Unraveling the Puzzle: Oocyte Maturation Abnormalities (OMAS)
Abstract
1. Introduction
2. The Orchestration of Meiotic Arrest
3. Oocyte Maturation and the Resumption of Meiosis
4. Nomenclature of the Oocyte Maturation Abnormalities
5. Types of OMAS
- a
- Dysmorphic and/or Degenerated Oocytes
- b
- Empty Follicle Syndrome (EFS)
- c
- Premature Ovarian Failure (POF)/Premature Ovarian Insufficiency (POI)
- d
- Resistant ovary syndrome (ROS)
- e
- Oocyte Maturation Arrest (OMA, in accordance with Hatirnaz and Dahan classification)
- GV Arrest (Type I OMA)
- MI Arrest (Type II OMA)
- MII Arrest (Type III OMA)
- GV and MI Arrest (Type IV OMA)
- Mixed Arrest (Type V OMA)
- f) Unclassified types which also exist (with causes which remain unknown)
- f-1) Empty zona-GV arrest
- f-2) GV-MII arrest
- f-3) MI and MII arrest
- Issues left to ponder
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
OMA | Oocyte maturation arrest |
OMAS | Oocyte maturation abnormalities |
EFS | Empty follicle syndrome |
POI | Premature ovarian insufficiency |
POF | Premature ovarian failure |
GV | Germinal vesicle |
MI | Metaphase I |
MII | Metaphase II |
TNF-ALPHA | Tumor necrosis factor-alpha |
ZCF | Zygotic cleavage failure |
GVBD | Germinal vesicle breakdown |
c-AMP | Cyclic adenosine monophosphate |
c-GMP | Cyclic guanosine monophosphate |
ROS | Resistant ovary syndrome |
HCG | Human chorionic gonadotropin |
GnRH | Gonadotropin releasing hormone |
AMH | Amtimullerian hormone |
FF | Fertilization failure |
IVM | In vitro maturation |
PANX1 | Pannexin 1 |
Ccnb3 | Cyclin B |
GPR3 | Gs-protein coupled receptor 3 |
EGF | Epidermal growth factor |
MAPK | MAP Kinase |
CSF | Cytostatin factor |
WES | Whole genome exomic study |
References
- Sen, A.; Caiazza, F. Oocyte Maturation A story of arrest and release. Front. Biosci. 2013, S5, 451–477. [Google Scholar] [CrossRef] [PubMed]
- Celik, O.; Celik, N.; Gungor, S.; Haberal, E.T.; Aydin, S. Selective regulation of oocyte meiotic events enhances progress in fertility preservation methods. Biochem. Insights 2015, 8, BCI-S28596. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hatırnaz, Ş.; Hatırnaz, E.S.; Kaya, A.E.; Hatırnaz, K.; Çalışkan, C.S.; Sezer, Ö.; Güngor, N.D.; Demirel, C.; Baltacı, V.; Tan, S.; et al. Oocyte maturation abnormalities—A systematic review of the evidence and mechanisms in a rare but difficult to manage fertility pheneomina. J. Turk. Soc. Obstet. Gynecol. 2022, 19, 60–80. [Google Scholar] [CrossRef] [PubMed]
- Beall, S.; Brenner, C.; Segars, J. Oocyte maturation failure: A syndrome of bad eggs. Fertil. Steril. 2010, 94, 2507–2513. [Google Scholar] [CrossRef]
- Hourvitz, A.; Maman, E.; Brengauz, M.; Machtinger, R.; Dor, J. In vitro maturation for patients with repeated in vitro fertilization failure due to “oocyte maturation abnormalities”. Fertil. Steril. 2010, 94, 496–501. [Google Scholar] [CrossRef]
- Hatirnaz, S.; Başbuğ, A.; Hatirnaz, E.; Tannus, S.; Hatirnaz, K.; Bakay, K.; Dahan, M.H. Can in vitro maturation overcome cycles with repeated oocyte maturation arrest? A classification system for maturation arrest and a cohort study. Int. J. Gynecol. Obstet. 2020, 153, 496–502. [Google Scholar] [CrossRef]
