Kinesthesia and Temporal Experience: On the ‘Knitting and Unknitting’ Process of Bodily Subjectivity in Schizophrenia
Abstract
:1. Introduction
2. Kinesthesia and Animation
“Familiar dynamics—tying a knot, brushing one’s teeth… writing one’s name…—are interwoven in our bodies and unfolded along the lines of our bodies. They are kinesthetic/kinetic melodies in both neurological and experiential senses (Luria 1966, 1973). When we pay attention to these familiar dynamics, to our own coordination dynamics (Kelso 1995; Kelso and Engstrom 2006), we recognize kinesthetic melodies; they bear the stamp of our own qualitatively felt movement patterns, our own familiar meaningful movement synergies (Sheets-Johnstone 2009 a, b)”([4], p. 24)
3. Experimental Approaches to Kinesthesia
4. Cyclic Temporal Dynamics of Living Organisms
“When we listen to our ‘inner awareness of movement‘, we find a distinctly felt temporal flow or present transmission that is constituted in the very process of being created.”([4], p. 34)
5. Affectivity and Self-Affection
6. Schizophrenia as Disturbance of the Temporal Experience and the Triple Network
“I love immutable objects, things which are always there, and which never change… The past is the precipice. The future is the mountain.”([70], p. 279)
“Figuratively speaking it seems years since I was out in the normal world… I never know any moment what is going to happen. It’s the most terrible outlook I’ve ever had to look to. It’s all perpetual. I’ve got to suffer perpetually.”([76], pp. 617–618)
7. The Twofold Dynamics between Kinesthesia and Touch in Psychosis
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bastian, H. The “muscular sense”; its nature and localization. Brain 1888, 10, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Proske, U.; Gandevia, S.C. Kinesthetic Senses. Compr. Physiol. 2018, 8, 1157–1183. [Google Scholar] [PubMed]
- Jeannerod, M. Motor Cognition; Oxford Psychology Series; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Sheets-Johnstone, M. Animation: Analyses, Elaborations, and Implications. Husserl Stud. 2014, 30, 247–268. [Google Scholar] [CrossRef]
- Sheets-Johnstone, M. Why is movement therapeutic? Am. J. Danc. Ther. 2010, 32, 2–15. [Google Scholar] [CrossRef]
- Sheets-Johnstone, M. Essential clarifications of ‘self-affection’ and Husserl’s ‘sphere of ownness’: First steps toward a pure phenomenology of (human) nature. Cont. Philos. Rev. 2006, 39, 361–391. [Google Scholar] [CrossRef]
- O’Shaughnessy, B. Proprioception and the body image. In The Body and the Self; Bermúdez, J.L., Anthony, J.M., Naomi, M.E., Eds.; MIT Press: Cambridge, MA, USA, 1998; pp. 175–203. [Google Scholar]
- Sheets-Johnstone, M. The Lived Body. Humanist. Psychol. 2019, 48, 28–53. [Google Scholar] [CrossRef]
- Sheets-Johnstone, M. The Silence of Movement: A Beginning Empirical Phenomenological Exposition of the Powers of a Corporeal Semiotics. Am. J. Semiot. 2019, 35, 33–54. [Google Scholar] [CrossRef]
- Laverack, M.S. External proprioceptors. In Structure and Function of Proprioceptors in the Invertebrates; Mill, P.J., Ed.; Chapman and Hall: London, UK, 1976; pp. 1–63. [Google Scholar]
- Lissman, H.W. Proprioceptors. In Physiological Mechanisms in Animal Behaviour: Symposia of the Society for Experimental Biology; Academic Press: New York, NY, USA, 1950; Volume 4, pp. 34–59. [Google Scholar]
- Sheets-Johnstone, M. Consciousness: A natural history. J. Conscious. Stud. 1998, 5, 260–294. [Google Scholar]
