Incoherent Optical Fluctuation Flowmetry: A New Method for the Assessment of Foot Perfusion in Patients with Diabetes-Related Lower-Extremity Complications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Patients, and Data Sources
2.2. Perfusion Measurement Using the IOFF Method
2.3. Assessment of Macrohemodynamic Parameters
2.4. Statistical Analysis
3. Results
3.1. Study Population and Baseline Characteristics
3.2. Comparison of IOFF and TcPO2 Measurement Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schaper, N.C.; van Netten, J.J.; Apelqvist, J.; Bus, S.A.; Hinchliffe, R.J.; Lipsky, B.A. IWGDF Editorial Board. Practical Guidelines on the prevention and management of diabetic foot disease (IWGDF 2019 update). Diabetes Metab. Res. Rev. 2020, 36, e3266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, S.; Zhao, Y.; Shen, Y.; Shi, Y.; Zhou, H.; Zou, J.; Shi, B. Identifying at-risk foot among hospitalized patients with type 2 diabetes: A cross-sectional study in one Chinese tertiary hospital. Chronic Dis. Transl. Med. 2015, 1, 210–216. [Google Scholar] [CrossRef] [Green Version]
- Balletshofer, B.; Böckler, D.; Diener, H.; Heckenkamp, J.; Ito, W.; Katoh, M.; Lawall, H.; Malyar, N.; Oberländer, Y.; Reimer, P.; et al. Position Paper on the Diagnosis and Treatment of Peripheral Arterial Disease (PAD) in People with Diabetes Mellitus. Exp. Clin. Endocrinol. Diabetes 2019, 127, S105–S113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luan, J.; Xu, J.; Zhong, W.; Zhou, Y.; Liu, H.; Qian, K. Adverse prognosis of peripheral artery disease treatments associated with diabetes: A comprehensive meta-analysis. Angiology 2022, 73, 318–330. [Google Scholar] [CrossRef] [PubMed]
- Jakubiak, G.K.; Pawlas, N.; Cieślar, G.; Stanek, A. Pathogenesis and clinical significance of in-stent restenosis in patients with diabetes. Int. J. Environ. Res. Public Health 2021, 18, 11970. [Google Scholar] [CrossRef]
- Rogers, R.K.; Montero-Baker, M.; Biswas, M.; Morrison, J.; Braun, J. Assessment of foot perfusion: Overview of modalities, review of evidence, and identification of evidence gaps. Vasc. Med. 2020, 25, 235–245. [Google Scholar] [CrossRef]
- Leenstra, B.; Wijnand, J.; Verhoeven, B.; Koning, O.; Teraa, M.; Verhaar, M.C.; de Borst, G.J. Applicability of Transcutaneous Oxygen Tension Measurement in the Assessment of Chronic Limb-Threatening Ischemia. Angiology 2020, 71, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Hasan, R.; Firwana, B.; Elraiyah, T.; Tsapas, A.; Prokop, L.; Mills, J.L.; Murad, M.H. A systematic review and meta-analysis of tests to predict wound healing in diabetic foot. J. Vasc. Surg. 2016, 63, 29S–36S. [Google Scholar] [CrossRef] [Green Version]
- Forsythe, R.O.; Hinchliffe, R.J. Assessment of foot perfusion in patients with a diabetic foot ulcer. Diabetes Metab. Res. Rev. 2016, 32, 232–238. [Google Scholar] [CrossRef] [Green Version]
- Mills Sr, J.L.; Conte, M.S.; Armstrong, D.G.; Pomposelli, F.B.; Schanzer, A.; Sidawy, A.N.; Andros, G. Society for Vascular Surgery Lower Extremity Guidelines Committee. The society for vascular surgery lower extremity threatened limb classification system: Risk stratification based on Wound, Ischemia, and foot Infection (WIfI). J. Vasc. Surg. 2014, 59, 220–234. [Google Scholar] [CrossRef]