- Hatirnaz, S.; Hatirnaz, E.; Dahan, M.; Ata, B.; Basbug, A.; Hatirnaz, K.; Tan, S. Dual Stimulation in-vitro-maturation (Duostim IVM) for overcoming oocyte maturation arrest, resulting in embryo transfer and livebirth. In Proceedings of the 37th Virtual Annual Meeting of ESHRE, Online Congress, 26 June–1 July 2021. [Google Scholar]
- Mihm, M.; Gangooly, S.; Muttukrishna, S. The normal menstrual cycle in women. Anim. Reprod. Sci. 2011, 124, 229–236. [Google Scholar] [CrossRef]
- Pan, B.; Li, J. The art of oocyte meiotic arrest regulation. Reprod. Biol. Endocrinol. 2019, 17, 8. [Google Scholar] [CrossRef]
- Lincoln, A.J.; Wickramasinghe, D.; Stein, P.; Schultz, R.M.; Palko, M.E.; De Miguel, M.P.; Tessarollo, L.; Donovan, P.J. Cdc25b phosphatase is required for resumption of meiosis during oocyte maturation. Nat. Genet. 2002, 30, 446–449. [Google Scholar] [CrossRef]
- Liang, R.; Yu, W.-D.; Du, J.-B.; Yang, L.-J.; Yang, J.-J.; Xu, J.; Shang, M.; Guo, J.-Z. Cystathionine β synthase participates in murine oocyte maturatione mediated by homocysteine. Reprod. Toxicol. 2007, 24, 89–96. [Google Scholar] [CrossRef]
- Mehlmann, L.M. Stops and starts in mammalian oocytes: Recent advances in understanding the regulation of meiotic arrest and oocyte maturation. Reproduction 2005, 130, 791–799. [Google Scholar] [CrossRef]
- Hinckley, M.; Vaccari, S.; Horner, K.; Chen, R.; Conti, M. The G-proteincoupled receptors GPR3 and GPR12 are involved in cAMP signaling and maintenance of meiotic arrest in rodent oocytes. Dev. Biol. 2005, 287, 249–261. [Google Scholar] [CrossRef]
- Burghardt, R.C.; Barhoumi, R.; Sewall, T.C.; Bowen JACyclic, A.M.P. Induces rapid ıncreases in gap junction permeability and changes in the cellular distribution of connexin43. J. Membr. Biol. 1995, 253, 243–253. [Google Scholar] [CrossRef]
- Sandberg, K.; Jig, H.; Clark, A.J.L.; Shapira, H.; Catt, K.J. Cloning and expression of a novel angiotensin I1 receptor subtype. J. Biol. Chem. 1992, 267, 9455–9458. [Google Scholar] [CrossRef]
- Freudzon, L.; Norris, R.P.; Hand, A.R.; Tanaka, S.; Saeki, Y.; Jones, T.L.; Rasenick, M.M.; Berlot, C.H.; Mehlmann, L.M.; Jaffe, L.A. Regulation of meiotic prophase arrest in mouse oocytes by GPR3, a constitutive activator of the Gs G protein. J. Cell Biol. 2005, 171, 255–265. [Google Scholar] [CrossRef]
- Yu, B.; Jayavelu, N.D.; Battle, S.L.; Mar, J.C.; Schimmel, T.; Cohen, J.; Hawkins, R.D. Single-cell analysis of transcriptome and DNA methylome in human oocyte maturation. PLoS ONE 2020, 15, e0241698. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.T. Mammalian egg activation: From Ca2+ spiking to cell cycle progression. Reproduction 2005, 130, 813–823. [Google Scholar] [CrossRef]
- Jones, K.T. Turning it on and off: M-phase promoting factor during meiotic maturation and fertilization. Mol. Hum. Reprod. 2004, 10, 1–5. [Google Scholar] [CrossRef]
- Rudak, E.; Dor, J.; Kimchi, M.; Goldman, B.; Levran, D.; Mashiach, S. Anomalies of human oocytes from infertile women undergoing treatment by in vitro fertilization. Fertil. Steril. 1990, 54, 292–296. [Google Scholar] [CrossRef]
- Levran, D.; Farhi, J.; Nahum, H.; Glezerman, M.; Weissman, A. Maturation arrest of human oocytes as a cause of infertility. Hum. Reprod. 2002, 17, 1604–1609. [Google Scholar] [CrossRef]
- Galvão, A.; Segers, I.; Smitz, J.; Tournaye, H.; De Vos, M. In vitro maturation (IVM) of oocytes in patients with resistant ovary syndrome and in patients with repeated deficient oocyte maturation. J. Assist. Reprod. Genet. 2018, 35, 2161–2171. [Google Scholar] [CrossRef] [PubMed]