- Sheets-Johnstone, M. The Primacy of Movement, Expanded, 2nd ed.; First published 1999; John Benjamins: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Scheerer, E. Muscle sense and innervation feelings: A chapter in the history of perception and action. In Perspectives on Perception and Action; Heuer, H., Sanders, A.F., Eds.; Erlbaum: Hillsdale, NJ, USA, 1987; pp. 171–194. [Google Scholar]
- Husserl, E. Cartesian Meditations; Springer: Dordrecht, The Netherlands, 1973. [Google Scholar]
- Fuchs, T. The phenomenology of body memory. In Body Memory, Metaphor and Movement; Koch, S., Fuchs, T., Summa, M., Müller, C., Eds.; John Benjamins: Amsterdam, The Netherlands, 2012; pp. 9–22. [Google Scholar]
- Ey, H. Treatise on Hallucinations I–II; Psyc Info Database Record: Washington, DC, USA, 1973. [Google Scholar]
- Kimura, B. Écrits De Psychopathologie Phénomenologique; PUF: Paris, France, 1992. [Google Scholar]
- Stephensen, H.; Parnas, J. What can self-disorders in schizophrenia tell us about the nature of subjectivity? A psychopathological investigation. Phenomenol. Cogn. Sci. 2017, 17, 629–642. [Google Scholar] [CrossRef] [Green Version]
- Sheets-Johnstone, M. Why Kinesthesia, Tactility and Affectivity Matter: Critical and Constructive Perspectives. Body Soc. 2018, 1–29. [Google Scholar] [CrossRef]
- Sheets-Johnstone, M. On the origin, nature, and genesis of habit. Phenomenol. Mind 2014, 6, 76–89. [Google Scholar]
- Sheets-Johnstone, M. Embodiment on trial. Cont. Philos. Rev. 2015, 48, 23–39. [Google Scholar] [CrossRef]
- Sheets-Johnstone, M. Darwin’s empirical evidence: Commentary on ‘Caterpillars, consciousness and the origin of mind’ by Arthur Reber. Anim. Sentience Interdiscip. J. Anim. Feel. 2016, 11, 1. [Google Scholar]
- Frith, C. The Self in Action: Lessons from Delusions of Control. Conscious. Cogn. 2005, 14, 752–770. [Google Scholar] [CrossRef]
- Luria, A.R. The Working Brain: An Introduction to Neuropsychology; Haigh, B., Translator; Penguin Books: Harmondsworth, UK, 1973. [Google Scholar]
- Sheets-Johnstone, M. Kinesthetic memory. Special issue on ‘Embodiment and Awareness’. Theor. Et Hist. Sci. Int. J. Interdiscip. Stud. 2003, 7, 69–92. [Google Scholar]
- Ghez, C.; Gordon, J.; Ghilardi, M.F. Impairments of reaching movements in patients without proprioception. II. Effects of visual information on accuracy. J. Neurophysiol. 1995, 73, 361–372. [Google Scholar] [CrossRef]
- Cole, J. Losing Touch: A Man without His Body; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Izumizaki, M.; Tsuge, M.; Akai, L.; Proske, U.; Homma, I. The illusion of changed position and movement from vibrating one arm is altered by vision or movement of the other arm. J. Physiol. 2010, 588, 2789–2800. [Google Scholar] [CrossRef]
- Chancel, M.; Blanchard, C.; Guerraz, M.; Montagnini, A.; Kavounoudias, A. Optimal visuotactile integration for velocity discrimination of self-hand movements. J. Neurophysiol. 2016, 116, 1522–1535. [Google Scholar] [CrossRef] [Green Version]
- Holmes, N.P.; Crozier, G.; Spence, C. When mirrors lie: “Visual capture” of arm position impairs reaching performance. Cogn. Affect. Behav. Neurosci. 2004, 4, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Tsuge, M.; Izumizaki, M.; Kigawa, K.; Atsumi, T.; Homma, I. Interaction between vibration-evoked proprioceptive illusions and mirror-evoked visual illusions in an arm-matching task. Exp. Brain Res. 2012, 223, 541–551. [Google Scholar] [CrossRef]
- Rabin, E.; Gordon, A.M. Influence of fingertip contact on illusory arm movements. J. Appl. Physiol. 2004, 96, 1555–1560. [Google Scholar] [CrossRef] [PubMed]