- Potier, L.; Abi Khalil, C.; Mohammedi, K.; Roussel, R. Use and utility of Ankle brachial index in patients with diabetes. Eur. J. Vasc. Endovasc. Surg. 2011, 41, 110–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costanzo, I.; Sen, D.; Adegite, J.; Rao, P.M.; Guler, U. Noninvasive Miniaturized Transcutaneous Oxygen Monitor. IEEE Trans. Biomed. Circuits Syst. 2021, 15, 474–485. [Google Scholar] [CrossRef] [PubMed]
- Bondarenko, O.N.; Ayubova, N.L.; Galstyan, G.R.; Dedov, I.I. Transcutaneous oximetry monitoring in patients with type 2 diabetes mellitus and critical limb ischemia. Diabetes Mellit. 2013, 16, 33–42. (In Russian) [Google Scholar] [CrossRef]
- Bajwa, A.; Wesolowski, R.; Patel, A.; Saha, P.; Ludwinski, F.; Smith, A.; Nagel, E.; Modarai, B. Assessment of tissue perfusion in the lower limb current methods and techniques under development. Circ. Cardiovasc. Imaging 2014, 7, 836–843. [Google Scholar] [CrossRef] [Green Version]
- Lapitan, D.; Rogatkin, D. Optical incoherent technique for noninvasive assessment of blood flow in tissues: Theoretical model and experimental study. J. Biophotonics 2021, 14, e202000459. [Google Scholar] [CrossRef]
- Siao, R.M.; So, M.J.; Gomez, M.H. Pulse oximetry as a screening test for hemodynamically significant lower extremity peripheral artery disease in adults with type 2 diabetes mellitus. J. ASEAN Fed. Endocr. Soc. 2018, 33, 130–136. [Google Scholar] [CrossRef] [Green Version]
- Varga-Szemes, A.; Penmetsa, M.; Emrich, T.; Todoran, T.M.; Suranyi, P.; Fuller, S.R.; Edelman, R.R.; Kok-tzoglou, I.; Schoepf, U.J. Diagnostic accuracy of non-contrast quiescent-interval slice-selective (QISS) MRA combined with MRI-based vascular calcification visualization for the assessment of arterial stenosis in patients with lower extremity peripheral artery disease. Eur. Radiol. 2021, 31, 2778–2787. [Google Scholar] [CrossRef]
- Armstrong, P.A.; Dargan, C.G. (Eds.) Duplex Scanning for Lower Extremity Arterial Disease. In Noninvasive Vascular Diagnosis: A Practical Textbook for Clinicians; Springer International Publishing: Cham, Switzerland, 2022; p. 535. [Google Scholar]
- Lapitan, D.G.; Raznitsyn, O.A. A Method and a Device Prototype for Noninvasive Measurements of Blood Perfusion in a Tissue. Instrum. Exp. Tech. 2018, 61, 745–750. [Google Scholar] [CrossRef]
- Aboyans, V.; Criqui, M.H.; Abraham, P.; Allison, M.A.; Creager, M.A.; Diehm, C.; Gerry, F.; Fowkes, R.; Hiatt, W.R.; Jönsson, B.; et al. Measurement and interpretation of the Ankle-Brachial Index: A scientific statement from the American Heart Association. Circulation 2012, 126, 2890–2909. [Google Scholar] [CrossRef] [Green Version]
- Catella, J.; Long, A.; Mazzolai, L. What is currently the role of TcPO2 in the choice of the amputation level of lower limbs? A comprehensive review. J. Clin. Med. 2021, 10, 1413. [Google Scholar] [CrossRef]
- Geskin, G.; Mulock, M.D.; Tomko, N.L.; Dasta, A.; Gopalakrishnan, S. Effects of Lower Limb Revascularization on the Microcirculation of the Foot: A Retrospective Cohort Study. Diagnostics 2022, 12, 1320. [Google Scholar] [CrossRef] [PubMed]