- Sousa, M.; da Silva, J.T.; Cunha, M.; Viana, P.; Oliveira, E.; Sá, R.; Soares, C.; Barros, A. Embryological, clinical and ultrastructural study of human oocytes presenting indented zona pellucida. Zygote 2015, 23, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Sang, Q.; Zhang, Z.; Shi, J.; Sun, X.; Li, B.; Yan, Z.; Xue, S.; Ai, A.; Lyu, Q.; Li, W.; et al. A pannexin 1 channelopathy causes human oocyte death. Sci. Transl. Med. 2019, 11, eaav8731. [Google Scholar] [CrossRef] [PubMed]
- Penuela, S.; Gehi, R.; Laird, D.W. The biochemistry and function of pannexin channels. Biochim. Biophys. Acta BBA Biomembr. 2013, 1828, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, G.R.; Yadav, P.K.; Yadav, A.K.; Tiwari, M.; Gupta, A.; Sharma, A.; Pandey, A.N.; Pandey, A.K.; Chaube, S.K. Necroptosis in stressed ovary. J. Biomed. Sci. 2019, 26, 11. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, G.R.; Yadav, P.K.; Yadav, A.K.; Tiwari, M.; Gupta, A.; Sharma, A.; Sahu, K.; Pandey, A.N.; Pandey, A.K.; Chaube, S.K. Necrosis and necroptosis in germ cell depletion from mammalian ovary. J. Cell. Physiol. 2018, 234, 8019–8027. [Google Scholar] [CrossRef] [PubMed]
- Coulam, C.B.; Bustillo, M.; Schulman, J.D. Empty follicle syndrome. Fertil. Steril. 1986, 46, 1153–1155. [Google Scholar] [CrossRef]
- Zreik, T.; Garcia-Velasco, J.; Vergara, T.; Arici, A.; Olive, D.; Jones, E. Empty follicle syndrome: Evidence for recurrence. Hum. Reprod. 2000, 15, 999–1002. [Google Scholar] [CrossRef]
- Uygur, D.; Alkan, R.N.; Batuoğlu, S. Recurrent empty follicle syndrome. J. Assist. Reprod. Genet. 2003, 20, 390–392. [Google Scholar] [CrossRef]
- Vutyavanich, T.; Piromlertamorn, W.; Ellis, J. Immature oocytes in “apparent empty follicle syndrome”: A case report. Case Rep. Med. 2010, 2010, 367505. [Google Scholar] [CrossRef][Green Version]
- Revelli, A.; Carosso, A.; Grassi, G.; Gennarelli, G.; Canosa, S.; Benedetto, C. Empty follicle syndrome revisited: Definition, incidence, aetiology, early diagnosis and treatment. Reprod. Biomed. Online 2017, 35, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Jee, C.J. Empty follicle syndrome. Clin. Exp. Reprod. Med. 2012, 39, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Baum, M.; Machtinger, R.; Yerushalmi, G.M.; Maman, E.; Seidman, D.S.; Dor, J.; Hourvitz, A. Recurrence of empty follicle syndrome with stimulated IVF cycles. Gynecol. Endocrinol. 2012, 28, 293–295. [Google Scholar] [CrossRef] [PubMed]
- Yakovi, S.; Izhaki, I.; Ben-Ami, M.; Younis, J.S. Does the empty follicle syndrome occur in cases of low number of maturing follicles in assisted reproduction? Gynecol. Endocrinol. 2019, 35, 305–308. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Dai, X.; Sun, Y.; Lu, Y.; Zhou, C.; Miao, Y.; Wang, Y.; Xiong, B. Stag3 regulates microtubule stability to maintain euploidy during mouse oocyte meiotic maturation. Oncotarget 2017, 8, 1593–1602. [Google Scholar] [CrossRef] [PubMed]
- Castillo, J.C.; Garcia-Velasco, J.; Humaidan, P. Empty follicle syndrome after GnRHa triggering versus hCG triggering in COS. J. Assist. Reprod. Genet. 2012, 29, 249–253. [Google Scholar] [CrossRef]
- Nelson, L.C. Clinical practice. Primary ovarian insufficiency. N. Engl. J. Med. 2009, 360, 606–614. [Google Scholar] [CrossRef]
