Automatic Feature Segmentation in Dental Periapical Radiographs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Radiographic Dataset
2.3. Image Evaluation
2.4. Deep Convolutional Neural Network
2.5. Model Pipeline and Training Phase
- Statistical Analysis
- Metrics Calculation Procedure
- True positive (TP): dental diagnoses correctly detected and segmented.
- False positive (FP): dental diagnoses detected but incorrectly segmented.
- False negative (FN): dental diagnoses incorrectly detected and segmented.
- Sensitivity, true positive rate (TPR): TP/(TP + FN)
- Precision, positive predictive value (PPV): TP/(TP + FP)
- F1 score: 2TP/(2TP + FP + FN)
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Keenan, J.R.; Keenan, A.V. Accuracy of dental radiographs for caries detection. Evid. -Based Dent. 2016, 17, 43. [Google Scholar] [CrossRef] [PubMed]
- White, S.C.; Pharoah, M.J. White and Pharoah’s Oral Radiology: Principles and Interpretation; Elsevier Health Sciences: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Khan, H.A.; Haider, M.A.; Ansari, H.A.; Ishaq, H.; Kiyani, A.; Sohail, K.; Muhammad, M.; Khurram, S.A. Automated feature detection in dental periapical radiographs by using deep learning. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2021, 131, 711–720. [Google Scholar] [CrossRef]
- Hung, K.; Montalvao, C.; Tanaka, R.; Kawai, T.; Bornstein, M.M. The use and performance of artificial intelligence applications in dental and maxillofacial radiology: A systematic review. Dentomaxillofacial Radiol. 2020, 49, 20190107. [Google Scholar] [CrossRef] [PubMed]
- Mazurowski, M.A. Artificial intelligence in radiology: Some ethical considerations for radiologists and algorithm developers. Acad. Radiol. 2020, 27, 127–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thrall, J.H.; Li, X.; Li, Q.; Cruz, C.; Do, S.; Dreyer, K.; Brink, J. Artificial intelligence and machine learning in radiology: Opportunities, challenges, pitfalls, and criteria for success. J. Am. Coll. Radiol. 2018, 15, 504–508. [Google Scholar] [CrossRef]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J. Artificial intelligence in radiology. Nat. Rev. Cancer 2018, 18, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.-J.; Jung, Y.-H.; Cho, B.-H.; Heo, M.-S. An overview of deep learning in the field of dentistry. Imaging Sci. Dent. 2019, 49, 1–7. [Google Scholar] [CrossRef]
- Kositbowornchai, S.; Siriteptawee, S.; Plermkamon, S.; Bureerat, S.; Chetchotsak, D. An artificial neural network for detection of simulated dental caries. IJCARS 2006, 1, 91–96. [Google Scholar] [CrossRef]
- Hoerter, N.; Gross, S.A.; Liang, P.S. Artificial Intelligence and Polyp Detection. Curr. Treat. Options Gastroenterol. 2020, 18, 120–136. [Google Scholar] [CrossRef]
- Yasa, Y.; Çelik, Ö.; Bayrakdar, I.S.; Pekince, A.; Orhan, K.; Akarsu, S.; Atasoy, S.; Bilgir, E.; Odabaş, A.; Aslan, A.F. An artificial intelligence proposal to automatic teeth detection and numbering in dental bite-wing radiographs. Acta Odontol. Scand. 2020, 79, 275–281. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, D.-H.; Jeong, S.-N.; Choi, S.-H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J. Dent. 2018, 77, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Cantu, A.G.; Gehrung, S.; Krois, J.; Chaurasia, A.; Rossi, J.G.; Gaudin, R.; Elhennawy, K.; Schwendicke, F. Detecting caries lesions of different radiographic extension on bitewings using deep learning. J. Dent. 2020, 100, 103425. [Google Scholar] [CrossRef] [PubMed]
