“Double Cross Sign” Could Be an Indicator of an Adequate Amount of Bone Cement in Kyphoplasty with the SpineJack System: A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population
2.2. Preoperative Assessment
2.3. Operation
2.4. Postoperative Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Cauley, J.A. Public health impact of osteoporosis. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 1243–1251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pouresmaeili, F.; Kamalidehghan, B.; Kamarehei, M.; Goh, Y.M. A comprehensive overview on osteoporosis and its risk factors. Ther. Clin. Risk Manag. 2018, 14, 2029–2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dennison, E.; Cooper, C. Epidemiology of osteoporotic fractures. Horm. Res. 2000, 54 (Suppl. 1), 58–63. [Google Scholar] [CrossRef] [PubMed]
- Wardlaw, D.; Van Meirhaeghe, J.; Ranstam, J.; Bastian, L.; Boonen, S. Balloon kyphoplasty in patients with osteoporotic vertebral compression fractures. Expert Rev. Med. Devices 2012, 9, 423–436. [Google Scholar] [CrossRef]
- Burge, R.; Dawson-Hughes, B.; Solomon, D.H.; Wong, J.B.; King, A.; Tosteson, A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J. Bone Min. Res. 2007, 22, 465–475. [Google Scholar] [CrossRef]
- Qu, B.; Ma, Y.; Yan, M.; Wu, H.H.; Fan, L.; Liao, D.F.; Pan, X.-M.; Hong, Z. The economic burden of fracture patients with osteoporosis in western China. Osteoporos. Int. 2014, 25, 1853–1860. [Google Scholar] [CrossRef]
- Noguchi, T.; Yamashita, K.; Kamei, R.; Maehara, J. Current status and challenges of percutaneous vertebroplasty (PVP). Jpn. J. Radiol. 2022. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, C.; Zhang, T.; Gao, Z.; Zhang, T. Does Percutaneous Vertebroplasty or Balloon Kyphoplasty for Osteoporotic Vertebral Compression Fractures Increase the Incidence of New Vertebral Fractures? A Meta-Analysis. Pain Physician 2017, 20, E13–E28. [Google Scholar] [CrossRef]
- Patel, D.; Liu, J.; Ebraheim, N.A. Managements of osteoporotic vertebral compression fractures: A narrative review. World J. Orthop. 2022, 13, 564–573. [Google Scholar] [CrossRef]
- Taylor, R.S.; Taylor, R.J.; Fritzell, P. Balloon kyphoplasty and vertebroplasty for vertebral compression fractures: A comparative systematic review of efficacy and safety. Spine 2006, 31, 2747–2755. [Google Scholar] [CrossRef]
- Iida, K.; Harimaya, K.; Tarukado, K.; Tono, O.; Matsumoto, Y.; Nakashima, Y. Kyphosis Progression after Balloon Kyphoplasty Compared with Conservative Treatment. Asian Spine J. 2019, 13, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Vanni, D.; Galzio, R.; Kazakova, A.; Pantalone, A.; Grillea, G.; Bartolo, M.; Salini, V.; Magliani, V. Third-generation percutaneous vertebral augmentation systems. J. Spine Surg. 2016, 2, 13–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruger, A.; Baroud, G.; Noriega, D.; Figiel, J.; Dorschel, C.; Ruchholtz, S.; Oberkircher, L. Height restoration and maintenance after treating unstable osteoporotic vertebral compression fractures by cement augmentation is dependent on the cement volume used. Clin. Biomech 2013, 28, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Martincic, D.; Brojan, M.; Kosel, F.; Stern, D.; Vrtovec, T.; Antolic, V.; Vengust, R. Minimum cement volume for vertebroplasty. Int. Orthop. 2015, 39, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.J.; Yoon, S.H.; Park, K.W.; Chung, S.K.; Kim, K.J.; Yeom, J.S.; Kim, H.J. The volumetric analysis of cement in vertebroplasty: Relationship with clinical outcome and complications. Spine 2011, 36, E761–E772. [Google Scholar] [CrossRef]