- Craske, B. Perception of impossible limb positions induced by tendon vibration. Science 1977, 196, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Ferrell, W.R. The effect of acute joint distension on mechanoreceptor discharge in the knee of the cat. Q. J. Exp. Physiol. 1987, 72, 493–499. [Google Scholar] [CrossRef]
- Lackner, J.R. Some proprioceptive influences on the perceptual representation of body shape and orientation. Brain 1988, 111, 281–297. [Google Scholar] [CrossRef]
- Goodwin, G.M.; McCloskey, D.I.; Matthews, P.B.C. The contribution of muscle afferents to kinaesthesia shown by vibration induced illusions of movement and by the effects of paralysing joint afferents. Brain 1972, 95, 705–748. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.W.; Taylor, J.L.; Seizova-Cajic, T. Muscle vibration-induced illusions: Review of contributing factors, taxonomy of illusions and user’s guide. Multisens. Res. 2017, 30, 25–63. [Google Scholar] [CrossRef]
- Romaiguère, P.; Anton, J.-L.; Roth, M.; Casini, L.; Roll, J.-P. Motor and parietal cortical areas both underlie kinaesthesia. Cogn. Brain Res. 2003, 16, 74–82. [Google Scholar] [CrossRef]
- Berlucchi, G.; Aglioti, S.M. The body in the brain revisited. Exp. Brain Res. 2010, 200, 25–35. [Google Scholar] [CrossRef]
- De Vignemont, F. Body schema and body image—Pros and cons. Neuropsychologia 2010, 48, 669–680. [Google Scholar] [CrossRef] [Green Version]
- Proske, U.; Gandevia, S.C. The proprioceptive senses: Their roles in signaling body shape, body position and movement, and muscle force. Physiol. Rev. 2012, 92, 1651–1697. [Google Scholar] [CrossRef]
- Longo, M.R.; Haggard, P. An implicit body representation underlying human position sense. Proc. Natl. Acad. Sci. USA 2010, 107, 11727–11732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naito, E.; Ehrsson, H.H. Somatic sensation of hand-object interactive movement is associated with activity in the left inferior parietal cortex. J. Neurosci. 2006, 26, 3783–3790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Head, H.; Holmes, G. Sensory disturbances from cerebral lesions. Brain 1911, 34, 102–254. [Google Scholar] [CrossRef] [Green Version]
- Brecht, M. The body model theory of somatosensory cortex. Neuron 2017, 94, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Gandevia, S.C.; Phegan, C.M. Perceptual distortions of the human body image produced by local anaesthesia, pain and cutaneous stimulation. J. Physiol. 1999, 514, 609–616. [Google Scholar] [CrossRef]
- Naito, E.; Morita, T.; Amemiya, K. Body representations in the human brain revealed by kinesthetic illusions and their essential contributions to motor control and corporeal awareness. Neurosci. Res. 2016, 104, 16–30. [Google Scholar] [CrossRef]
- Ramachandran, V.S.; Altschuler, E.L. The use of visual feedback, in particular mirror visual feedback, in restoring brain function. Brain 2009, 132, 1693–1710. [Google Scholar] [CrossRef] [Green Version]
- Husserl, E. Lecciones De Filosofía De La Consciencia Interna Del Tiempo; Editorial Trotta, S.A.: Madrid, Spain, 2002. [Google Scholar]
- Sessions, R. The composer and his message. In The Intent of the Artist; Centeno, A., Ed.; Princeton University Press: Princeton, NJ, USA, 1941; pp. 101–134. [Google Scholar]
- Gallagher, S. Time in Action. Oxford Handbook on Time; Callendar, C., Ed.; Oxford Univerity Press: Oxford, UK, 2011. [Google Scholar]