- Filina, M.A.; Potapova, E.V.; Makovik, I.N.; Zharkih, E.V.; Dremin, V.V.; Zherebtsov, E.A.; Dunaev, A.V.; Sidorov, V.V.; Krupatkin, A.I.; Alimicheva, E.A.; et al. Functional changes in blood microcirculation in the skin of the foot during heating tests in patients with diabetes mellitus. Hum. Physiol. 2017, 43, 693–699. [Google Scholar] [CrossRef]
- Dremin, V.V.; Zherebtsov, E.A.; Sidorov, V.V.; Krupatkin, A.I.; Makovik, I.N.; Zherebtsova, A.I.; Zharkikh, E.V.; Potapova, E.V.; Dunaev, A.V.; Doronin, A.A.; et al. Multimodal optical measurement for study of lower limb tissue viability in patients with diabetes mellitus. J. Biomed. Opt. 2017, 22, 085003. [Google Scholar] [CrossRef] [PubMed]
- Zharkikh, E.; Dremin, V.; Zherebtsov, E.; Dunaev, A.; Meglinski, I. Biophotonics methods for functional mo toring of compli-cations of diabetes mellitus. J. Biophotonics 2020, 13, e202000203. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.; Choi, S.Y.; Kim, Y.J. The Efficacy of Cone-Beam CT-Based Perfusion Mapping in Evaluation of Tissue Perfusion in Peripheral Arterial Disease. J. Clin. Med. 2021, 10, 947. [Google Scholar] [CrossRef] [PubMed]
- Lantsberg, L.; Goldman, M. Laser doppler flowmetry, transcutaneous oxygen tension measurements and doppler pressure compared in patients undergoing amputation. Eur. J. Vasc. Surg. 1991, 5, 195–197. [Google Scholar] [CrossRef]
- Karanfilian, R.G.; Lynch, T.G.; Zirul, V.T.; Padberg, F.T.; Jamil, Z.; Hobson II, R.W. The value of laser Doppler velocimetry and transcutaneous oxygen tension determination in predicting healing of ischemic forefoot ulcerations and amputations in diabetic and nondiabetic patients. J. Vasc. Surg. 1986, 4, 511–516. [Google Scholar] [CrossRef] [Green Version]
- Talitskiy, K.A.; Bulkina, O.S.; Aref’eva, T.I.; Vorob’eva, O.N.; Levitskiy, I.V.; Fedorovich, A.A. Effi cacy of therapeutic angiogenesis in patients with chronic lower limb ischemia. Cell. Transpl. Tissue Eng. 2011, 6, 89–98. [Google Scholar]
- Kozlov, I.; Zherebtsov, E.; Masalygina, G.; Podmasteryev, K.; Dunaev, A. Laser Doppler Spectrum Analysis Based on Calculation of Cumulative Sums Detects Changes in Skin Capillary Blood Flow in Type 2 Diabetes Mellitus. Diagnostics 2021, 11, 267. [Google Scholar] [CrossRef]
- Roustit, M.; Cracowski, J.L. Non-invasive assessment of skin microvascular function in humans: An insight into methods. Microcirculation 2012, 19, 47–64. [Google Scholar] [CrossRef] [Green Version]
- Jakubiak, G.K.; Pawlas, N.; Cieślar, G.; Stanek, A. Chronic lower extremity ischemia and its association with the frailty syndrome in patients with diabetes. Int. J. Environ. Res. Public Health 2020, 17, 9339. [Google Scholar] [CrossRef] [PubMed]
- Normahani, P.; Khosravi, S.; Sounderajah, V.; Aslam, M.; Standfield, N.J.; Jaffer, U. The effect of lower limb revascularization on flow, perfusion, and systemic endothelial function: A systematic review. Angiology 2021, 72, 210–220. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value |
---|---|
Sex: male/female, n (%) | 19 (70.4%)/8 (29.6%) |
