 10 (41.6%) | 0.53 |
Sex female | 21 (51.2%) | 9 (53%) | 12 (50%) | 0.466 |
EUROSCORE II | 4.7 (1.3) | 4.9 (0.9) | 4.5 (1.0) | 0.197 |
NYHA III/IV | 24 (58.5%) | 10 (58.8%) | 14 (58.3%) | 0.456 |
Operation time (min) | 182.4 (39.1) | 178.1 (41.1) | 188. 8 (39.1) | 0.88 |
Aorta cross-clamp time (min) | 47.8 (7.1) | 40.8 (9.1) | 48.1 (7.6) | 0.73 |
Operation type | ||||
MVR | 9 (22%) | 3 (17.6%) | 6 (25%) | 0.234 |
AVR | 14 (34.1%) | 6 (35.2%) | 8 (33.3%) | 0.199 |
CABG | 15 (36.6%) | 7 (41.1%) | 8 (33.3%) | 0.342 |
Combined | 3 (7.3%) | 1 (5.9%) | 2 (8.4%) | 0.544 |
Echo parameter | Non-VTI Growth (n = 17) | VTI Growth (n = 24) | p | Non-VTI Growth (n = 17) | VTI Growth (n = 24) | p |
---|---|---|---|---|---|---|
Preoperative | Postoperative | |||||
EF | 53.7 (10.5) | 51.5 (12.4) | 0.277 | 59.4 (11.2) | 48.5 (10.7) | 0.001 |
TAPSE (mm) | 24.6 (5.1) | 22.6 (5.9) | 0.127 | 14.3 (4.2) | 15.2 (5.4) | 0.251 |
LVEDD (mm) | 51.1 (9.2) | 53.1 (10.4) | 0.255 | 44.6 (4.1) | 47.4 (6.8) | 0.08 |
LVESD (mm) | 39.9 (14.1) | 38 (10.1) | 0.431 | 28.4 (9.1) | 33.3 (8.7) | 0.022 |
RV (mm) | 32.7 (4.4) | 32.9 (3.9) | 0.457 | 32.5 (5.1) | 35.1 (4.9) | 0.01 |
LA1 (mm) | 44 (8.5) | 46.6 (8.0) | 0.168 | 43.1 (8.7) | 45.2 (8.8) | 0.06 |
LA2 (mm) | 49 (10.2) | 52.1 (10.1) | 0.166 | 54.1 (8.7) | 53.9 (9.1) | 0.09 |
RA1 (mm) | 42.7 (6.3) | 42.4 (7.1) | 0.451 | 39.5 (6.7) | 43.9 (5.9) | 0.01 |
RA2 (mm) | 49.3 (9.1) | 47.3 (7.9) | 0.254 | 53.5 (6.9) | 55.1 (7.1) | 0.144 |
RASA (mm2) | 2131.1 (644.1) | 1916.2 (577.6) | 0.134 | 2314.2 (498.2) | 2278.5 (514.3) | 0.646 |
Delta EF | 2.8 (19.4) | −12.1 (3.2) | 0.009 |
Respirator Parameter | Non-VTI Growth (n = 17)) | VTI Growth (n = 24) | p |
---|---|---|---|
Mechanical ventilation over than 24 h | 7 (41.1%) | 13 (54.1%) | 0.091 |
Resp. time (hours) | 20.9 (2.1) | 25 (3.2) | 0.081 |
Tidal volume (mL) | 470.5 (43.5) | 490.5 (44.0) | 0.079 |
RR (/min) | 13.4 (2.0) | 12.9 (1.9) | 0.122 |
PEEP (cmH2O) | 6.5 (1.3) | 7.7 (1.9) | 0.003 |
FIo2 (%) | 38.5 (4.5) | 39 (4.8) | 0.051 |
Title | B | 95% CI | p Value | |
---|---|---|---|---|
Delta EF | −0.099 | −0.022 | −0.002 | 0.022 |
Fluid balance/body weight at POP 24 h (mL/kg) | 0.011 | 0.001 | 0.021 | 0.022 |
CVP POP 24 h (mmHg) | 0.094 | 0.052 | 0.213 | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eke, C.; Szabó, A.; Nagy, Á.; Szécsi, B.; Szentgróti, R.; Dénes, A.; Kertai, M.D.; Fazekas, L.; Kovács, A.; Lakatos, B.; et al. Association between Hepatic Venous Congestion and Adverse Outcomes after Cardiac Surgery. Diagnostics 2022, 12, 3175. https://doi.org/10.3390/diagnostics12123175
Eke C, Szabó A, Nagy Á, Szécsi B, Szentgróti R, Dénes A, Kertai MD, Fazekas L, Kovács A, Lakatos B, et al. Association between Hepatic Venous Congestion and Adverse Outcomes after Cardiac Surgery. Diagnostics. 2022; 12(12):3175. https://doi.org/10.3390/diagnostics12123175
Chicago/Turabian StyleEke, Csaba, András Szabó, Ádám Nagy, Balázs Szécsi, Rita Szentgróti, András Dénes, Miklós D. Kertai, Levente Fazekas, Attila Kovács, Bálint Lakatos, and et al. 2022. "Association between Hepatic Venous Congestion and Adverse Outcomes after Cardiac Surgery" Diagnostics 12, no. 12: 3175. https://doi.org/10.3390/diagnostics12123175
APA StyleEke, C., Szabó, A., Nagy, Á., Szécsi, B., Szentgróti, R., Dénes, A., Kertai, M. D., Fazekas, L., Kovács, A., Lakatos, B., Hartyánszky, I., Benke, K., Merkely, B., & Székely, A. (2022). Association between Hepatic Venous Congestion and Adverse Outcomes after Cardiac Surgery. Diagnostics, 12(12), 3175. https://doi.org/10.3390/diagnostics12123175