Biomarkers in Pulmonary Arterial Hypertension
Abstract
:1. Introduction
2. Biomarkers Related to Heart Failure, Myocardial Stress and Injury, and Remodeling
3. Inflammation Markers
4. Endothelial Cell Dysfunction and Pulmonary Arterial Smooth Muscle Cell (PASMC) Proliferation
5. Hypoxia/Organ and Tissue Damage
6. Metabolic Biomarkers
7. Oxidative Stress Biomarkers
8. In Situ Thrombosis
9. Age and Sex Differences
10. Immune System Cells
11. Conclusions
Funding
Conflicts of Interest
References
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.F.; Brida, M.; Carlsen, J.; Coats, A.J.S.; Escribano-Subias, P.; Ferrari, P.; et al. 2022 ESC/ERS Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension. Eur. Heart J. 2022, 43, 3618–3731. [Google Scholar] [CrossRef] [PubMed]
- Pietra, G.G.; Capron, F.; Stewart, S.; Leone, O.; Humbert, M.; Robbins, I.M.; Reid, L.M.; Tuder, R.M. Pathologic Assessment of Vasculopathies in Pulmonary Hypertension. J. Am. Coll. Cardiol. 2004, 43, S25–S32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kylhammar, D.; Hesselstrand, R.; Nielsen, S.; Scheele, C.; Rådegran, G. Angiogenic and Inflammatory Biomarkers for Screening and Follow-up in Patients with Pulmonary Arterial Hypertension. Scand. J. Rheumatol. 2018, 47, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Banaszkiewicz, M.; Gąsecka, A.; Darocha, S.; Florczyk, M.; Pietrasik, A.; Kędzierski, P.; Piłka, M.; Torbicki, A.; Kurzyna, M. Circulating Blood-Based Biomarkers in Pulmonary Hypertension. JCM 2022, 11, 383. [Google Scholar] [CrossRef] [PubMed]
- Yap, L.B.; Mukerjee, D.; Timms, P.M.; Ashrafian, H.; Coghlan, J.G. Natriuretic Peptides, Respiratory Disease, and the Right Heart. Chest 2004, 126, 1330–1336. [Google Scholar] [CrossRef] [Green Version]
- Foris, V.; Kovacs, G.; Tscherner, M.; Olschewski, A.; Olschewski, H. Biomarkers in Pulmonary Hypertension. Chest 2013, 144, 274–283. [Google Scholar] [CrossRef]
- de Lemos, J.A.; McGuire, D.K.; Drazner, M.H. B-Type Natriuretic Peptide in Cardiovascular Disease. Lancet 2003, 362, 316–322. [Google Scholar] [CrossRef]
- Leuchte, H.H.; El Nounou, M.; Tuerpe, J.C.; Hartmann, B.; Baumgartner, R.A.; Vogeser, M.; Muehling, O.; Behr, J. N-Terminal Pro-Brain Natriuretic Peptide and Renal Insufficiency as Predictors of Mortality in Pulmonary Hypertension. Chest 2007, 131, 402–409. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. Corrigendum to: 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure: Developed by the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure of the European Society of Cardiology (ESC) With the Special Contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2021, 42, 4901. [Google Scholar] [CrossRef]
- Wiedemann, R.; Ghofrani, H.A.; Weissmann, N.; Schermuly, R.; Quanz, K.; Grimminger, F.; Seeger, W.; Olschewski, H. Atrial Natriuretic Peptide in Severe Primary and Nonprimary Pulmonary Hypertension. J. Am. Coll. Cardiol. 2001, 38, 1130–1136. [Google Scholar] [CrossRef]
- Nagaya, N.; Nishikimi, T.; Uematsu, M.; Satoh, T.; Kyotani, S.; Sakamaki, F.; Kakishita, M.; Fukushima, K.; Okano, Y.; Nakanishi, N.; et al. Plasma Brain Natriuretic Peptide as a Prognostic Indicator in Patients With Primary Pulmonary Hypertension. Circulation 2000, 102, 865–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warwick, G.; Thomas, P.S.; Yates, D.H. Biomarkers in Pulmonary Hypertension. Eur. Respir. J. 2008, 32, 503–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreassen, A.K.; Wergeland, R.; Simonsen, S.; Geiran, O.; Guevara, C.; Ueland, T. N-Terminal Pro-B-Type Natriuretic Peptide as an Indicator of Disease Severity in a Heterogeneous Group of Patients With Chronic Precapillary Pulmonary Hypertension. Am. J. Cardiol. 2006, 98, 525–529. [Google Scholar] [CrossRef] [PubMed]
- Chin, K.M.; Rubin, L.J.; Channick, R.; Di Scala, L.; Gaine, S.; Galiè, N.; Ghofrani, H.-A.; Hoeper, M.M.; Lang, I.M.; McLaughlin, V.V.; et al. Association of N-Terminal Pro Brain Natriuretic Peptide and Long-Term Outcome in Patients With Pulmonary Arterial Hypertension: Insights From the Phase III GRIPHON Study. Circulation 2019, 139, 2440–2450. [Google Scholar] [CrossRef] [PubMed]
- Hoeper, M.M.; Pausch, C.; Olsson, K.M.; Huscher, D.; Pittrow, D.; Grünig, E.; Staehler, G.; Vizza, C.D.; Gall, H.; Distler, O.; et al. COMPERA 2.0: A Refined Four-Stratum Risk Assessment Model for Pulmonary Arterial Hypertension. Eur. Respir. J. 2022, 60, 2102311. [Google Scholar] [CrossRef]
- Coghlan, J.G.; Denton, C.P.; Grünig, E.; Bonderman, D.; Distler, O.; Khanna, D.; Müller-Ladner, U.; Pope, J.E.; Vonk, M.C.; Doelberg, M.; et al. Evidence-Based Detection of Pulmonary Arterial Hypertension in Systemic Sclerosis: The DETECT Study. Ann. Rheum. Dis. 2014, 73, 1340–1349. [Google Scholar] [CrossRef] [Green Version]
- Torbicki, A.; Kurzyna, M.; Kuca, P.; Fijałkowska, A.; Sikora, J.; Florczyk, M.; Pruszczyk, P.; Burakowski, J.; Wawrzyńska, L. Detectable Serum Cardiac Troponin T as a Marker of Poor Prognosis Among Patients With Chronic Precapillary Pulmonary Hypertension. Circulation 2003, 108, 844–848. [Google Scholar] [CrossRef]
- Collet, J.-P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 ESC Guidelines for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation. Eur. Heart J. 2021, 42, 1289–1367. [Google Scholar] [CrossRef]
- de Lemos, J.A.; Drazner, M.H.; Omland, T.; Ayers, C.R.; Khera, A.; Rohatgi, A.; Hashim, I.; Berry, J.D.; Das, S.R.; Morrow, D.A.; et al. Association of Troponin T Detected With a Highly Sensitive Assay and Cardiac Structure and Mortality Risk in the General Population. JAMA 2010, 304, 2503. [Google Scholar] [CrossRef]
- Vélez-Martínez, M.; Ayers, C.; Mishkin, J.D.; Bartolome, S.B.; García, C.K.; Torres, F.; Drazner, M.H.; de Lemos, J.A.; Turer, A.T.; Chin, K.M. Association of Cardiac Troponin I With Disease Severity and Outcomes in Patients With Pulmonary Hypertension. Am. J. Cardiol. 2013, 111, 1812–1817. [Google Scholar] [CrossRef]