Age, years, Me (LQ; UQ) | 64 (56; 68) |
Body mass index, kg/m2, Me (LQ; UQ) | 28.4 (26.5; 33.9) |
Legs with hemodynamically significant artery stenoses by duplex ultrasound | 39 (72.2%) |
Feet with lower-extremity ulcers, n | 14 (51.9%) |
Neuropathic foot ulcers | 7 (50%) |
Ischemic foot ulcers | 2 (14.3%) |
Neuro-ischemic foot ulcers | 5 (35.7%) |
ABI (recorded separately for each limb), Me (LQ; UQ) | 0.94 (0.88; 0.98) |
>1.4, n (%) | 1 (1.8%) |
1–1.4, n (%) | 7 (13%) |
0.91–0.99, n (%) | 18 (33.3%) |
0.4–0.9, n (%) | 16 (29.6%) |
0.4, n (%) | 1 (1.8%) |
not defined, n (%) * | 11 (20.3%) |
TcPO2 (recorded separately for each limb), Me (LQ; UQ) | 34 (18; 48) |
TcPO2 < 20 mmHg; | 14 (25.9%) |
20–39 mmHg; | 17 (31.5%) |
TcPO2 ≥ 40 mmHg. | 23 (42.6%) |
MNSI (Part A), Me (LQ; UQ) | 9 (7; 9) |
MNSI (Part B), Me (LQ; UQ) | 7.00 (5.00; 7.75) |
HbA1c, %, Me (LQ; UQ) | 8.1 (7.12; 9.45) |
eGFR according to CKD-EPI (mL/min/1.73 m2), Me (LQ; UQ) | 82 (67; 86) |
Comorbidities | |
Hypertension, n (%) | 25 (92.6%) |
Chronic heart failure, n (%) | 10 (37%) |
Angina pectoris, n (%) | 10 (37%) |
TcPO2 | p | |
---|---|---|
BP | 0.70 | <0.001 |
LTH, 1 min | 0.74 | <0.001 |
LTH, 2 min | 0.76 | <0.001 |
LTH, 3 min | 0.73 | <0.001 |
LTH, 4 min | 0.75 | <0.001 |
LTH, 5 min | 0.74 | <0.001 |
AUC | LCL | UCL | |
---|---|---|---|
ABI | 0.881 | 0.689 | 1 |
BP | 0.927 | 0.831 | 1 |
LTH, 1 min | 0.939 | 0.863 | 1 |
LTH, 2 min | 0.943 | 0.874 | 1 |
LTH, 3 min | 0.914 | 0.802 | 1 |
LTH, 4 min | 0.941 | 0.865 | 1 |
LTH, 5 min | 0.927 | 0.832 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glazkova, P.; Glazkov, A.; Kulikov, D.; Zagarov, S.; Kovaleva, Y.; Babenko, A.; Kononova, Y.; Kitaeva, E.; Britvin, T.; Mazur, N.; et al. Incoherent Optical Fluctuation Flowmetry: A New Method for the Assessment of Foot Perfusion in Patients with Diabetes-Related Lower-Extremity Complications. Diagnostics 2022, 12, 2922. https://doi.org/10.3390/diagnostics12122922
Glazkova P, Glazkov A, Kulikov D, Zagarov S, Kovaleva Y, Babenko A, Kononova Y, Kitaeva E, Britvin T, Mazur N, et al. Incoherent Optical Fluctuation Flowmetry: A New Method for the Assessment of Foot Perfusion in Patients with Diabetes-Related Lower-Extremity Complications. Diagnostics. 2022; 12(12):2922. https://doi.org/10.3390/diagnostics12122922
Chicago/Turabian StyleGlazkova, Polina, Alexey Glazkov, Dmitry Kulikov, Sergei Zagarov, Yulia Kovaleva, Alina Babenko, Yulia Kononova, Elena Kitaeva, Timur Britvin, Natalia Mazur, and et al. 2022. "Incoherent Optical Fluctuation Flowmetry: A New Method for the Assessment of Foot Perfusion in Patients with Diabetes-Related Lower-Extremity Complications" Diagnostics 12, no. 12: 2922. https://doi.org/10.3390/diagnostics12122922
APA StyleGlazkova, P., Glazkov, A., Kulikov, D., Zagarov, S., Kovaleva, Y., Babenko, A., Kononova, Y., Kitaeva, E., Britvin, T., Mazur, N., Larkov, R., & Rogatkin, D. (2022). Incoherent Optical Fluctuation Flowmetry: A New Method for the Assessment of Foot Perfusion in Patients with Diabetes-Related Lower-Extremity Complications. Diagnostics, 12(12), 2922. https://doi.org/10.3390/diagnostics12122922