- Rotter, R.; Schmitt, L.; Gierer, P.; Schmitz, K.P.; Noriega, D.; Mittlmeier, T.; Meeder, P.-J.; Martin, H. Minimum cement volume required in vertebral body augmentation—A biomechanical study comparing the permanent SpineJack device and balloon kyphoplasty in traumatic fracture. Clin. Biomech. 2015, 30, 720–725. [Google Scholar] [CrossRef]
- He, X.; Li, H.; Meng, Y.; Huang, Y.; Hao, D.J.; Wu, Q.; Liu, J. Percutaneous Kyphoplasty Evaluated by Cement Volume and Distribution: An Analysis of Clinical Data. Pain Physician 2016, 19, 495–506. [Google Scholar]
- Baeesa, S.S.; Krueger, A.; Aragon, F.A.; Noriega, D.C. The efficacy of a percutaneous expandable titanium device in anatomical reduction of vertebral compression fractures of the thoracolumbar spine. Saudi Med. J. 2015, 36, 52–60. [Google Scholar] [CrossRef]
- Noriega, D.; Maestretti, G.; Renaud, C.; Francaviglia, N.; Ould-Slimane, M.; Queinnec, S.; Ekkerlein, H.; Hassel, F.; Gumpert, R.; Sabatier, P.; et al. Clinical Performance and Safety of 108 SpineJack Implantations: 1-Year Results of a Prospective Multicentre Single-Arm Registry Study. BioMed Res. Int. 2015, 2015, 173872. [Google Scholar] [CrossRef] [Green Version]
- Renaud, C. Treatment of vertebral compression fractures with the cranio-caudal expandable implant SpineJack (R): Technical note and outcomes in 77 consecutive patients. Orthop. Traumatol. Surg. Res. 2015, 101, 857–859. [Google Scholar] [CrossRef] [Green Version]
- Sadat-Ali, M.; Al-Habdan, I.M.; Al-Turki, H.A.; Azam, M.Q. An epidemiological analysis of the incidence of osteoporosis and osteoporosis-related fractures among the Saudi Arabian population. Ann. Saudi Med. 2012, 32, 637–641. [Google Scholar] [CrossRef]
- Bliuc, D.; Nguyen, N.D.; Milch, V.E.; Nguyen, T.V.; Eisman, J.A.; Center, J.R. Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA 2009, 301, 513–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popa, R.I.; Gray, L.A.; Kallmes, D.F. Urinary tract infections in the potential vertebroplasty patient: Incidence, significance, and management. AJNR Am. J. Neuroradiol. 2009, 30, 227–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noriega, D.C.; Rodriotaguez-Monsalve, F.; Ramajo, R.; Sanchez-Lite, I.; Toribio, B.; Ardura, F. Long-term safety and clinical performance of kyphoplasty and SpineJack (R) procedures in the treatment of osteoporotic vertebral compression fractures: A pilot, monocentric, investigator-initiated study. Osteoporos. Int. 2019, 30, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Premat, K.; Vande Perre, S.; Cormier, E.; Shotar, E.; Degos, V.; Morardet, L.; Fargeot, C.; Clarençon, F. Vertebral augmentation with the SpineJack (R) in chronic vertebral compression fractures with major kyphosis. Eur. Radiol. 2018, 28, 4985–4991. [Google Scholar] [CrossRef] [PubMed]
- Noriega, D.C.; Ramajo, R.H.; Lite, I.S.; Toribio, B.; Corredera, R.; Ardura, F.; Krüger, A. Safety and clinical performance of kyphoplasty and SpineJack (R) procedures in the treatment of osteoporotic vertebral compression fractures: A pilot, monocentric, investigator-initiated study. Osteoporos. Int. 2016, 27, 2047–2055. [Google Scholar] [CrossRef] [PubMed]
- Eichholz, K.M.; O’Toole, J.E.; Christie, S.D.; Fessler, R.G. Vertebroplasty and kyphoplasty. Neurosurg. Clin. N. A. 2006, 17, 507–518. [Google Scholar] [CrossRef]
- Laredo, J.D.; Hamze, B. Complications of percutaneous vertebroplasty and their prevention. Semin. Ultrasound CT MR 2005, 26, 65–80. [Google Scholar] [CrossRef]
- Cyteval, C.; Sarrabere, M.P.; Roux, J.O.; Thomas, E.; Jorgensen, C.; Blotman, F.; Sany, J.; Taourel, P. Acute osteoporotic vertebral collapse: Open study on percutaneous injection of acrylic surgical cement in 20 patients. AJR Am. J. Roentgenol. 1999, 173, 1685–1690. [Google Scholar] [CrossRef]