- Heresi, G.A.; Tang, W.H.W.; Aytekin, M.; Hammel, J.; Hazen, S.L.; Dweik, R.A. Sensitive Cardiac Troponin I Predicts Poor Outcomes in Pulmonary Arterial Hypertension. Eur. Respir. J. 2012, 39, 939–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filusch, A.; Giannitsis, E.; Katus, H.A.; Meyer, F.J. High-Sensitive Troponin T: A Novel Biomarker for Prognosis and Disease Severity in Patients with Pulmonary Arterial Hypertension. Clin. Sci. 2010, 119, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, E.O.; Shimpo, M.; De Keulenaer, G.W.; MacGillivray, C.; Tominaga, S.; Solomon, S.D.; Rouleau, J.-L.; Lee, R.T. Expression and Regulation of ST2, an Interleukin-1 Receptor Family Member, in Cardiomyocytes and Myocardial Infarction. Circulation 2002, 106, 2961–2966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ky, B.; French, B.; McCloskey, K.; Rame, J.E.; McIntosh, E.; Shahi, P.; Dries, D.L.; Tang, W.H.W.; Wu, A.H.B.; Fang, J.C.; et al. High-Sensitivity ST2 for Prediction of Adverse Outcomes in Chronic Heart Failure. Circ: Heart Fail. 2011, 4, 180–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascual-Figal, D.A.; Manzano-Fernández, S.; Boronat, M.; Casas, T.; Garrido, I.P.; Bonaque, J.C.; Pastor-Perez, F.; Valdés, M.; Januzzi, J.L. Soluble ST2, High-Sensitivity Troponin T- and N-Terminal pro-B-Type Natriuretic Peptide: Complementary Role for Risk Stratification in Acutely Decompensated Heart Failure. Eur. J. Heart Fail. 2011, 13, 718–725. [Google Scholar] [CrossRef] [PubMed]
- Felker, G.M.; Fiuzat, M.; Thompson, V.; Shaw, L.K.; Neely, M.L.; Adams, K.F.; Whellan, D.J.; Donahue, M.P.; Ahmad, T.; Kitzman, D.W.; et al. Soluble ST2 in Ambulatory Patients With Heart Failure: Association With Functional Capacity and Long-Term Outcomes. Circ: Heart Fail. 2013, 6, 1172–1179. [Google Scholar] [CrossRef] [Green Version]
- Lassus, J.; Gayat, E.; Mueller, C.; Peacock, W.F.; Spinar, J.; Harjola, V.-P.; van Kimmenade, R.; Pathak, A.; Mueller, T.; diSomma, S.; et al. Incremental Value of Biomarkers to Clinical Variables for Mortality Prediction in Acutely Decompensated Heart Failure: The Multinational Observational Cohort on Acute Heart Failure (MOCA) Study. Int. J. Cardiol. 2013, 168, 2186–2194. [Google Scholar] [CrossRef] [PubMed]
- Carlomagno, G.; Messalli, G.; Melillo, R.M.; Stanziola, A.A.; Visciano, C.; Mercurio, V.; Imbriaco, M.; Ghio, S.; Sofia, M.; Bonaduce, D.; et al. Serum Soluble ST2 and Interleukin-33 Levels in Patients with Pulmonary Arterial Hypertension. Int. J. Cardiol. 2013, 168, 1545–1547. [Google Scholar] [CrossRef]
- Geenen, L.W.; Baggen, V.J.M.; Kauling, R.M.; Koudstaal, T.; Boomars, K.A.; Boersma, E.; Roos-Hesselink, J.W.; van den Bosch, A.E. The Prognostic Value of Soluble ST2 in Adults with Pulmonary Hypertension. JCM 2019, 8, 1517. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.-G.; Yang, T.; He, J.-G.; Chen, G.; Liu, Z.-H.; Xiong, C.-M.; Gu, Q.; Ni, X.-H.; Zhao, Z.-H. Plasma Soluble ST2 Levels Correlate With Disease Severity and Predict Clinical Worsening in Patients With Pulmonary Arterial Hypertension: Soluble ST2 Levels in PAH. Clin. Cardiol. 2014, 37, 365–370. [Google Scholar] [CrossRef]
- Banaszkiewicz, M.; Pietrasik, A.; Florczyk, M.; Kędzierski, P.; Piłka, M.; Mańczak, R.; Kochman, J.; Opolski, G.; Torbicki, A.; Kurzyna, M.; et al. Soluble ST2 as a Biomarker for Early Complications in Patients with Chronic Thromboembolic Pulmonary Hypertension Treated with Balloon Pulmonary Angioplasty. Diagnostics 2021, 11, 133. [Google Scholar] [CrossRef] [PubMed]
- Kriechbaum, S.D.; Wiedenroth, C.B.; Peters, K.; Barde, M.A.; Ajnwojner, R.; Wolter, J.-S.; Haas, M.; Roller, F.C.; Guth, S.; Rieth, A.J.; et al. Galectin-3, GDF-15, and SST2 for the Assessment of Disease Severity and Therapy Response in Patients Suffering from Inoperable Chronic Thromboembolic Pulmonary Hypertension. Biomarkers 2020, 25, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Angelidis, C.; Deftereos, S.; Giannopoulos, G.; Anatoliotakis, N.; Bouras, G.; Hatzis, G.; Panagopoulou, V.; Pyrgakis, V.; Cleman, M.W. Cystatin C: An Emerging Biomarker in Cardiovascular Disease. CTMC 2013, 13, 164–179. [Google Scholar] [CrossRef] [PubMed]
- Coll, E.; Botey, A.; Alvarez, L.; Poch, E.; Quintó, L.; Saurina, A.; Vera, M.; Piera, C.; Darnell, A. Serum Cystatin C as a New Marker for Noninvasive Estimation of Glomerular Filtration Rate and as a Marker for Early Renal Impairment. Am. J. Kidney Dis. 2000, 36, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.H.W.; Van Lente, F.; Shrestha, K.; Troughton, R.W.; Francis, G.S.; Tong, W.; Martin, M.G.; Borowski, A.G.; Jasper, S.; Starling, R.C.; et al. Impact of Myocardial Function on Cystatin C Measurements in Chronic Systolic Heart Failure. J. Card. Fail. 2008, 14, 394–399. [Google Scholar] [CrossRef]
- Fenster, B.E.; Lasalvia, L.; Schroeder, J.D.; Smyser, J.; Silveira, L.J.; Buckner, J.K.; Brown, K.K. Cystatin C: A Potential Biomarker for Pulmonary Arterial Hypertension: Cystatin C for Pulmonary Hypertension. Respirology 2014, 19, 583–589. [Google Scholar] [CrossRef]
- Blok, I.M.; van Riel, A.C.M.J.; Schuuring, M.J.; de Bruin-Bon, R.H.A.C.M.; van Dijk, A.P.J.; Hoendermis, E.S.; Zwinderman, A.H.; Mulder, B.J.M.; Bouma, B.J. The Role of Cystatin C as a Biomarker for Prognosis in Pulmonary Arterial Hypertension Due to Congenital Heart Disease. Int. J. Cardiol. 2016, 209, 242–247. [Google Scholar] [CrossRef] [Green Version]
- Sanli, C.; Oguz, D.; Olgunturk, R.; Tunaoglu, F.S.; Kula, S.; Pasaoglu, H.; Gulbahar, O.; Cevik, A. Elevated Homocysteine and Asymmetric Dimethyl Arginine Levels in Pulmonary Hypertension Associated With Congenital Heart Disease. Pediatr. Cardiol. 2012, 33, 1323–1331. [Google Scholar] [CrossRef]
- Arroliga, A.C.; Sandur, S.; Jacobsen, D.W.; Tewari, S.; Mustafa, M.; Mascha, E.J.; Robinson, K. Association between Hyperhomocysteinemia and Primary Pulmonary Hypertension. Respir. Med. 2003, 97, 825–829. [Google Scholar] [CrossRef] [Green Version]
- Anwar, A.; Ruffenach, G.; Mahajan, A.; Eghbali, M.; Umar, S. Novel Biomarkers for Pulmonary Arterial Hypertension. Respir. Res. 2016, 17, 88. [Google Scholar] [CrossRef]
- Quarck, R.; Nawrot, T.; Meyns, B.; Delcroix, M. C-Reactive Protein. J. Am. Coll. Cardiol. 2009, 53, 1211–1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scognamiglio, G.; Kempny, A.; Price, L.C.; Alonso-Gonzalez, R.; Marino, P.; Swan, L.; D’ Alto, M.; Hooper, J.; Gatzoulis, M.A.; Dimopoulos, K.; et al. C-Reactive Protein in Adults with Pulmonary Arterial Hypertension Associated with Congenital Heart Disease and Its Prognostic Value. Heart 2014, 100, 1335–1341. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Targher, G.; Montagnana, M.; Salvagno, G.L.; Zoppini, G.; Guidi, G.C. Relation Between Red Blood Cell Distribution Width and Inflammatory Biomarkers in a Large Cohort of Unselected Outpatients. Arch. Pathol. Lab. Med. 2009, 133, 628–632. [Google Scholar] [CrossRef] [PubMed]
- Osadnik, T.; Strzelczyk, J.; Hawranek, M.; Lekston, A.; Wasilewski, J.; Kurek, A.; Gutowski, A.R.; Wilczek, K.; Dyrbuś, K.; Gierlotka, M.; et al. Red Cell Distribution Width Is Associated with Long-Term Prognosis in Patients with Stable Coronary Artery Disease. BMC Cardiovasc. Disord. 2013, 13, 113. [Google Scholar] [CrossRef] [Green Version]