- Jiao, S.; Yang, Y.; Chen, S. Molecular genetics of infertility: Loss-offunction mutations in humans and corresponding knockout/mutated mice. Hum. Reprod. Update 2021, 27, 154–189. [Google Scholar] [CrossRef]
- Bouilly, J.; Beau, I.; Barraud, S.; Bernard, V.; Azibi, K.; Fagart, J.; Fèvre, A.; Todeschini, A.L.; Veitia, R.A.; Beldjord, C.; et al. Identification of multiple gene mutations accounts for a new genetic architecture of primary ovarian ınsufficiency. J. Clin. Endocrinol. Metab. 2016, 101, 4541–4550. [Google Scholar] [CrossRef]
- Chapman, C.; Cree, L.; Shelling, A. The genetics of premature ovarian failure: Current perspectives. Int. J. Women’s Health 2015, 7, 799–810. [Google Scholar] [CrossRef]
- Fassnacht, W.; Mempel, A.; Strowitzki, T.; Vogt, P.H. Premature Ovarian Failure (POF) syndrome: Towards the molecular clinical analysis of its genetic complexity. Curr. Med. Chem. 2006, 13, 1397–1410. [Google Scholar] [CrossRef] [PubMed]
- Luisi, S.; Orlandini, C.; Regini, C.; Pizzo, A.; Vellucci, F.; Petraglia, F. Premature ovarian insufficiency: From pathogenesis to clinical management. J. Endocrinol. Investig. 2015, 38, 597–603. [Google Scholar] [CrossRef] [PubMed]
- European Society for Human Reproduction and Embryology (ESHRE) Guideline Group on POI; Webber, M.L.; Davies, R.; Anderson, J.; Bartlett, D.; Braat, B.; Cartwright, R.; Cifkova, S.; de Muinck Keizer-Schrama, E.; Hogervorst, F.; et al. VermeulenESHRE Guideline: Management of women with prematüre ovarian insufficiency. Hum. Reprod. 2016, 31, 926–937. [Google Scholar] [PubMed]
- De Vos, M.; Devroey, P.; Fauser, B.J.M. Primary ovarian insufficiency. Lancet 2010, 376, 911–921. [Google Scholar] [CrossRef]
- Welt, K.C. Primary ovarian insufficiency: A more accurate term for prematüre ovarian failure. Clin. Endocrinol. 2008, 68, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Chae-Kim, J.J.; Gavrilova-Jordan, L. Premature ovarian ınsufficiency: Procreative management and preventive strategies. Biomedicines 2019, 7, 2. [Google Scholar] [CrossRef]
- Jiao, X.; Zhang, H.; Ke, H.; Zhang, J.; Cheng, L.; Liu, Y.; Qin, Y.; Chen, Z.-J. Premature ovarian ınsufficiency: Phenotypic characterization within different etiologies. J. Clin. Endocrinol. Metab. 2017, 102, 2281–2290. [Google Scholar] [CrossRef]
- Jones, G.S.; Moraes-Ruehsen, M. A new syndrome of amenorrhae in association with hypergonadotropism and apparently normal ovarian follicular apparatus. Am. J. Obstet. Gynecol. 1969, 104, 597–600. [Google Scholar] [CrossRef]
- Haller-Kikkatalo, K.; Salumets, A.; Uibo, R. Review on autoimmune reactions in female ınfertility: Antibodies to follicle stimulating hormone. Clin. Dev. Immunol. 2011, 2012, 762541. [Google Scholar] [CrossRef]
- Meyer, W.R.; Lavy, G.; DeCherney, A.H.; Visintin, I.; Economy, K.; Luborsky, J.L. Evidence of gonadal and gonadotropin antibodies in women with a suboptimal ovarian response to exogenous gonadotropin. Obstet. Gynecol. 1990, 75, 795–799. [Google Scholar]
- Tucker, E.J.; Grover, S.R.; Bachelot, A.; Touraine, P.; Sinclair, A.H. Premature ovarian insufficiency: New perspectives on genetic cause and phenotypic spectrum. Endocr. Rev. 2016, 37, 609–635. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Pan, P.; Yuan, P.; Qiu, Q.; Yang, D. Successful live birth in a woman with resistant ovary syndrome following in vitro maturation of oocytes. J. Ovarian Res. 2016, 9, 54. [Google Scholar] [CrossRef] [PubMed]