- Zahavi, D. Inner-time consciousness and pre-reflective self-awareness. In The New Husserl: A Critical Reader; Welton, D., Ed.; Indiana University Press: Bloomington, IN, USA, 2003; pp. 157–180. [Google Scholar]
- Husserl, E. Analyses Concerning Passive and Active Synthesis: Lectures on Transcendental Logic; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Fuchs, T. Phenomenology & psychopathology. In Handbook of Phenomenology & Cognitive Science; Schmicking, D., Gallagher, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Brentano, F. Psychology from an Empirical Standpoint; Routledge: London, UK, 2014. [Google Scholar] [CrossRef]
- Fuchs, T. Time, the Body, and the Other in Phenomenology and Psychopathology; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar] [CrossRef]
- Fuchs, T. The Cyclical Time of the Body and its Relation to Linear Time. J. Conscious. Stud. 2021, 25, 47–65. [Google Scholar] [CrossRef]
- Wittmann, M. The inner experience of time. Philos. Trans. R. Soc. Lond. Biol. Sci. 2009, 364, 1955–1967. [Google Scholar] [CrossRef]
- Wittmann, M. Moments in time. Front. Integr. Neurosci. 2011, 5, 66. [Google Scholar] [CrossRef] [Green Version]
- Craig, A.D. Emotional moments across time: A possible neural basis for time perception in the anterior insula. Philos. Trans. R. Soc. Lond. Biol. Sci. 2009, 364, 1933–1942. [Google Scholar] [CrossRef] [Green Version]
- Merleau-Ponty, M. Phenomenology of Perception [Phénoménolgie de la perception]; Smith, C., Translator; Routledge & Kegan Paul: New York, NY, USA, 1962. [Google Scholar]
- Fuchs, T. Temporality and psychopathology. Phenomenol. Cogn. Sci. 2013, 12, 75–104. [Google Scholar] [CrossRef]
- Moskalewicz, M. Temporal delusion: ‘Duality’ accounts of time and double orientation to reality in depressive psychosis. J. Conscious. Stud. 2018, 25, 163–183. [Google Scholar]
- Moskalewicz, M.; Schwartz, M.A. Temporal experience as a core quality in mental disorders. Phenomenol. Cogn. Sci. 2020, 19, 207–216. [Google Scholar] [CrossRef] [Green Version]
- Minkowski, E. Lived Time. In Phenomenological and Psychopathological Studies; Metzel, N., Translator; Northwestern University Press: Evanston, IL, USA, 1970. [Google Scholar]
- Husserl, E. Experience and Judgment; Churchill, J.S.; Ameriks, K., Translators; Northwestern University Press: Evanston, IN, USA, 1973. [Google Scholar]
- Curtis, H. Biology, 2nd ed.; Worth: New York, NY, USA, 1975. [Google Scholar]
- Depraz, N.; Varela, F. At the source of time: Valence and the constitutional dynamics of affect. J. Conscious. Stud. 2005, 12, 61–81. [Google Scholar]
- Straus, E.; Ey, H.; Natanson, M. Psychiatry & Philosophy; Springer: New York, NY, USA, 1969. [Google Scholar]
- Straus, E. Disorders of Personal Time in Depressive States. South. Med. Journal. 1947, 40, 254–259. [Google Scholar] [CrossRef]
- Nilsson, M.P. Primitive Time Reckoning: A study in the Origins and First Development of Counting Time Among the Primitive and Early Culture Peoples; CWK Gleerup: Lund, Sweden, 1920. [Google Scholar]
- Harrison, M.L. The Nature and Development of Concepts of Time Among Young Children. Elem. Sch. J. 1934, 34, 507–514. [Google Scholar] [CrossRef]
- Fischer, F. The Structure of Time & Schizophrenia. J. Neurol. Psychiatry 1929, 121, 544–574. [Google Scholar]
- Lewis, A. The Experience of Time in Mental Disorder. Proc. R. Soc. Med. 1932, 25, 611–620. [Google Scholar] [CrossRef]
- Fuchs, T. The temporal structure of intentionality and its disturbance in schizophrenia. Psychopathology 2007, 40, 229–235. [Google Scholar] [CrossRef]