- Zorlu, A.; Bektasoglu, G.; Kukul Guven, F.M.; Dogan, O.T.; Gucuk, E.; Refiker Ege, M.; Altay, H.; Cınar, Z.; Tandogan, I.; Yilmaz, M.B. Usefulness of Admission Red Cell Distribution Width as a Predictor of Early Mortality in Patients With Acute Pulmonary Embolism. Am. J. Cardiol. 2012, 109, 128–134. [Google Scholar] [CrossRef]
- Felker, G.M.; Allen, L.A.; Pocock, S.J.; Shaw, L.K.; McMurray, J.J.V.; Pfeffer, M.A.; Swedberg, K.; Wang, D.; Yusuf, S.; Michelson, E.L.; et al. Red Cell Distribution Width as a Novel Prognostic Marker in Heart Failure. J. Am. Coll. Cardiol. 2007, 50, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, C.J.; Wharton, J.; Howard, L.S.; Gibbs, J.S.R.; Wilkins, M.R. Red Cell Distribution Width Outperforms Other Potential Circulating Biomarkers in Predicting Survival in Idiopathic Pulmonary Arterial Hypertension. Heart 2011, 97, 1054–1060. [Google Scholar] [CrossRef]
- Smukowska-Gorynia, A.; Tomaszewska, I.; Malaczynska-Rajpold, K.; Marcinkowska, J.; Komosa, A.; Janus, M.; Olasinska-Wisniewska, A.; Slawek, S.; Araszkiewicz, A.; Jankiewicz, S.; et al. Red Blood Cells Distribution Width as a Potential Prognostic Biomarker in Patients With Pulmonary Arterial Hypertension and Chronic Thromboembolic Pulmonary Hypertension. Heart Lung Circ. 2018, 27, 842–848. [Google Scholar] [CrossRef]
- Wollert, K.C.; Kempf, T.; Wallentin, L. Growth Differentiation Factor 15 as a Biomarker in Cardiovascular Disease. Clin. Chem. 2017, 63, 140–151. [Google Scholar] [CrossRef] [Green Version]
- Nickel, N.; Kempf, T.; Tapken, H.; Tongers, J.; Laenger, F.; Lehmann, U.; Golpon, H.; Olsson, K.; Wilkins, M.R.; Gibbs, J.S.R.; et al. Growth Differentiation Factor-15 in Idiopathic Pulmonary Arterial Hypertension. Am. J. Respir. Crit. Care Med. 2008, 178, 534–541. [Google Scholar] [CrossRef]
- Meadows, C.A.; Risbano, M.G.; Zhang, L.; Geraci, M.W.; Tuder, R.M.; Collier, D.H.; Bull, T.M. Increased Expression of Growth Differentiation Factor-15 in Systemic Sclerosis-Associated Pulmonary Arterial Hypertension. Chest 2011, 139, 994–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meijers, W.C.; van der Velde, A.R.; Pascual-Figal, D.A.; de Boer, R.A. Galectin-3 and Post-Myocardial Infarction Cardiac Remodeling. Eur. J. Pharmacol. 2015, 763, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Edelmann, F.; Holzendorf, V.; Wachter, R.; Nolte, K.; Schmidt, A.G.; Kraigher-Krainer, E.; Duvinage, A.; Unkelbach, I.; Düngen, H.; Tschöpe, C.; et al. Galectin-3 in Patients with Heart Failure with Preserved Ejection Fraction: Results from the Aldo- DHF Trial. Eur. J. Heart Fail. 2015, 17, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e895–e1032. [Google Scholar] [CrossRef]
- Calvier, L.; Legchenko, E.; Grimm, L.; Sallmon, H.; Hatch, A.; Plouffe, B.D.; Schroeder, C.; Bauersachs, J.; Murthy, S.K.; Hansmann, G. Galectin-3 and Aldosterone as Potential Tandem Biomarkers in Pulmonary Arterial Hypertension. Heart 2016, 102, 390–396. [Google Scholar] [CrossRef] [Green Version]
- Fenster, B.E.; Lasalvia, L.; Schroeder, J.D.; Smyser, J.; Silveira, L.J.; Buckner, J.K.; Brown, K.K. Galectin-3 Levels Are Associated with Right Ventricular Functional and Morphologic Changes in Pulmonary Arterial Hypertension. Heart Vessel. 2016, 31, 939–946. [Google Scholar] [CrossRef]
- Soon, E.; Holmes, A.M.; Treacy, C.M.; Doughty, N.J.; Southgate, L.; Machado, R.D.; Trembath, R.C.; Jennings, S.; Barker, L.; Nicklin, P.; et al. Elevated Levels of Inflammatory Cytokines Predict Survival in Idiopathic and Familial Pulmonary Arterial Hypertension. Circulation 2010, 122, 920–927. [Google Scholar] [CrossRef] [Green Version]
- Selimovic, N.; Bergh, C.-H.; Andersson, B.; Sakiniene, E.; Carlsten, H.; Rundqvist, B. Growth Factors and Interleukin-6 across the Lung Circulation in Pulmonary Hypertension. Eur. Respir. J. 2009, 34, 662–668. [Google Scholar] [CrossRef] [Green Version]
- Lorenzen, J.M.; Nickel, N.; Krämer, R.; Golpon, H.; Westerkamp, V.; Olsson, K.M.; Haller, H.; Hoeper, M.M. Osteopontin in Patients With Idiopathic Pulmonary Hypertension. Chest 2011, 139, 1010–1017. [Google Scholar] [CrossRef]
- Rosenberg, M.; Meyer, F.J.; Gruenig, E.; Lutz, M.; Lossnitzer, D.; Wipplinger, R.; Katus, H.A.; Frey, N. Osteopontin Predicts Adverse Right Ventricular Remodelling and Dysfunction in Pulmonary Hypertension: OPN PREDICTS RV REMODELING AND FAILURE IN PH. Eur. J. Clin. Investig. 2012, 42, 933–942. [Google Scholar] [CrossRef]
- Akın, A.; Alehan, D.; Aykan, H.H.; Özkutlu, S.; Özer, S.; Karagöz, T. Serum Bcl-2 Values in Children with Pulmonary Hypertension. Pediatr. Cardiol. 2015, 36, 579–583. [Google Scholar] [CrossRef] [PubMed]
- Yıldız, A.; Kaya, H.; Ertaş, F.; Oylumlu, M.; Bilik, M.Z.; Yüksel, M.; Polat, N.; Akil, M.A.; Atılgan, Z.; Ulgen, M.S. Association between Neutrophil to Lymphocyte Ratio and Pulmonary Arterial Hypertension. Turk. Kardiyol. Dern. Ars. 2013, 41, 604–609. [Google Scholar] [CrossRef] [PubMed]
- Özpelit, E.; Akdeniz, B.; Özpelit, M.E.; Tas, S.; Bozkurt, S.; Tertemiz, K.C.; Sevinç, C.; Badak, Ö. Prognostic Value of Neutrophil-to-Lymphocyte Ratio in Pulmonary Arterial Hypertension. J. Int. Med. Res. 2015, 43, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Foris, V.; Kovacs, G.; Douschan, P.; Avian, A.; Olschewski, A.; Olschewski, H. Neutrophil- to-Lymphocyte Ratio as a Prognostic Parameter in Pulmonary Arterial Hypertension. In Proceedings of the 4.3 Pulmonary Circulation and Pulmonary Vascular Diseases; European Respiratory Society: London, UK, 3 September 2016; p. PA2479. [Google Scholar]
- Jutras-Beaudoin, N.; Toro, V.; Lajoie, A.C.; Breuils-Bonnet, S.; Paulin, R.; Potus, F. Neutrophil-Lymphocyte Ratio as an Independent Predictor of Survival in Pulmonary Arterial Hypertension: An Exploratory Study. CJC Open 2022, 4, 357–363. [Google Scholar] [CrossRef]
- Le Hiress, M.; Tu, L.; Ricard, N.; Phan, C.; Thuillet, R.; Fadel, E.; Dorfmüller, P.; Montani, D.; de Man, F.; Humbert, M.; et al. Proinflammatory Signature of the Dysfunctional Endothelium in Pulmonary Hypertension. Role of the Macrophage Migration Inhibitory Factor/CD74 Complex. Am. J. Respir. Crit. Care Med. 2015, 192, 983–997. [Google Scholar] [CrossRef]
- Stefanantoni, K.; Sciarra, I.; Vasile, M.; Badagliacca, R.; Poscia, R.; Pendolino, M.; Alessandri, C.; Vizza, C.D.; Valesini, G.; Riccieri, V. Elevated Serum Levels of Macrophage Migration Inhibitory Factor and Stem Cell Growth Factor β in Patients with Idiopathic and Systemic Sclerosis Associated Pulmonary Arterial Hypertension. Reumatismo 2015, 66, 270–276. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, G.; Wirleitner, B.; Fuchs, D. Potential Role of Immune System Activation-Associated Production of Neopterin Derivatives in Humans. Inflamm. Res. 2003, 52, 313–321. [Google Scholar] [CrossRef]
