Cascaded Hough Transform-Based Hair Mask Generation and Harmonic Inpainting for Automated Hair Removal from Dermoscopy Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Image Preprocessing
2.2. Iterative Thresholding Method
Algorithm 1. Thresholding procedure |
Start i=0 Input gray image If i=0 = Initial value End Fragment the histogram utilizing into two parts Compute the mean value of above and the mean value of below Compute the new threshold value as in Equation (1) If i=i+1 = Repeat from start Else if = Normalize the to the range [0, 1] End if Output End |
2.3. Hough Transform
2.4. Harmonic Inpainting
2.5. The Proposed Hair Removal Method
3. Results and Discussion
3.1. Implementation of the Proposed Technique
3.2. Proposed System Evaluation
3.3. Comparison between the Proposed System and DullRazor Using HairSim
3.4. Proposed Method Evaluation on Clinical Images
3.5. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, T.; Ng, V.; Gallagher, R.; Coldman, A.; McLean, D. Dullrazor®: A software approach to hair removal from images. Comput. Biol. Med. 1997, 27, 533–543. [Google Scholar] [CrossRef]
- Zagrouba, E.; Barhoumi, W. A prelimary approach for the automated recognition of malignant melanoma. Image Anal. Stereol. 2004, 23, 121–135. [Google Scholar] [CrossRef]
- Fiorese, M.F.; Peserico, E.P.; Silletti, A.S. VirtualShave: Automated hair removal from digital dermatoscopic images. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011. [Google Scholar]
- Kiani, K.; Sharafat, A.R. E-shaver: An improved DullRazor® for digitally removing dark and light-colored hairs in dermoscopic images. Comput. Biol. Med. 2011, 41, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.Y.; Qin, S.Y.; Jiang, Z.G.; Meng, R.S. PDE-based unsupervised repair of hair-occluded information in dermoscopy images of melanoma. Comput. Med. Imaging Graph. 2009, 33, 275–282. [Google Scholar] [CrossRef]
- Abbas, Q.; Fondón, I.; Rashid, M. Unsupervised skin lesions border detection via two-dimensional image analysis. Comput. Methods Programs Biomed. 2011, 104, e1–e15. [Google Scholar] [CrossRef] [PubMed]
- Abbas, Q.; Celebi, M.E.; García, I.F. Hair removal methods: A comparative study for dermoscopy images. Biomed. Signal Process. Control 2011, 6, 395–404. [Google Scholar] [CrossRef]
- Huang, A.; Kwan, S.Y.; Chang, W.Y.; Liu, M.Y.; Chi, M.H.; Chen, G.S. A robust hair segmentation and removal approach for clinical images of skin lesions. In Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013. [Google Scholar]
- Toossi, M.T.B.; Pourreza, H.R.; Zare, H.; Sigari, M.H.; Layegh, P.; Azimi, A. An effective hair removal algorithm for dermoscopy images. Ski. Res. Technol. 2013, 19, 230–235. [Google Scholar] [CrossRef]
- Jaworek-Korjakowska, J.; Tadeusiewicz, R. Hair removal from dermoscopic color images. Bio-Algorithms Med.-Syst. 2013, 9, 53–58. [Google Scholar] [CrossRef]
- Ortuño, F.; Rojas, I. Bioinformatics and Biomedical Engineering. In Proceedings of the 3rd International Conference, IWBBIO 2015, Granada, Spain, 15–17 April 2015; Springer: Cham, Switzerland, 2015. [Google Scholar]
- George, Y.; Aldeen, M.; Garnavi, R. Skin hair removal for 2D psoriasis images. In Proceedings of the International Conference on Digital Image Computing, Techniques and Applications (DICTA), Adelaide, Australia, 23–25 November 2015. [Google Scholar]
- Koehoorn, J.; Sobiecki, A.C.; Boda, D.; Diaconeasa, A.; Doshi, S.; Paisey, S.; Jalba, A.; Telea, A. Automated digital hair removal by threshold decomposition and morphological analysis. In International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing; Springer: Cham, Switzerland, 2015; pp. 15–26. [Google Scholar]
- Julie Salido, J.S.; Ruiz, C.R. Using morphological operators and inpainting for hair removal in dermoscopic images. In Proceedings of the Computer Graphics International Conference, New York, NY, USA, 27–30 June 2017. [Google Scholar]