- Schilder, P. The Psychopathology of Time. J. Psychoanal. Psychol. Front. Appl. 1935, 21, 261–278. [Google Scholar] [CrossRef]
- Fryxell, A.R.P. Psychopathologies of time: Defining mental illness in early 20th century psychiatry. Hist. Hum. Sci. 2019, 32, 3–31. [Google Scholar] [CrossRef]
- Gozé, T.; Moskalewicz, M.; Schwartz, M.A.; Naudin, J.; Micoulaud-Franchi, J.A.; Cermolacce, M. Is “praecox feeling” a phenomenological fossil? A preliminary study on diagnostic decision making in schizophrenia. Schizophr. Res. 2019, 204, 413–414. [Google Scholar] [CrossRef]
- Moskalewicz, M.; Kordel, P.; Brejwo, A.; Schwartz, M.A.; Gozé, T. Psychiatrists Report Praecox Feeling and Find It Reliable. A Cross-Cultural Comparison. Front. Psychiatry 2021, 12, 642322. [Google Scholar] [CrossRef] [PubMed]
- Northoff, G.; Sandsten, K.E.; Nordgaard, J.; Kjaer, T.W.; Parnas, J. The Self and Its Prolonged Intrinsic Neural Timescale in Schizophrenia. Schizophr. Bull. 2021, 47, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, W.J.; Beninger, R.J. Behavioural Sensitization in Addiction, Schizophrenia, Parkinson’s Disease and Dyskinesia. Neurotox. Res. 2006, 10, 161–166. [Google Scholar] [CrossRef]
- Williamson, P. Are Anticorrelated Networks in the Brain Relevant to Schizophrenia? Schizophr. Bull. 2007, 33, 994–1003. [Google Scholar] [CrossRef] [Green Version]
- Shafiei, G.; Zeighami, Y.; Clark, C.A.; Coull, J.T.; Nagano-Saito, A.; Leyton, M.; Dagher, A.; Miši’c, B. Dopamine Signaling Modulates the Stability and Integration of Intrinsic Brain Networks. Cereb. Cortex 2019, 29, 397–409. [Google Scholar] [CrossRef] [Green Version]
- Greicius, M.D.; Krasnow, B.; Reiss, A.L.; Menon, V. Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. USA 2003, 100, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Uddin, L.Q.; Yeo, B.T.T.; Spreng, R.N. Towards a Universal Taxonomy of Macro-scale Functional Human Brain Networks. Brain Topogr. 2019, 32, 926–942. [Google Scholar] [CrossRef]
- Bolton, T.A.W.; Wotruba, D.; Buechler, R.; Theodoridou, A.; Michels, L.; Kollias, S.; Rössler, W.; Heekeren, K.; Van De Ville, D. Triple Network Model Dynamically Revisited: Lower Salience Network State Switching in Pre-psychosis. Front. Physiol. 2020, 11, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoyanov, D. Perspectives before incremental trans-disciplinary cross-validation of clinical self-evaluation tools and functional MRI in psychiatry: 10 years later. Front. Psychiatry 2022, 13, 999680. [Google Scholar] [CrossRef] [PubMed]
- Menon, V. Salience Network. Brain Mapping; Elsevier: Amsterdam, The Netherlands, 2015; pp. 597–611. [Google Scholar]
- Liu, K.K.L.; Bartsch, R.P.; Lin, A.; Mantegna, R.N.; Ivanov, P.C. Plasticity of brain wave network interactions and evolution across physiologic states. Front. Neural Circ. 2015, 9, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preti, M.G.; Bolton, T.A.W.; Van De Ville, D. The dynamic functional connectome: State-of-the-art and perspectives. Neuroimage 2017, 160, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Karahanoglu, F.I.; Van De Ville, D. Transient brain activity disentangles fMRI resting-state dynamics in terms of spatially and temporally overlapping networks. Nat. Commun. 2015, 6, 7751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schultze-Lutter, F.; Debbané, M.; Theodoridou, A.; Wood, S.J.; Raballo, A.; Michel, C.; Schmidt, S.J.; Kindler, J.; Ruhrmann, S.; Uhlhaas, P.J. Revisiting the basic symptom concept: Toward translating risk symptoms for psychosis into neurobiological targets. Front. Psychiatry 2016, 7, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yung, A.R.; Mcgorry, P.D. Prediction of psychosis: Setting the stage. Br. J. Psychiatry 2007, 191, s1–s8. [Google Scholar] [CrossRef] [Green Version]