- Yamamoto, E.; Hirata, Y.; Tokitsu, T.; Kusaka, H.; Tabata, N.; Tsujita, K.; Yamamuro, M.; Kaikita, K.; Watanabe, H.; Hokimoto, S.; et al. The Clinical Significance of Plasma Neopterin in Heart Failure with Preserved Left Ventricular Ejection Fraction. ESC Heart Fail. 2016, 3, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Kakishita, M.; Nishikimi, T.; Okano, Y.; Satoh, T.; Kyotani, S.; Nagaya, N.; Fukushima, K.; Nakanishi, N.; Takishita, S.; Miyata, A.; et al. Increased Plasma Levels of Adrenomedullin in Patients with Pulmonary Hypertension. Clin. Sci. 1999, 96, 33. [Google Scholar] [CrossRef]
- Murakami, S.; Kimura, H.; Kangawa, K.; Nagaya, N. Physiological Significance and Therapeutic Potential of Adrenomedullin in Pulmonary Hypertension. CHDDT 2006, 6, 123–130. [Google Scholar] [CrossRef]
- Nagaya, N. Haemodynamic and Hormonal Effects of Adrenomedullin in Patients with Pulmonary Hypertension. Heart 2000, 84, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yang, T.; Xu, X.; Wang, M.; Zhong, L.; Yang, Y.; Zhai, Z.; Xiao, F.; Wang, C. Oxidative Stress and Nitric Oxide Signaling Related Biomarkers in Patients with Pulmonary Hypertension: A Case Control Study. BMC Pulm. Med. 2015, 15, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gąsecka, A.; Szwed, P.; Jasińska, K.; Fidali, O.; Kłębukowska, A.; Eyileten, C.; Postula, M.; Szarpak, Ł.; Mazurek, T.; Opolski, G.; et al. Symmetric Dimethylarginine Is Altered in Patients After Myocardial Infarction and Predicts Adverse Outcomes. JIR 2021, 14, 3797–3808. [Google Scholar] [CrossRef] [PubMed]
- Kielstein, J.T.; Bode-Böger, S.M.; Hesse, G.; Martens-Lobenhoffer, J.; Takacs, A.; Fliser, D.; Hoeper, M.M. Asymmetrical Dimethylarginine in Idiopathic Pulmonary Arterial Hypertension. ATVB 2005, 25, 1414–1418. [Google Scholar] [CrossRef] [Green Version]
- Voelkel, N.F.; Gomez-Arroyo, J. The Role of Vascular Endothelial Growth Factor in Pulmonary Arterial Hypertension. The Angiogenesis Paradox. Am. J. Respir. Cell Mol. Biol. 2014, 51, 474–484. [Google Scholar] [CrossRef]
- Sundaram, N.; Tailor, A.; Mendelsohn, L.; Wansapura, J.; Wang, X.; Higashimoto, T.; Pauciulo, M.W.; Gottliebson, W.; Kalra, V.K.; Nichols, W.C.; et al. High Levels of Placenta Growth Factor in Sickle Cell Disease Promote Pulmonary Hypertension. Blood 2010, 116, 109–112. [Google Scholar] [CrossRef]
- Malhotra, R.; Paskin-Flerlage, S.; Zamanian, R.T.; Zimmerman, P.; Schmidt, J.W.; Deng, D.Y.; Southwood, M.; Spencer, R.; Lai, C.S.; Parker, W.; et al. Circulating Angiogenic Modulatory Factors Predict Survival and Functional Class in Pulmonary Arterial Hypertension. Pulm. Circ. 2013, 3, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Tiede, S.L.; Gall, H.; Dörr, O.; Guilherme, M.; dos Santos Guilherme, M.; Troidl, C.; Liebetrau, C.; Voss, S.; Voswinckel, R.; Schermuly, R.T.; et al. New Potential Diagnostic Biomarkers for Pulmonary Hypertension. Eur. Respir. J. 2015, 46, 1390–1396. [Google Scholar] [CrossRef] [Green Version]
- McMahan, Z.; Schoenhoff, F.; Van Eyk, J.E.; Wigley, F.M.; Hummers, L.K. Biomarkers of Pulmonary Hypertension in Patients with Scleroderma: A Case–Control Study. Arthritis. Res. 2015, 17, 201. [Google Scholar] [CrossRef] [Green Version]
- Maron, B.A.; Opotowsky, A.R.; Landzberg, M.J.; Loscalzo, J.; Waxman, A.B.; Leopold, J.A. Plasma Aldosterone Levels Are Elevated in Patients with Pulmonary Arterial Hypertension in the Absence of Left Ventricular Heart Failure: A Pilot Study. Eur. J. Heart Fail. 2013, 15, 277–283. [Google Scholar] [CrossRef]
- Wang, Y.; Zhong, B.; Wu, Q.; Zhu, T.; Wang, Y.; Zhang, M. Aldosterone Contributed to Pulmonary Arterial Hypertension Development via Stimulating Aquaporin Expression and Pulmonary Arterial Smooth Muscle Cells Proliferation. Pharmacology 2020, 105, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Maron, B.A.; Zhang, Y.-Y.; White, K.; Chan, S.Y.; Handy, D.E.; Mahoney, C.E.; Loscalzo, J.; Leopold, J.A. Aldosterone Inactivates the Endothelin-B Receptor via a Cysteinyl Thiol Redox Switch to Decrease Pulmonary Endothelial Nitric Oxide Levels and Modulate Pulmonary Arterial Hypertension. Circulation 2012, 126, 963–974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubens, C.; Ewert, R.; Halank, M.; Wensel, R.; Orzechowski, H.-D.; Schultheiss, H.-P.; Hoeffken, G. Big Endothelin-1 and Endothelin-1 Plasma Levels Are Correlated With the Severity of Primary Pulmonary Hypertension. Chest 2001, 120, 1562–1569. [Google Scholar] [CrossRef] [PubMed]
- Vizza, C.D.; Letizia, C.; Petramala, L.; Badagliacca, R.; Poscia, R.; Zepponi, E.; Crescenzi, E.; Nona, A.; Benedetti, G.; Ferrante, F.; et al. Venous Endotelin-1 (ET-1) and Brain Natriuretic Peptide (BNP) Plasma Levels during 6-Month Bosentan Treatment for Pulmonary Arterial Hypertension. Regul. Pept. 2008, 151, 48–53. [Google Scholar] [CrossRef]
- Silva Marques, J.; Martins, S.R.; Calisto, C.; Gonçalves, S.; Almeida, A.G.; de Sousa, J.C.; Pinto, F.J.; Diogo, A.N. An Exploratory Panel of Biomarkers for Risk Prediction in Pulmonary Hypertension: Emerging Role of CT-ProET-1. J. Heart Lung Transplant. 2013, 32, 1214–1221. [Google Scholar] [CrossRef]
- Kümpers, P.; Nickel, N.; Lukasz, A.; Golpon, H.; Westerkamp, V.; Olsson, K.M.; Jonigk, D.; Maegel, L.; Bockmeyer, C.L.; David, S.; et al. Circulating Angiopoietins in Idiopathic Pulmonary Arterial Hypertension. Eur. Heart J. 2010, 31, 2291–2300. [Google Scholar] [CrossRef]
- Richter, M.J.; Schermuly, R.; Seeger, W.; Rao, Y.; Ghofrani, H.A.; Gall, H. Relevance of Angiopoietin-2 and Soluble P-Selectin Levels in Patients with Pulmonary Arterial Hypertension Receiving Combination Therapy with Oral Treprostinil: A FREEDOM-C2 Biomarker Substudy. Pulm. Circ. 2016, 6, 516–523. [Google Scholar] [CrossRef] [Green Version]
- Enomoto, N.; Suzuki, S.; Hozumi, H.; Karayama, M.; Suzuki, Y.; Furuhashi, K.; Fujisawa, T.; Nakamura, Y.; Odagiri, K.; Ishikawa, T.; et al. Diagnostic and Prognostic Significance of Serum Angiopoietin-1 and -2 Concentrations in Patients with Pulmonary Hypertension. Sci. Rep. 2021, 11, 15502. [Google Scholar] [CrossRef]
- Rhodes, C.J.; Im, H.; Cao, A.; Hennigs, J.K.; Wang, L.; Sa, S.; Chen, P.-I.; Nickel, N.P.; Miyagawa, K.; Hopper, R.K.; et al. RNA Sequencing Analysis Detection of a Novel Pathway of Endothelial Dysfunction in Pulmonary Arterial Hypertension. Am. J. Respir. Crit. Care Med. 2015, 192, 356–366. [Google Scholar] [CrossRef] [Green Version]
- Sarrion, I.; Milian, L.; Juan, G.; Ramon, M.; Furest, I.; Carda, C.; Cortijo Gimeno, J.; Mata Roig, M. Role of Circulating MiRNAs as Biomarkers in Idiopathic Pulmonary Arterial Hypertension: Possible Relevance of MiR-23a. Oxidative Med. Cell. Longev. 2015, 2015, 792846. [Google Scholar] [CrossRef]