- Devito, K.L.; de Souza Barbosa, F.; Felippe Filho, W.N. An artificial multilayer perceptron neural network for diagnosis of proximal dental caries. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 2008, 106, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Valizadeh, S.; Goodini, M.; Ehsani, S.; Mohseni, H.; Azimi, F.; Bakhshandeh, H. Designing of a computer software for detection of approximal caries in posterior teeth. Iran. J. Radiol. 2015, 12, e16242. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, D.-h.; Jeong, S.-N.; Choi, S.-H. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm. J. Periodontal Implant. Sci. 2018, 48, 114–123. [Google Scholar] [CrossRef] [Green Version]
- Krois, J.; Ekert, T.; Meinhold, L.; Golla, T.; Kharbot, B.; Wittemeier, A.; Dörfer, C.; Schwendicke, F. Deep learning for the radiographic detection of periodontal bone loss. Sci. Rep. 2019, 9, 8495. [Google Scholar] [CrossRef] [Green Version]
- Kunz, F.; Stellzig-Eisenhauer, A.; Zeman, F.; Boldt, J. Artificial intelligence in orthodontics. J. Orofac. Orthop. 2020, 81, 52–68. [Google Scholar] [CrossRef]
- Orhan, K.; Bayrakdar, I.; Ezhov, M.; Kravtsov, A.; Özyürek, T. Evaluation of artificial intelligence for detecting periapical pathosis on cone-beam computed tomography scans. Int. Endod. J. 2020, 53, 680–689. [Google Scholar] [CrossRef]
- Kats, L.; Vered, M.; Zlotogorski-Hurvitz, A.; Harpaz, I. Atherosclerotic carotid plaque on panoramic radiographs: Neural network detection. Int. J. Comput. Dent. 2019, 22, 163–169. [Google Scholar] [PubMed]
- Duman, S.; Yılmaz, E.F.; Eser, G.; Celik, Ö.; Bayrakdar, I.S.; Bilgir, E.; Costa, A.L.F.; Jagtap, R.; Orhan, K. Detecting the presence of taurodont teeth on panoramic radiographs using a deep learning-based convolutional neural network algorithm. Oral Radiol. 2022, 1–8. [Google Scholar] [CrossRef]
- Duman, S.B.; Syed, A.Z.; Celik Ozen, D.; Bayrakdar, I.S.; Salehi, H.S.; Abdelkarim, A.; Celik, Ö.; Eser, G.; Altun, O.; Orhan, K. Convolutional Neural Network Performance for Sella Turcica Segmentation and Classification Using CBCT Images. Diagnostics 2022, 12, 2244. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention Conference, Munich, Germany, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Lee, J.-H.; Han, S.-S.; Kim, Y.H.; Lee, C.; Kim, I. Application of a fully deep convolutional neural network to the automation of tooth segmentation on panoramic radiographs. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2020, 129, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Hamdan, M.H.; Tuzova, L.; Mol, A.; Tawil, P.Z.; Tuzoff, D.; Tyndall, D.A. The effect of a deep learning tool on dentists’ performances in detecting apical radiolucencies on periapical radiographs. Dentomaxillofacial Radiol. 2022, 51, 20220122. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, K.; Lyu, P.; Li, H.; Zhang, L.; Wu, J.; Lee, C.-H. A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films. Sci. Rep. 2019, 9, 3840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Görürgöz, C.; Orhan, K.; Bayrakdar, I.S.; Çelik, Ö.; Bilgir, E.; Odabaş, A.; Aslan, A.F.; Jagtap, R. Performance of a convolutional neural network algorithm for tooth detection and numbering on periapical radiographs. Dentomaxillofacial Radiol. 2021, 50, 20210246. [Google Scholar] [CrossRef]
- Karatas, O.; Cakir, N.N.; Ozsariyildiz, S.S.; Kis, H.C.; Demirbuga, S.; Gurgan, C.A. A deep learning approach to dental restoration classification from bitewing and periapical radiographs. Quintessence Int. 2021, 52, 568–574. [Google Scholar]
- Kim, J.-E.; Nam, N.-E.; Shim, J.-S.; Jung, Y.-H.; Cho, B.-H.; Hwang, J.J. Transfer learning via deep neural networks for implant fixture system classification using periapical radiographs. J. Clin. Med. 2020, 9, 1117. [Google Scholar] [CrossRef] [Green Version]