- Menon, V. Large-scale brain networks and psychopathology: A unifying triple network model. Trends Cogn. Sci. 2011, 15, 483–506. [Google Scholar] [CrossRef]
- Nomi, J.S.; Farrant, K.; Damaraju, E.; Rachakonda, S.; Calhoun, V.D.; Uddin, L.Q. Dynamic functional network connectivity reveals unique and overlapping profiles of insula subdivisions. Hum. Brain Mapp. 2016, 37, 1770–1787. [Google Scholar] [CrossRef] [Green Version]
- Shine, J.; Matar, E.; Ward, P.; Frank, M.J.; Moustafa, A.; Pearson, M.; Naismith, S.; Lewis, S. Freezing of gait in Parkinson’s disease is associated with functional decoupling between the cognitive control network and the basal ganglia. Brain 2013, 136, 3671–3681. [Google Scholar] [CrossRef] [Green Version]
- Nekovarova, T.; Fajnerova, I.; Horacek, J.; Spaniel, F. Bridging disparate symptoms of schizophrenia: A triple network dysfunction theory. Front. Behav. Neurosci. 2014, 8, 171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smallwood, J.; Tipper, C.; Brown, K.; Baird, B.; Engen, H.; Michaels, J.R.; Grafton, S.; Schooler, J.W. Escaping the here and now: Evidence for a role of the default mode network in perceptually decoupled thought. NeuroImage 2013, 69, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Satterthwaite, T.D.; Baker, J.T. How can studies of resting-state functional connectivity help us understand psychosis as a disorder of brain development? Curr. Opin. Neurobiol. 2015, 30, 85–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christoff, K.; Mills, C.; Andrews-Hanna, J.R.; Irving, Z.C.; Thompson, E.; Fox, K.C.R.; Kam, J.W.Y. Mind-Wandering as a Scientific Concept: Cutting through the Definitional Haze. Trends Cogn. Sci. 2018, 22, 957–959. [Google Scholar] [CrossRef] [PubMed]
- Leech, R.; Sharp, D.J. The role of the posterior cingulate cortex in cognition and disease. Brain 2013, 137, 12–32. [Google Scholar] [CrossRef]
- Zabelina, D.L.; Andrews-Hanna, J.R. Dynamic network interactions supporting internally-oriented cognition. Curr. Opin. Neurobiol. 2016, 40, 86–93. [Google Scholar] [CrossRef]
- Menon, V.; Uddin, L.Q. Saliency, switching, attention and control: A network model of insula function. Brain Struct. Funct. 2010, 214, 655–667. [Google Scholar] [CrossRef] [Green Version]
- Damaraju, E.; Allen, E.A.; Belger, A.; Ford, J.M.; McEwen, S.; Mathalon, D.H.; Mueller, B.A.; Pearlson, G.D.; Potkin, S.G.; Preda, A.; et al. Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. Neuroimage 2014, 5, 298–308. [Google Scholar] [CrossRef] [Green Version]
- Robinson, J.D.; Wagner, N.; Northoff, G. Is the sense of agency in schizophrenia influenced by resting-state variation in self-referential regions of the brain? Schizophr. Bull. 2016, 42, 270–276. [Google Scholar] [CrossRef] [Green Version]
- Nelson, B.; Whitford, T.; Lavoie, S.; Sass, L. What are the neurocognitive correlates of basic self-disturbance in schizophrenia? Integrating phenomenology and neurocognition: Part 2 (aberrant salience). Schizophr. Res. 2014, 152, 20–27. [Google Scholar] [CrossRef]
- Lebedev, A.V.; Lövdén, M.; Rosenthal, G.; Feilding, A.; Nutt, D.J.; CarhartHarris, R.L. Finding the self by losing the self: Neural correlates of ego-dissolution under psilocybin. Hum. Brain Mapp. 2015, 36, 3137–3153. [Google Scholar] [CrossRef] [PubMed]