- Wei, C.; Henderson, H.; Spradley, C.; Li, L.; Kim, I.-K.; Kumar, S.; Hong, N.; Arroliga, A.C.; Gupta, S. Circulating MiRNAs as Potential Marker for Pulmonary Hypertension. PLoS ONE 2013, 8, e64396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caruso, P.; Dempsie, Y.; Stevens, H.C.; McDonald, R.A.; Long, L.; Lu, R.; White, K.; Mair, K.M.; McClure, J.D.; Southwood, M.; et al. A Role for MiR-145 in Pulmonary Arterial Hypertension: Evidence From Mouse Models and Patient Samples. Circ. Res. 2012, 111, 290–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, L.; Qiu, Z.; Wei, L.; Yu, X.; Gao, X.; Jiang, S.; Tian, H.; Jiang, C.; Zhu, D. The MicroRNA-328 Regulates Hypoxic Pulmonary Hypertension by Targeting at Insulin Growth Factor 1 Receptor and L-Type Calcium Channel-Α1C. Hypertension 2012, 59, 1006–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodor, J.; Chen, S.H.; Scanlon, J.P.; Monteiro, J.P.; Caudrillier, A.; Sweta, S.; Stewart, K.R.; Shmakova, A.; Dobie, R.; Henderson, B.E.P.; et al. Single-Cell RNA Sequencing Profiling of Mouse Endothelial Cells in Response to Pulmonary Arterial Hypertension. Cardiovasc. Res. 2022, 118, 2519–2534. [Google Scholar] [CrossRef]
- Hoeper, M.M.; Pletz, M.W.; Golpon, H.; Welte, T. Prognostic Value of Blood Gas Analyses in Patients with Idiopathic Pulmonary Arterial Hypertension. Eur. Respir. J. 2007, 29, 944–950. [Google Scholar] [CrossRef] [Green Version]
- Harbaum, L.; Fuge, J.; Kamp, J.C.; Hennigs, J.K.; Simon, M.; Sinning, C.; Oqueka, T.; Grimminger, J.; Olsson, K.M.; Hoeper, M.M.; et al. Blood Carbon Dioxide Tension and Risk in Pulmonary Arterial Hypertension. Int. J. Cardiol. 2020, 318, 131–137. [Google Scholar] [CrossRef]
- Hoeper, M.M.; Hohlfeld, J.M.; Fabel, H. Hyperuricaemia in Patients with Right or Left Heart Failure. Eur. Respir. J. 1999, 13, 682–685. [Google Scholar] [CrossRef] [Green Version]
- Nagaya, N.; Uematsu, M.; Satoh, T.; Kyotani, S.; Sakamaki, F.; Nakanishi, N.; Yamagishi, M.; Kunieda, T.; Miyatake, K. Serum Uric Acid Levels Correlate with the Severity and the Mortality of Primary Pulmonary Hypertension. Am. J. Respir. Crit. Care Med. 1999, 160, 487–492. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Li, X.; Huang, Y.; Sun, X.; Wang, Q.; Zhang, M. Serum Uric Acid Is Associated with Disease Severity and May Predict Clinical Outcome in Patients of Pulmonary Arterial Hypertension Secondary to Connective Tissue Disease in Chinese: A Single-Center Retrospective Study. BMC Pulm. Med. 2020, 20, 272. [Google Scholar] [CrossRef]
- Van Albada, M.E.; Loot, F.G.; Fokkema, R.; Roofthooft, M.T.R.; Berger, R.M.F. Biological Serum Markers in the Management of Pediatric Pulmonary Arterial Hypertension. Pediatr. Res. 2008, 63, 321–327. [Google Scholar] [CrossRef]
- Nickel, N.P.; Lichtinghagen, R.; Golpon, H.; Olsson, K.M.; Brand, K.; Welte, T.; Hoeper, M.M. Circulating Levels of Copeptin Predict Outcome in Patients with Pulmonary Arterial Hypertension. Respir. Res. 2013, 14, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alehagen, U. Association of Copeptin and N-Terminal ProBNP Concentrations With Risk of Cardiovascular Death in Older Patients With Symptoms of Heart Failure. JAMA 2011, 305, 2088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaheen, R.; El Amrousy, D.; Hodeib, H.; Elnemr, S. Plasma Copeptin Levels in Children with Pulmonary Arterial Hypertension Associated with Congenital Heart Disease. Eur. J. Pediatr. 2021, 180, 2889–2895. [Google Scholar] [CrossRef] [PubMed]
- Mielniczuk, L.M.; Chandy, G.; Stewart, D.; Contreras-Dominguez, V.; Haddad, H.; Pugliese, C.; Davies, R.A. Worsening Renal Function and Prognosis in Pulmonary Hypertension Patients Hospitalized for Right Heart Failure: Pulmonary Hypertension and Cardiorenal Syndrome. Congest. Heart Fail. 2012, 18, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Takeda, Y.; Takeda, Y.; Tomimoto, S.; Tani, T.; Narita, H.; Kimura, G. Bilirubin as a Prognostic Marker in Patients with Pulmonary Arterial Hypertension. BMC Pulm. Med. 2010, 10, 22. [Google Scholar] [CrossRef] [Green Version]
- Tokudome, T.; Kangawa, K. Physiological Significance of Ghrelin in the Cardiovascular System. Proc. Jpn. Acad. Ser. B 2019, 95, 459–467. [Google Scholar] [CrossRef] [Green Version]
- Müller, T.D.; Nogueiras, R.; Andermann, M.L.; Andrews, Z.B.; Anker, S.D.; Argente, J.; Batterham, R.L.; Benoit, S.C.; Bowers, C.Y.; Broglio, F.; et al. Ghrelin. Mol. Metab. 2015, 4, 437–460. [Google Scholar] [CrossRef]
- Nagaya, N.; Uematsu, M.; Kojima, M.; Ikeda, Y.; Yoshihara, F.; Shimizu, W.; Hosoda, H.; Hirota, Y.; Ishida, H.; Mori, H.; et al. Chronic Administration of Ghrelin Improves Left Ventricular Dysfunction and Attenuates Development of Cardiac Cachexia in Rats With Heart Failure. Circulation 2001, 104, 1430–1435. [Google Scholar] [CrossRef] [Green Version]
- Schwenke, D.O.; Tokudome, T.; Shirai, M.; Hosoda, H.; Horio, T.; Kishimoto, I.; Kangawa, K. Exogenous Ghrelin Attenuates the Progression of Chronic Hypoxia-Induced Pulmonary Hypertension in Conscious Rats. Endocrinology 2008, 149, 237–244. [Google Scholar] [CrossRef]
- Schwenke, D.O.; Tokudome, T.; Kishimoto, I.; Horio, T.; Cragg, P.A.; Shirai, M.; Kangawa, K. One Dose of Ghrelin Prevents the Acute and Sustained Increase in Cardiac Sympathetic Tone after Myocardial Infarction. Endocrinology 2012, 153, 2436–2443. [Google Scholar] [CrossRef]
- Yang, D.; Liu, Z.; Yang, Z. Ghrelin and Its Relation with N-Terminal Brain Natriuretic Peptide, Endothelin-1 and Nitric Oxide in Patients with Idiopathic Pulmonary Hypertension. Cardiology 2013, 124, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Yanagisawa, R.; Kataoka, M.; Inami, T.; Momose, Y.; Kawakami, T.; Takei, M.; Kimura, M.; Isobe, S.; Yamakado, M.; Fukuda, K.; et al. Usefulness of Circulating Amino Acid Profile and Fischer Ratio to Predict Severity of Pulmonary Hypertension. Am. J. Cardiol. 2015, 115, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Kannel, W.B. Risk Factors in Coronary Heart Disease: An Evaluation of Several Serum Lipids as Predictors of Coronary Heart Disease: The Framingham Study. Ann. Intern. Med. 1964, 61, 888. [Google Scholar] [CrossRef] [PubMed]
- Toth, P.P.; Barter, P.J.; Rosenson, R.S.; Boden, W.E.; Chapman, M.J.; Cuchel, M.; D’Agostino, R.B.; Davidson, M.H.; Davidson, W.S.; Heinecke, J.W.; et al. High-Density Lipoproteins: A Consensus Statement from the National Lipid Association. J. Clin. Lipidol. 2013, 7, 484–525. [Google Scholar] [CrossRef]
- Jonas, K.; Kopeć, G. HDL Cholesterol as a Marker of Disease Severity and Prognosis in Patients with Pulmonary Arterial Hypertension. IJMS 2019, 20, 3514. [Google Scholar] [CrossRef] [Green Version]