- da Mata Santos, R.P.; Vieira Oliveira Prado, H.E.; Aranha Neto, I.S.; Alves de Oliveira, G.A.; Vespasiano Silva, A.I.; Gonçalves Zenóbio, E.; Manzi, F.R. Automated Identification of Dental Implants Using Artificial Intelligence. Int. J. Oral Maxillofac. Implant. 2021, 36, 918–923. [Google Scholar] [CrossRef]
- Cha, J.-Y.; Yoon, H.-I.; Yeo, I.-S.; Huh, K.-H.; Han, J.-S. Peri-Implant Bone Loss Measurement Using a Region-Based Convolutional Neural Network on Dental Periapical Radiographs. J. Clin. Med. 2021, 10, 1009. [Google Scholar] [CrossRef]
- Li, S.; Liu, J.; Zhou, Z.; Zhou, Z.; Wu, X.; Li, Y.; Wang, S.; Liao, W.; Ying, S.; Zhao, Z. Artificial intelligence for caries and periapical periodontitis detection. J. Dent. 2022, 122, 104107. [Google Scholar] [CrossRef]
- Chen, H.; Li, H.; Zhao, Y.; Zhao, J.; Wang, Y. Dental disease detection on periapical radiographs based on deep convolutional neural networks. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 649–661. [Google Scholar] [CrossRef] [PubMed]
- Duong, D.L.; Kabir, M.H.; Kuo, R.F. Automated caries detection with smartphone color photography using machine learning. Health Inform. J. 2021, 27, 14604582211007530, Erratum in Health Inform. J. 2021, 27, 14604582211027744. [Google Scholar] [CrossRef] [PubMed]
- Alevizakos, V.; Bekes, K.; Steffen, R.; von See, C. Artificial intelligence system for training diagnosis and differentiation with molar incisor hypomineralization (MIH) and similar pathologies. Clin. Oral Investig. 2022, 26, 6917–6923. [Google Scholar] [CrossRef] [PubMed]
Periapical Radiograph Numbers for Training | Label Numbers for Training | Periapical Radiograph Numbers for Test | Label Numbers for Test | Periapical Radiograph Numbers for Test | Label Numbers for Test | Learning Rate | Epoch | |
---|---|---|---|---|---|---|---|---|
Carious lesion | 352 | 577 | 35 | 59 | 35 | 53 | 0.0001 | 800 |
Crown | 91 | 108 | 9 | 11 | 9 | 12 | 0.0001 | 300 |
Dental Pulp | 975 | 3482 | 97 | 347 | 97 | 348 | 0.0001 | 200 |
Filling | 758 | 1600 | 75 | 169 | 75 | 161 | 0.0001 | 200 |
Root Canal Filling | 627 | 1389 | 62 | 138 | 62 | 165 | 0.0001 | 300 |
Periapical Lesion | 266 | 327 | 26 | 34 | 26 | 30 | 0.0001 | 500 |
True-Positive (TP) | False- Positive (FP) | False- Negative (FN) | Sensitivity (TP/(TP + FN)) | Precision (TP/(TP + FP)) | F1 Score (2TP/2TP + FP + FN)) | |
---|---|---|---|---|---|---|
Carious lesion | 34 | 7 | 7 | 0.82 | 0.82 | 0.82 |
Crown | 12 | 0 | 0 | 1 | 1 | 1 |
Dental Pulp | 274 | 40 | 6 | 0.97 | 0.87 | 0.92 |
Filling | 129 | 6 | 6 | 0.95 | 0.95 | 0.95 |
Root Canal Filling | 110 | 4 | 0 | 1 | 0.96 | 0.98 |
Periapical Lesion | 24 | 4 | 2 | 0.92 | 0.85 | 0.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ari, T.; Sağlam, H.; Öksüzoğlu, H.; Kazan, O.; Bayrakdar, İ.Ş.; Duman, S.B.; Çelik, Ö.; Jagtap, R.; Futyma-Gąbka, K.; Różyło-Kalinowska, I.; et al. Automatic Feature Segmentation in Dental Periapical Radiographs. Diagnostics 2022, 12, 3081. https://doi.org/10.3390/diagnostics12123081
Ari T, Sağlam H, Öksüzoğlu H, Kazan O, Bayrakdar İŞ, Duman SB, Çelik Ö, Jagtap R, Futyma-Gąbka K, Różyło-Kalinowska I, et al. Automatic Feature Segmentation in Dental Periapical Radiographs. Diagnostics. 2022; 12(12):3081. https://doi.org/10.3390/diagnostics12123081
Chicago/Turabian StyleAri, Tugba, Hande Sağlam, Hasan Öksüzoğlu, Orhan Kazan, İbrahim Şevki Bayrakdar, Suayip Burak Duman, Özer Çelik, Rohan Jagtap, Karolina Futyma-Gąbka, Ingrid Różyło-Kalinowska, and et al. 2022. "Automatic Feature Segmentation in Dental Periapical Radiographs" Diagnostics 12, no. 12: 3081. https://doi.org/10.3390/diagnostics12123081