- Ryali, S.; Supekar, K.; Chen, T.; Kochalka, J.; Cai, W.; Nicholas, J.; Padmanabhan, A.; Menon, V. Temporal dynamics and developmental maturation of salience, default and central-executive network interactions revealed by variational Bayes hidden Markov modelling. PLoS Comput. Biol. 2016, 12, 1005138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wotruba, D.; Michels, L.; Buechler, R.; Metzler, S.; Theodoridou, A.; Gerstenberg, M.; Walitza, S.; Kollias, S.; Rössler, W.; Heekeren, K. Aberrant coupling within and across the default mode, task-positive, and salience network in subjects at risk for psychosis. Schizophr. Bull. 2014, 40, 1095–1104. [Google Scholar] [CrossRef] [Green Version]
- Husserl, E. Ideas pertaining to a pure phenomenology and to a phenomenological philosophy. In Second Book (Ideas II): Studies in the Phenomenology of Constitution; Rojcewicz, R.; Schuwer, A., Translators; Kluwer Academic: Dordrecht, The Netherlands, 1989. [Google Scholar]
- Ricoeur, P. Oneself as Another; The Chicago University Press: Chicago, IL, USA, 1992. [Google Scholar]
- Aryutova, K.; Stoyanov, D. Pharmaco-Magnetic Resonance as a Tool for Monitoring the Medication-Related Effects in the Brain May Provide Potential Biomarkers for Psychotic Disorders. Int. J. Mol. Sci. 2021, 22, 9309. [Google Scholar] [CrossRef] [PubMed]
- Andrews-Hanna, J.R.; Smallwood, J.; Spreng, R.N. The default network and self-generated thought: Component processes, dynamic control and clinical relevance. Ann. N. Y. Acad. Sci. 2014, 1316, 29–52. [Google Scholar] [CrossRef]
- Irving, Z.; Thompson, Z. The Philosophy of Mind-Wandering. In Oxford Handbook of Spontaneous Thought; Oxford Univerity Press: Oxford, UK, 2018. [Google Scholar]
- Kam, J.W.Y.; Handy, T.C. The neurocognitive consequences of the wandering mind: A mechanistic account of sensory-motor decoupling. Front. Psychol. 2013, 4, 725. [Google Scholar] [CrossRef] [Green Version]
- Caligiore, D.; Pezzulo, G.; Baldasarre, G.; Bostan, A.; Strick, P.; Doya, K.; Helmich, R.; Dirkx, M.; Houk, J.; Jorntell, H.; et al. Consensus Paper: Towards a Systems-Level View of Cerebellar Function: The Interplay between Cerebellum, Basal Ganglia, and Cortex. Cerebellum 2016. [Google Scholar] [CrossRef] [Green Version]
- Gurney, K.N.; Humphries, M.D.; Redgrave, P. A New Framework for Cortico-Striatal Plasticity: Behavioural Theory Meets In Vitro Data at the Reinforcement-Action Interface. PLoS Biol. 2015, 13, e1002034. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez, C.; Moskalewicz, M. Kinesthesia and Temporal Experience: On the ‘Knitting and Unknitting’ Process of Bodily Subjectivity in Schizophrenia. Diagnostics 2022, 12, 2720. https://doi.org/10.3390/diagnostics12112720
Sánchez C, Moskalewicz M. Kinesthesia and Temporal Experience: On the ‘Knitting and Unknitting’ Process of Bodily Subjectivity in Schizophrenia. Diagnostics. 2022; 12(11):2720. https://doi.org/10.3390/diagnostics12112720
Chicago/Turabian StyleSánchez, Camilo, and Marcin Moskalewicz. 2022. "Kinesthesia and Temporal Experience: On the ‘Knitting and Unknitting’ Process of Bodily Subjectivity in Schizophrenia" Diagnostics 12, no. 11: 2720. https://doi.org/10.3390/diagnostics12112720
APA StyleSánchez, C., & Moskalewicz, M. (2022). Kinesthesia and Temporal Experience: On the ‘Knitting and Unknitting’ Process of Bodily Subjectivity in Schizophrenia. Diagnostics, 12(11), 2720. https://doi.org/10.3390/diagnostics12112720