- Heresi, G.A.; Aytekin, M.; Newman, J.; DiDonato, J.; Dweik, R.A. Plasma Levels of High-Density Lipoprotein Cholesterol and Outcomes in Pulmonary Arterial Hypertension. Am. J. Respir. Crit. Care Med. 2010, 182, 661–668. [Google Scholar] [CrossRef] [Green Version]
- Larsen, C.M.; McCully, R.B.; Murphy, J.G.; Kushwaha, S.S.; Frantz, R.P.; Kane, G.C. Usefulness of High-Density Lipoprotein Cholesterol to Predict Survival in Pulmonary Arterial Hypertension. Am. J. Cardiol. 2016, 118, 292–297. [Google Scholar] [CrossRef]
- Zhao, Q.-H.; Peng, F.-H.; Wei, H.; He, J.; Chen, F.-D.; Di, R.-M.; Jiang, X.; Jiang, R.; Chen, Y.-J.; Heresi, G.A.; et al. Serum High-Density Lipoprotein Cholesterol Levels as a Prognostic Indicator in Patients With Idiopathic Pulmonary Arterial Hypertension. Am. J. Cardiol. 2012, 110, 433–439. [Google Scholar] [CrossRef]
- Chen, J.; Rathinasabapathy, A.; Luo, J.; Yang, X.; Luo, P.; Chen, Y.; Li, Z.; Li, J. Differential Serum Lipid Distribution in IPAH and CHD-PAH Patients. Respir. Med. 2022, 191, 106711. [Google Scholar] [CrossRef]
- Tresaco, B.; Moreno, L.A.; Ruiz, J.R.; Ortega, F.B.; Bueno, G.; González-Gross, M.; Wärnberg, J.; Gutiérrez, A.; García-Fuentes, M.; Marcos, A.; et al. Truncal and Abdominal Fat as Determinants of High Triglycerides and Low HDL-Cholesterol in Adolescents. Obesity 2009, 17, 1086–1091. [Google Scholar] [CrossRef]
- Zavaroni, I.; Bonora, E.; Pagliara, M.; Dall’Aglio, E.; Luchetti, L.; Buonanno, G.; Bonati, P.A.; Bergonzani, M.; Gnudi, L.; Passeri, M.; et al. Risk Factors for Coronary Artery Disease in Healthy Persons with Hyperinsulinemia and Normal Glucose Tolerance. N. Engl. J. Med. 1989, 320, 702–706. [Google Scholar] [CrossRef] [PubMed]
- Sultani, R.; Tong, D.C.; Peverelle, M.; Lee, Y.S.; Baradi, A.; Wilson, A.M. Elevated Triglycerides to High-Density Lipoprotein Cholesterol (TG/HDL-C) Ratio Predicts Long-Term Mortality in High-Risk Patients. Heart Lung Circ. 2020, 29, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-J.; Lin, J.-L.; Peng, Y.-C.; Li, S.-L.; Chen, L.-W. TG/HDL-C Ratio Predicts in-Hospital Mortality in Patients with Acute Type A Aortic Dissection. BMC Cardiovasc. Disord. 2022, 22, 346. [Google Scholar] [CrossRef] [PubMed]
- Jonas, K.; Magoń, W.; Podolec, P.; Kopeć, G. Triglyceride-to-High-Density Lipoprotein Cholesterol Ratio and Systemic Inflammation in Patients with Idiopathic Pulmonary Arterial Hypertension. Med. Sci. Monit. 2019, 25, 746–753. [Google Scholar] [CrossRef]
- Kopeć, G.; Waligóra, M.; Tyrka, A.; Jonas, K.; Pencina, M.J.; Zdrojewski, T.; Moertl, D.; Stokwiszewski, J.; Zagożdżon, P.; Podolec, P. Low-Density Lipoprotein Cholesterol and Survival in Pulmonary Arterial Hypertension. Sci. Rep. 2017, 7, 41650. [Google Scholar] [CrossRef] [Green Version]
- Zamanian, R.T.; Hansmann, G.; Snook, S.; Lilienfeld, D.; Rappaport, K.M.; Reaven, G.M.; Rabinovitch, M.; Doyle, R.L. Insulin Resistance in Pulmonary Arterial Hypertension. Eur. Respir. J. 2008, 33, 318–324. [Google Scholar] [CrossRef]
- Yan, X.; Gao, Y.; Zhao, Q.; Qiu, X.; Tian, M.; Dai, J.; Zhuang, Y. Correlation of Lipid Ratios With the Severity of Pulmonary Alveolar Proteinosis: A Cross-Sectional Study. Front. Nutr. 2021, 8, 610765. [Google Scholar] [CrossRef]
- Cracowski, J.-L.; Degano, B.; Chabot, F.; Labarère, J.; Schwedhelm, E.; Monneret, D.; Iuliano, L.; Schwebel, C.; Chaouat, A.; Reynaud-Gaubert, M.; et al. Independent Association of Urinary F 2 -Isoprostanes With Survival in Pulmonary Arterial Hypertension. Chest 2012, 142, 869–876. [Google Scholar] [CrossRef]
- Reis, G.S.; Augusto, V.S.; Silveira, A.P.C.; Jordão, A.A.; Baddini-Martinez, J.; Neto, O.P.; Rodrigues, A.J.; Evora, P.R.B. Oxidative-Stress Biomarkers in Patients with Pulmonary Hypertension. Pulm. Circ. 2013, 3, 856–861. [Google Scholar] [CrossRef] [Green Version]
- Lopes, A.A.B.; Maeda, N.Y. Circulating von Willebrand Factor Antigen as a Predictor of Short-Term Prognosis in Pulmonary Hypertension. Chest 1998, 114, 1276–1282. [Google Scholar] [CrossRef]
- Kawut, S.M.; Horn, E.M.; Berekashvili, K.K.; Widlitz, A.C.; Rosenzweig, E.B.; Barst, R.J. Von Willebrand Factor Independently Predicts Long-Term Survival in Patients With Pulmonary Arterial Hypertension. Chest 2005, 128, 2355–2362. [Google Scholar] [CrossRef] [PubMed]
- Bakouboula, B.; Morel, O.; Faure, A.; Zobairi, F.; Jesel, L.; Trinh, A.; Zupan, M.; Canuet, M.; Grunebaum, L.; Brunette, A.; et al. Procoagulant Membrane Microparticles Correlate with the Severity of Pulmonary Arterial Hypertension. Am. J. Respir. Crit. Care Med. 2008, 177, 536–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenthal, J.L.; Jacob, M.S. Biomarkers in Pulmonary Arterial Hypertension. Curr. Heart Fail. Rep. 2014, 11, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Shitrit, D.; Bendayan, D.; Bar-Gil-Shitrit, A.; Huerta, M.; Rudensky, B.; Fink, G.; Kramer, M.R. Significance of a Plasma D-Dimer Test in Patients with Primary Pulmonary Hypertension. Chest 2002, 122, 1674–1678. [Google Scholar] [CrossRef]
- Pezzuto, B.; Badagliacca, R.; Poscia, R.; Ghio, S.; D’Alto, M.; Vitulo, P.; Mulè, M.; Albera, C.; Volterrani, M.; Fedele, F.; et al. Circulating Biomarkers in Pulmonary Arterial Hypertension: Update and Future Direction. J. Heart Lung Transplant. 2015, 34, 282–305. [Google Scholar] [CrossRef]
- Frantz, R.P.; Farber, H.W.; Badesch, D.B.; Elliott, C.G.; Frost, A.E.; McGoon, M.D.; Zhao, C.; Mink, D.R.; Selej, M.; Benza, R.L. Baseline and Serial Brain Natriuretic Peptide Level Predicts 5-Year Overall Survival in Patients With Pulmonary Arterial Hypertension. Chest 2018, 154, 126–135. [Google Scholar] [CrossRef]
- Rodriguez-Arias, J.J.; García-Álvarez, A. Sex Differences in Pulmonary Hypertension. Front. Aging 2021, 2, 727558. [Google Scholar] [CrossRef]
- Hoeper, M.M.; Huscher, D.; Ghofrani, H.A.; Delcroix, M.; Distler, O.; Schweiger, C.; Grunig, E.; Staehler, G.; Rosenkranz, S.; Halank, M.; et al. Elderly Patients Diagnosed with Idiopathic Pulmonary Arterial Hypertension: Results from the COMPERA Registry. Int. J. Cardiol. 2013, 168, 871–880. [Google Scholar] [CrossRef]
- Ventetuolo, C.E.; Praestgaard, A.; Palevsky, H.I.; Klinger, J.R.; Halpern, S.D.; Kawut, S.M. Sex and Haemodynamics in Pulmonary Arterial Hypertension. Eur. Respir. J. 2014, 43, 523–530. [Google Scholar] [CrossRef] [Green Version]
- Farber, H.W.; Miller, D.P.; Poms, A.D.; Badesch, D.B.; Frost, A.E.; Rouzic, E.M.-L.; Romero, A.J.; Benton, W.W.; Elliott, C.G.; McGoon, M.D.; et al. Five-Year Outcomes of Patients Enrolled in the REVEAL Registry. Chest 2015, 148, 1043–1054. [Google Scholar] [CrossRef]