- Hamet, P.; Tremblay, J. Artificial intelligence in medicine. Metabolism 2017, 69, S36–S40. [Google Scholar] [CrossRef]
- Zaqout, I.Z. An efficient block-based algorithm for hair removal in dermoscopic images. Comput. Opt. 2017, 41, 521–527. [Google Scholar] [CrossRef]
- Bibiloni, P.; González-Hidalgo, M.; Massanet, S. Skin hair removal in dermoscopic images using soft color morphology. In Proceedings of the Conference on Artificial Intelligence in Medicine in Europe, Vienna, Austria, 21–24 June 2017; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Lidia Talavera-Martínez, L.T.; Pedro Bibiloni, P.B.; Manuel González-Hidalgo, M.G. An encoder-decoder CNN for hair removal in dermoscopic images. arXiv 2020, arXiv:201005013. [Google Scholar]
- Gutman, D.G.; Codella, N.C.; Celebi, M.C.; Helba, B.H.; Marchetti, M.M.; Mishra, N.M.; Halpern, A.H. Skin Lesion Analysis toward Melanoma Detection: A Challenge at the International Symposium on Biomedical Imaging (ISBI) 2016, hosted by the International Skin Imaging Collaboration (ISIC). arXiv 2016, arXiv:1605.01397. [Google Scholar]
- Ridler, T.R.; Calvard, S.C. Picture thresholding using an iterative selection method. IEEE Trans. Syst. Man Cybern. 1978, 8, 630–632. [Google Scholar]
- Gerig, G.G. Linking image-space and accumulator-space: A new approach for object recognition. In Proceedings of the 1st International Conference on Computer Vision, London, UK, 8 June 1987. [Google Scholar]
- Ballard, D.B. Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognit. 1981, 13, 111–122. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, P.M.; Chaudhuri, B.C. A survey of Hough transform. Pattern Recognit. 2015, 48, 993–1010. [Google Scholar] [CrossRef]
- Dahyot, R.D. Statistical Hough transform. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 31, 1502–1509. [Google Scholar] [CrossRef]
- Bertalmio, M.B.; Sapiro, G.S.; Caselles, V.C.; Ballester, C.B. Image inpainting. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, LA, USA, 23–28 July 2000. [Google Scholar]
- Drori, I.D.; Cohen-Or, D.C.; Yeshurun, H.Y. Fragment-based image completion. ACM SIGGRAPH 2003, 22, 303–312. [Google Scholar] [CrossRef]
- Shena, J.S.; Jina, X.J.; Zhoua, C.Z.; Wangb, C.W. Gradient based image completion by solving the Poisson equation. Comput. Graph. 2007, 31, 119–126. [Google Scholar] [CrossRef]
- Damelin, S.B.; Hoang, N. On surface completion and image inpainting by biharmonic functions: Numerical aspects. Int. J. Math. Math. Sci. 2018, 2018, 3950312. [Google Scholar] [CrossRef] [Green Version]
- Chan, T.; Shen, J. Nontexture inpainting by curvature-driven diffusions. J. Vis. Commun. Image Represent. 2001, 12, 436–449. [Google Scholar] [CrossRef]
- Wang, Z.W.; Bovik, A.B. Mean squared error: Love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag. 2009, 26, 98–117. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.W.; Bovik, A.B. A universal image quality index. IEEE Signal Process. Lett. 2002, 9, 81–84. [Google Scholar] [CrossRef]
- Schönlieb, C.S. Partial Differential Equation Methods for Image Inpainting; Cambridge University Press: Cambridge, UK, 2015; Volume 29. [Google Scholar]
- Attia, M.A.; Hossny, M.H.; Zhou, H.Z.; Yazdabadi, A.Y.; Asadi, H.A.; Nahavandi, S.N. Realistic hair simulator for skin lesion images using conditional generative adversarial network. Preprints 2018. [Google Scholar] [CrossRef]
- Hair Sim Software. Available online: https://www2.cs.sfu.ca/~hamarneh/software/hairsim/welcome.html (accessed on 21 March 2019).
- Mirzaalian, H.M.; Lee, T.; Hamarneh, G. Hair enhancement in dermoscopic images using dual-channel quaternion tubularness filters and MRF-based multilabel optimization. IEEE Trans. Image Process. 2014, 23, 5486–5496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.N.; Altalbe, A. Experimental evaluation of filters used for removing speckle noise and enhancing ultrasound image quality. Biomed. Signal Process. Control 2022, 73, 103399. [Google Scholar] [CrossRef]