- Vasconcelos, C.; Gailloud, P.; Martin, J.B.; Murphy, K.J. Transient arterial hypotension induced by polymethylmethacrylate injection during percutaneous vertebroplasty. J. Vasc. Interv. Radiol. JVIR 2001, 12, 1001–1002. [Google Scholar] [CrossRef]
- Peh, W.C.; Gilula, L.A.; Peck, D.D. Percutaneous vertebroplasty for severe osteoporotic vertebral body compression fractures. Radiology 2002, 223, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Jiang, G.; Lu, B.; Shi, C.; Luo, K.; Yue, B. The positive correlation between upper adjacent vertebral fracture and the kyphosis angle of injured vertebral body after percutaneous kyphoplasty: An in vitro study. Clin. Neurol. Neurosurg. 2015, 139, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Ottardi, C.; La Barbera, L.; Pietrogrande, L.; Villa, T. Vertebroplasty and kyphoplasty for the treatment of thoracic fractures in osteoporotic patients: A finite element comparative analysis. J. Appl. Biomater. Funct. Mater. 2016, 14, e197–e204. [Google Scholar] [CrossRef] [PubMed]
Characteristics | |
---|---|
Patients (number) | n = 65 |
Age (years) | 74.5 ± 8.5 |
Women n (%) | 50 (76.9) |
Follow-up time (months) | 5.6 ± 3.5 |
Operated level n (%) | |
T9 | 1 (1.5%) |
T10 | 1 (1.5%) |
T11 | 2 (3%) |
T12 | 17 (26.2%) |
L1 | 21 (32.3%) |
L2 | 11 (16.9%) |
L3 | 6 (9.2%) |
L4 | 6 (9.2%) |
Magerl classification n (%) | |
A3.1 | 29 (45%) |
A3.2 | 26 (40%) |
A3.3 | 10 (15%) |
Cement leakage | n = 13 (20%) |
Adjacent level fracture | n = 11 (16.9%) |
Injected cement (mL) | 7.3 ± 2.7 |
Positive Double Cross Sign (n = 45) | Negative Double Cross Sign (n = 20) | p Value | |
---|---|---|---|
Age (years) | 75.5 ± 7.3 | 72.4 ± 10.6 | p = 0.250 |
Follow-up (months) | 6.2 ± 3.6 | 4.4 ± 3.1 | p = 0.115 |
Oswestry Disability Index | 20.0 ± 6.9 | 32.3 ± 8.2 | p < 0.001 * |
Lumbar spine BMD (g/cm2) | 0.86 ± 0.1 | 0.91 ± 0.1 | p = 0.333 |
Lumbar spine T-score | −2.3 ± 1.2 | −1.7 ± 1.0 | p = 0.153 |
Injected cement amount (mL) | 7.7 ± 2.9 | 6.6 ± 2.3 | p = 1.035 |
Δ regional kyphotic angle (degrees) | 11 ± 8.8 | 5.3 ± 3.2 | p = 0.001 * |
Δ local kyphotic angle (degrees) | 11.7 ± 6.2 | 6.6 ± 4.1 | p = 0.001 * |
Δ anterior VBH (%) | 155 ± 159 | 40 ± 47 | p < 0.001 * |
Δ middle VBH (%) | 156 ± 132 | 84 ± 82 | p = 0.012 * |
Δ posterior VBH (%) | 15 ± 19 | 14 ± 12 | p = 0.832 |
Angle change between devices (mL) | 3.7 ± 4.3 | 9 ± 4.7 | p = 0.002 * |
Cement leakage (mL) | 7 | 6 | 0.428 |
Adjacent fracture n | 7 | 4 | 0.805 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.-J.; Hong, C.-K.; Hsu, C.-C. “Double Cross Sign” Could Be an Indicator of an Adequate Amount of Bone Cement in Kyphoplasty with the SpineJack System: A Retrospective Study. Diagnostics 2022, 12, 3068. https://doi.org/10.3390/diagnostics12123068
Chang C-J, Hong C-K, Hsu C-C. “Double Cross Sign” Could Be an Indicator of an Adequate Amount of Bone Cement in Kyphoplasty with the SpineJack System: A Retrospective Study. Diagnostics. 2022; 12(12):3068. https://doi.org/10.3390/diagnostics12123068
Chicago/Turabian StyleChang, Chao-Jui, Chih-Kai Hong, and Che-Chia Hsu. 2022. "“Double Cross Sign” Could Be an Indicator of an Adequate Amount of Bone Cement in Kyphoplasty with the SpineJack System: A Retrospective Study" Diagnostics 12, no. 12: 3068. https://doi.org/10.3390/diagnostics12123068
APA StyleChang, C.-J., Hong, C.-K., & Hsu, C.-C. (2022). “Double Cross Sign” Could Be an Indicator of an Adequate Amount of Bone Cement in Kyphoplasty with the SpineJack System: A Retrospective Study. Diagnostics, 12(12), 3068. https://doi.org/10.3390/diagnostics12123068