- Benza, R.L.; Miller, D.P.; Gomberg-Maitland, M.; Frantz, R.P.; Foreman, A.J.; Coffey, C.S.; Frost, A.; Barst, R.J.; Badesch, D.B.; Elliott, C.G.; et al. Predicting Survival in Pulmonary Arterial Hypertension: Insights From the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL). Circulation 2010, 122, 164–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Docherty, C.K.; Harvey, K.Y.; Mair, K.M.; Griffin, S.; Denver, N.; MacLean, M.R. The Role of Sex in the Pathophysiology of Pulmonary Hypertension. In Sex-Specific Analysis of Cardiovascular Function; Kerkhof, P.L.M., Miller, V.M., Eds.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2018; Volume 1065, pp. 511–528. ISBN 978-3-319-77931-7. [Google Scholar]
- Foderaro, A.; Ventetuolo, C.E. Pulmonary Arterial Hypertension and the Sex Hormone Paradox. Curr. Hypertens. Rep. 2016, 18, 84. [Google Scholar] [CrossRef] [PubMed]
- Cheron, C.; McBride, S.A.; Antigny, F.; Girerd, B.; Chouchana, M.; Chaumais, M.-C.; Jaïs, X.; Bertoletti, L.; Sitbon, O.; Weatherald, J.; et al. Sex and Gender in Pulmonary Arterial Hypertension. Eur. Respir. Rev. 2021, 30, 200330. [Google Scholar] [CrossRef] [PubMed]
- Tura-Ceide, O.; Blanco, I.; Garcia-Lucio, J.; del Pozo, R.; García, A.R.; Ferrer, E.; Crespo, I.; Rodríguez-Chiaradia, D.A.; Simeon-Aznar, C.P.; López-Meseguer, M.; et al. Circulating Cell Biomarkers in Pulmonary Arterial Hypertension: Relationship with Clinical Heterogeneity and Therapeutic Response. Cells 2021, 10, 1688. [Google Scholar] [CrossRef]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef] [Green Version]
- Fadini, G.P.; Schiavon, M.; Rea, F.; Avogaro, A.; Agostini, C. Depletion of Endothelial Progenitor Cells May Link Pulmonary Fibrosis and Pulmonary Hypertension. Am. J. Respir. Crit. Care Med. 2007, 176, 724–725. [Google Scholar] [CrossRef]
- Han, Z.; Li, X.; Cui, X.; Yuan, H.; Wang, H. The Roles of Immune System and Autoimmunity in Pulmonary Arterial Hypertension: A Review. Pulm. Pharmacol. Ther. 2022, 72, 102094. [Google Scholar] [CrossRef]
- Tomaszewski, M.; Bębnowska, D.; Hrynkiewicz, R.; Dworzyński, J.; Niedźwiedzka-Rystwej, P.; Kopeć, G.; Grywalska, E. Role of the Immune System Elements in Pulmonary Arterial Hypertension. JCM 2021, 10, 3757. [Google Scholar] [CrossRef]
- Vergadi, E.; Chang, M.S.; Lee, C.; Liang, O.D.; Liu, X.; Fernandez-Gonzalez, A.; Mitsialis, S.A.; Kourembanas, S. Early Macrophage Recruitment and Alternative Activation Are Critical for the Later Development of Hypoxia-Induced Pulmonary Hypertension. Circulation 2011, 123, 1986–1995. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Hao, Y.; Gao, D.; Li, G.; Zhang, Z. Phenotype and Function of Macrophage Polarization in Monocrotaline-Induced Pulmonary Arterial Hypertension Rat Model. Physiol. Res. 2021, 70, 213–226. [Google Scholar] [CrossRef]
- Kosanovic, D.; Luitel, H.; Dahal, B.K.; Cornitescu, T.; Janssen, W.; Danser, A.H.J.; Garrelds, I.M.; De Mey, J.G.R.; Fazzi, G.; Schiffers, P.; et al. Chymase: A Multifunctional Player in Pulmonary Hypertension Associated with Lung Fibrosis. Eur. Respir. J. 2015, 46, 1084–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ormiston, M.L.; Chang, C.; Long, L.L.; Soon, E.; Jones, D.; Machado, R.; Treacy, C.; Toshner, M.R.; Campbell, K.; Riding, A.; et al. Impaired Natural Killer Cell Phenotype and Function in Idiopathic and Heritable Pulmonary Arterial Hypertension. Circulation 2012, 126, 1099–1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, A.L.; Gunningham, S.P.; Clare, G.C.; Hayman, M.W.; Smith, M.; Frampton, C.M.; Robinson, B.A.; Troughton, R.W.; Beckert, L.E. Professional Killer Cell Deficiencies and Decreased Survival in Pulmonary Arterial Hypertension: Immune Markers of Pulmonary Hypertension. Respirology 2013, 18, 1271–1277. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Jiang, S.Y.; Jiang, X.; Tamosiuniene, R.; Kim, D.; Guan, T.; Arsalane, S.; Pasupneti, S.; Voelkel, N.F.; Tang, Q.; et al. The Role of Regulatory T Cells in Pulmonary Arterial Hypertension. Front. Immunol. 2021, 12, 684657. [Google Scholar] [CrossRef]
- Blum, L.K.; Cao, R.R.L.; Sweatt, A.J.; Bill, M.; Lahey, L.J.; Hsi, A.C.; Lee, C.S.; Kongpachith, S.; Ju, C.-H.; Mao, R.; et al. Circulating Plasmablasts Are Elevated and Produce Pathogenic Anti-Endothelial Cell Autoantibodies in Idiopathic Pulmonary Arterial Hypertension. Eur. J. Immunol. 2018, 48, 874–884. [Google Scholar] [CrossRef] [Green Version]
- Huertas, A.; Tu, L.; Humbert, M.; Guignabert, C. Chronic Inflammation within the Vascular Wall in Pulmonary Arterial Hypertension: More than a Spectator. Cardiovasc. Res. 2020, 116, 885–893. [Google Scholar] [CrossRef]
- Breitling, S.; Hui, Z.; Zabini, D.; Hu, Y.; Hoffmann, J.; Goldenberg, N.M.; Tabuchi, A.; Buelow, R.; Dos Santos, C.; Kuebler, W.M. The Mast Cell–B Cell Axis in Lung Vascular Remodeling and Pulmonary Hypertension. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2017, 312, L710–L721. [Google Scholar] [CrossRef] [Green Version]
- Fujimoto, M.; Sato, S. B Lymphocytes and Systemic Sclerosis. Curr. Opin. Rheumatol. 2005, 17, 746–751. [Google Scholar] [CrossRef]
- Perros, F.; Dorfmuller, P.; Souza, R.; Durand-Gasselin, I.; Mussot, S.; Mazmanian, M.; Herve, P.; Emilie, D.; Simonneau, G.; Humbert, M. Dendritic Cell Recruitment in Lesions of Human and Experimental Pulmonary Hypertension. Eur. Respir. J. 2007, 29, 462–468. [Google Scholar] [CrossRef] [Green Version]
- Bharat, A.; Bhorade, S.M.; Morales-Nebreda, L.; McQuattie-Pimentel, A.C.; Soberanes, S.; Ridge, K.; DeCamp, M.M.; Mestan, K.K.; Perlman, H.; Budinger, G.R.S.; et al. Flow Cytometry Reveals Similarities Between Lung Macrophages in Humans and Mice. Am. J. Respir. Cell Mol. Biol 2016, 54, 147–149. [Google Scholar] [CrossRef]
- Marsh, L.M.; Jandl, K.; Grünig, G.; Foris, V.; Bashir, M.; Ghanim, B.; Klepetko, W.; Olschewski, H.; Olschewski, A.; Kwapiszewska, G. The Inflammatory Cell Landscape in the Lungs of Patients with Idiopathic Pulmonary Arterial Hypertension. Eur. Respir. J. 2018, 51, 1701214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rose, J.A.; Wanner, N.; Cheong, H.I.; Queisser, K.; Barrett, P.; Park, M.; Hite, C.; Naga Prasad, S.V.; Erzurum, S.; Asosingh, K. Flow Cytometric Quantification of Peripheral Blood Cell β-Adrenergic Receptor Density and Urinary Endothelial Cell-Derived Microparticles in Pulmonary Arterial Hypertension. PLoS ONE 2016, 11, e0156940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gadalla, R.; Noamani, B.; MacLeod, B.L.; Dickson, R.J.; Guo, M.; Xu, W.; Lukhele, S.; Elsaesser, H.J.; Razak, A.R.A.; Hirano, N.; et al. Validation of CyTOF Against Flow Cytometry for Immunological Studies and Monitoring of Human Cancer Clinical Trials. Front. Oncol. 2019, 9, 415. [Google Scholar] [CrossRef] [PubMed]