- Khan, M.N.; Hasnain, S.K.; Jamil, M.; Ullah, S. Electronic Signals and Systems Analysis; River Publishers: Gistrup, Denmark, 2020. [Google Scholar]
Inpainting Technique | MSE | PSNR | SNR | SSIM | UQI | C | |
---|---|---|---|---|---|---|---|
Adaptive Median Filter | Harmonic | 112.59 | 58.6188 | 33.9071 | 0.9655 | 0.9993 | 0.9904 |
Mumford–Shah | 123.19 | 57.6181 | 32.5244 | 0.9585 | 0.9743 | 0.9902 | |
AMLE | 129.99 | 55.3174 | 31.2513 | 0.9566 | 0.9737 | 0.9897 | |
Cahn–Hilliard | 6824.3 | 31.9174 | 7.85134 | 0.7747 | 0.9275 | 0.7182 | |
Transport | 460.31 | 49.9265 | 25.8604 | 0.9233 | 0.9797 | 0.9669 | |
Median Filter (5 × 5) | Harmonic | 424.46 | 43.5902 | 19.5241 | 0.9406 | 0.9597 | 0.9872 |
Mumford–Shah | 420.44 | 43.6119 | 19.5459 | 0.9409 | 0.9997 | 0.9867 | |
AMLE | 424.40 | 43.6322 | 19.5661 | 0.9413 | 0.9998 | 0.9874 | |
Cahn–Hilliard | 25,449.2 | 24.0742 | 0.00812 | 0.6587 | 0.6069 | 0.7204 | |
Transport | 840.03 | 40.3715 | 16.3054 | 0.9116 | 0.9965 | 0.9629 | |
Median Filter (3 × 3) | Harmonic | 309.87 | 45.5699 | 21.5039 | 0.9538 | 0.9698 | 0.9888 |
Mumford–Shah | 305.09 | 45.6182 | 21.5522 | 0.9642 | 0.9997 | 0.9882 | |
AMLE | 311.93 | 45.5933 | 21.5272 | 0.9639 | 0.9997 | 0.9889 | |
Cahn–Hilliard | 25,451.2 | 24.0738 | 0.0078 | 0.6656 | 0.6065 | 0.7175 | |
Transport | 759.55 | 40.8909 | 16.8249 | 0.9287 | 0.9965 | 0.9637 |
MSE | PSNR | SNR | SSIM | UQI | C | ||
---|---|---|---|---|---|---|---|
Proposed Method | HS | 32.9812 | 66.9707 | 35.8962 | 0.9800 | 0.9980 | 0.9934 |
RH | 25.9761 | 63.3816 | 29.2967 | 0.9910 | 0.9990 | 0.9902 | |
DullRazor | HS | 194.26 | 45.6519 | 21.5865 | 0.9184 | 0.9996 | 0.9856 |
RH | 316.0367 | 43.2751 | 19.1835 | 0.8972 | 0.9968 | 0.9844 |
MSE | PSNR | SNR | SSIM | UQI | C | |
---|---|---|---|---|---|---|
Proposed method | 34.7957 | 66.9868 | 42.3960 | 0.9813 | 0.9801 | 0.9985 |
Proposed Method | Abbas | Huang | Bibiloni (9 × 9 Kernel) | Bibiloni (11 × 11 Kernel) | Toossi | Xie | ||
---|---|---|---|---|---|---|---|---|
MSE | HS | 32.9812 | 257.0073 | 87.0417 | 123.8135 | 127.9177 | 263.8542 | 47.8494 |
RH | 25.9761 | 143.4654 | 106.9602 | 100.4868 | 98.2271 | 142.2038 | 36.3482 | |
SSIM | HS | 0.9800 | 0.8898 | 0.9348 | 0.8898 | 0.8900 | 0.8751 | 0.9599 |
RH | 0.9910 | 0.9018 | 0.8862 | 0.9245 | 0.9245 | 0.8934 | 0.9531 | |
PSNR | HS | 66.9707 | 25.3906 | 40.3325 | 34.6192 | 34.1082 | 24.6888 | 53.7967 |
RH | 63.3816 | 33.0639 | 38.0847 | 39.2326 | 39.5155 | 33.1484 | 48.7572 | |
UQI | HS | 0.998 | 0.993 | 0.997 | 0.996 | 0.996 | 0.993 | 0.997 |
RH | 0.999 | 0.994 | 0.998 | 0.996 | 0.996 | 0.994 | 0.999 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashour, A.S.; El-Wahab, B.S.A.; Wahba, M.A.; Mansour, D.-E.A.; Hodeib, A.A.E.; Khedr, R.A.E.-G.; Hassan, G.F.R. Cascaded Hough Transform-Based Hair Mask Generation and Harmonic Inpainting for Automated Hair Removal from Dermoscopy Images. Diagnostics 2022, 12, 3040. https://doi.org/10.3390/diagnostics12123040
Ashour AS, El-Wahab BSA, Wahba MA, Mansour D-EA, Hodeib AAE, Khedr RAE-G, Hassan GFR. Cascaded Hough Transform-Based Hair Mask Generation and Harmonic Inpainting for Automated Hair Removal from Dermoscopy Images. Diagnostics. 2022; 12(12):3040. https://doi.org/10.3390/diagnostics12123040
Chicago/Turabian StyleAshour, Amira S., Basant S. Abd El-Wahab, Maram A. Wahba, Diaa-Eldin A. Mansour, Abeer Abd Elhakam Hodeib, Rasha Abd El-Ghany Khedr, and Ghada F. R. Hassan. 2022. "Cascaded Hough Transform-Based Hair Mask Generation and Harmonic Inpainting for Automated Hair Removal from Dermoscopy Images" Diagnostics 12, no. 12: 3040. https://doi.org/10.3390/diagnostics12123040
APA StyleAshour, A. S., El-Wahab, B. S. A., Wahba, M. A., Mansour, D.-E. A., Hodeib, A. A. E., Khedr, R. A. E.-G., & Hassan, G. F. R. (2022). Cascaded Hough Transform-Based Hair Mask Generation and Harmonic Inpainting for Automated Hair Removal from Dermoscopy Images. Diagnostics, 12(12), 3040. https://doi.org/10.3390/diagnostics12123040