- Rathinasabapathy, A.; Rizzi, E.; Crabtree, A.; Yan, L.; Talati, M.; Robbins, I.M.; Austin, E.D.; Hemnes, A.; Hamid, R.; Kendall, P.; et al. A First Report on Mass Cytometry Immunophenotyping of Peripheral Blood Mononuclear Cells in Pulmonary Arterial Hypertension. In Proceedings of the B57. Inflammation and pulmonary hypertension! What’s new; American Thoracic Society: Philadelphia, Pennsylvania, 15 May 2020; p. A3832. [Google Scholar]
Heart Failure, Myocardial Stress and Injury, Remodeling | Inflammation | Endothelial Cell Dysfunction and Smooth Muscle Cell Proliferation | Hypoxia/Organ and Tissue Damage | Metabolic Biomarkers | Oxidative Stress Biomarkers | In Situ Thrombosis |
---|---|---|---|---|---|---|
BNP NT-proBNP Troponins (T, I) Cystatin C sST2 Homocysteine | CRP Galectin-3 RDW GDF–15 Cytokines: (IL-6, IL-8, IL-10, IL-12p70) OPN Neopterin MIF NLR ADM | ET-1 CT-proET-1 ADMA ANG1 ANG2 Aldosterone sVEGFR1 miRNAs | PaCO2 Creatinine Uric acid Copeptin Bilirubin | HDL-c TG/HDL-c ratio Fischer’s ratio Ghrelin | F2-isoprostane Vitamin E Glutathione | vWF D–dimers |
Biomarkers | Subjects | Important Findings | |
---|---|---|---|
Disease progression | BNP/NT-proBNP | 61 patients with IPAH [13] 1655 patients with PAH [15] | Correlation with hemodynamic parameters (i.e., PVR, CI, mean RAP) and exercise capacity [13,15] |
ET-1 | 16 patients with IPAH [84] | Positive correlation with PVR and disease severity [84] | |
RDW | 139 patients with IPAH [47] | Related to disease severity [47] | |
OPN | 71 patients with PAH [60] | An independent predictor of RV dilatation and dysfunction [60] | |
HDL-c | 76 IPAH patients [119] | Serum HDL cholesterol levels were significantly decreased in patients with IPAH—an indicator of disease severity and progression [119] | |
ANG2 | 81 IPAH patients [87] | ANG2 was statistically correlated with CI, PVR, and mixed venous oxygen saturation (mvSatO2) [87] | |
sFlt1, PIGF | 62 patients with IPAH [78] | Early-stage diagnostic evaluation [78] | |
Therapeutic response | BNP/NT-proBNP | 1142 GRIPHON patients [14] | First evidence of an association between NT-proBNP levels and treatment response [14] |
sVEGFR1 | 62 patients with IPAH [79] | Treatment response biomarker [79] | |
ADM | 13 patients [71] | Promising endogenous peptide for the treatment of pulmonary hypertension [71] | |
PaCO2 | 101 patients with IPAH [96] | Increase in survival rate after treatment; limitations: retrospective design, all data came from a single center [96] | |
CRP | 1004 patients with PAH [41] | Predicting responses to therapy in PAH [41] | |
Cystatin C | 59 patients with CHD–PAH [37] | May be attributable to clinical decision-making regarding treatment intensity [37] | |
Prognosis | BNP/NP-proBNP | 1426 patients with PAH [137] 1655 patients with PAH [15] | Strong predictor of 5-year survival [137] Four–stratum model risk stratification more prognostically relevant [15] |
TnT | 56 patients with PAH [17] | Elevated levels represent more advanced disease [17]; does not represent a marker of early disease | |
TnI | 255 PAH patients [20] | Used in routine clinical practice; more severe hemodynamic and cardiac structural failure; high risk of mortality; poor outcomes; low specificity [20] | |
IL-6, -8, -10, and -12p70 | 60 patients with IPAH and HPAH [57] | Prognostic factors associated with low survival rates in IPAH [57] | |
PaCO2 | 204 patients with IPAH [97] | Independent prognostic value, risk assessment for major cardiovascular events [97] | |
Renal function (i.e., creatinine, BUN, uric acid) | 50 patients with CTD–PAH [100] | UA levels might predict the severity and clinical prognosis of the disease [100] | |
Bilirubin | 37 patients with PAH [106] | Risk factor for death in patients with PAH [106] | |
Cystatin C | 14 patients with PAH [36] 59 patients with CHD–PAH [37] | CysC was accurately correlated with cardiac and hematological dynamics, e.g., RV pressure, function, and morphology [36] CysC may represent a novel biomarker of PAH, predicting long-term mortality and clinical events in patients with CHD–PAH [37] Limitation: small sample sizes | |
sST2 | 104 patients [29] 40 patients with IPAH [30] | sST2 was correlated with disease severity and was a significant predictor of clinical worsening in patients with PAH [29,30] | |
RDW | 139 patients with IPAH [47] | Potential prognostic biomarker related to disease severity, and may be used to predict survival [47] | |
CRP | 1004 patients with PAH [41] 225 CHD–PAH patients [42] | Predicting outcomes of PAH [41] Should be incorporated in risk stratification and routine assessment of CHD–PAH [42] | |
GFR-15 | 76 patients with IPAH [50] | A new and promising prognostic biomarker of the risk of death in patients with IPAH [50] Deserves further investigation | |
OPN | 70 patients with IPAH [59] | Independent predictors of mortality [59] | |
NLR | 71 patients with PAH [63] | Poor overall 5–year survival in PAH patients [63] | |
ADMA | 57 patients with IPAH [75] 30 patients with CHD–PAH [38] | High serum ADMA concentrations were associated with unfavorable pulmonary hemodynamics (i.e., higher mPAP and PVR) and worse outcomes in patients with IPAH and CHD–PAH [38,75] | |
Copeptin | 25 children with CHD–PAH [104] 92 PAH patients [102] | Predicting poor outcomes [104] Circulating levels of copeptin were independent predictors of poor outcomes—a potentially useful biomarker in PAH [102] | |
HDL-c | 69 patients with PAH [117] 76 IPAH patients [119] 227 PAH patients [118] | Low plasma HDL-c was associated with higher mortality and clinical worsening in PAH [117] Lower HDL-c levels were associated with lower event-free survival [119] Higher HDL levels were associated with significantly lower mortality [118] | |
TG/HDL-c ratio | 122 patients with PAH [128] | TG/HDL-c is a promising independent risk factor for the severity of PAH [128] | |
sVEGFR1 | 97 PAH patients [78] | Correlation with disease progression as well as worse outcomes [78] | |
vWF | 66 PAH patients [132] | High vWF levels at baseline and follow-up were associated with worse survival [132] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hojda, S.E.; Chis, I.C.; Clichici, S. Biomarkers in Pulmonary Arterial Hypertension. Diagnostics 2022, 12, 3033. https://doi.org/10.3390/diagnostics12123033
Hojda SE, Chis IC, Clichici S. Biomarkers in Pulmonary Arterial Hypertension. Diagnostics. 2022; 12(12):3033. https://doi.org/10.3390/diagnostics12123033
Chicago/Turabian StyleHojda, Silvana Elena, Irina Camelia Chis, and Simona Clichici. 2022. "Biomarkers in Pulmonary Arterial Hypertension" Diagnostics 12, no. 12: 3033. https://doi.org/10.3390/diagnostics12123033
APA StyleHojda, S. E., Chis, I. C., & Clichici, S. (2022). Biomarkers in Pulmonary Arterial Hypertension. Diagnostics, 12(12), 3033. https://doi.org/10.3390/diagnostics12123033