- Grynberg, M.; Peltoketo, H.; Christin-Maître, S.; Poulain, M.; Bouchard, P.; Fanchin, R. First birth achieved after ın vitro maturation of oocytes from a woman endowed with multiple antral follicles unresponsive to follicle-stimulating hormone. J. Clin. Endocrinol. Metab. 2013, 98, 4493–4498. [Google Scholar] [CrossRef] [PubMed]
- Huo, L.-J.; Fan, H.-Y.; Zhong, Z.-S.; Chen, D.-Y.; Schatten, H.; Sun, Q.-Y. Ubiquitin–proteasome pathway modulates mouse oocyte meiotic maturation and fertilization via regulation of MAPK cascade and cyclin B1 degradation. Mech. Dev. 2004, 121, 1275–1287. [Google Scholar] [CrossRef]
- Nakanishi, T.; Kubota, H.; Ishibashi, N.; Kumagai, S.; Watanabe, H.; Yamashita, M.; Kashiwabara, S.-I.; Miyado, K.; Baba, T. Possible role of mouse poly(A) polymerase mGLD-2 during oocyte maturation. Dev. Biol. 2006, 289, 115–126. [Google Scholar] [CrossRef]
- Sang, Q.; Zhou, Z.; Mu, J.; Wang, L. Genetic factors as potential molecular markers of human oocyte and embryo quality. J. Assist. Reprod. Genet. 2021, 38, 993–1002. [Google Scholar] [CrossRef]
- Christou-Kent, M.; Kherraf, Z.E.; Amiri-Yekta, A.; Le Blévec, E.; Karaouzène, T.; Conne, B.; Escoffier, J.; Assou, S.; Guttin, A.; Lambert, E.; et al. PATL2 is a key actor of oocyte maturation whose invalidation causes infertility in women and mice. EMBO Mol. Med. 2018, 10, e8515. [Google Scholar] [CrossRef]
- Huang, L.; Tong, X.; Wang, F.; Luo, L.; Jin, R.; Fu, Y.; Zhou, G.; Li, D.; Song, G.; Liu, Y.; et al. Novel mutations in PATL2 cause female infertility with oocyte germinal vesicle arrest. Hum. Reprod. 2018, 33, 1183–1190. [Google Scholar] [CrossRef]
- Hatırnaz, Ş.; Hatırnaz, E.S.; Başbuğ, A.; Pektaş, M.K.; Erol, O.; Dahan, M.; Tan, S. In vitro maturation with letrozole priming: Can it be a solution for patients with cancerophobia? A pilot study. J. Turk. Soc. Obstet. Gynecol. 2020, 17, 247–252. [Google Scholar] [CrossRef]
- Rose, B.I. The potential of letrozole use for priming in vitro maturation cycles. Facts, Views Vis. ObGyn 2014, 6, 150–155. [Google Scholar]
- Nasmyth, K. How do so few controls so many? Cell 2005, 120, 739–746. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Sang, Q.; Kuang, Y.; Sun, X.; Yan, Z.; Zhang, S.; Shi, J.; Tian, G.; Luchniak, A.; Fukuda, Y.; et al. Mutations in TUBB8 and human oocyte meiotic arrest. N. Engl. J. Med. 2016, 374, 223–232. [Google Scholar] [CrossRef]
- Zhao, L.; Guan, Y.; Wang, W.; Chen, B.; Xu, S.; Wu, L.; Yan, Z.; Li, B.; Fu, J.; Shi, R.; et al. Identification novel mutations in TUBB8 in female infertility and a novel phenotype of large polar body in oocytes with TUBB8 mutations. J. Assist. Reprod. Genet. 2020, 37, 1837–1847. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Li, B.; Li, D.; Yan, Z.; Mao, X.; Xu, Y.; Mu, J.; Li, Q.; Jin, L.; He, L.; et al. Novel mutations and structural deletions in TUBB8: Expanding mutational and phenotypic spectrum of patients with arrest in oocyte maturation, fertilization or early embryonic development. Hum. Reprod. 2016, 32, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Yin, C.; Li, M.; Ma, S.; Cao, Y.; Zhang, C.; Chen, T.; Zhao, H. Mutation analysis of tubulin beta 8 class VIII in infertile females with oocyte or embryonic defects. Clin. Genet. 2021, 99, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Yuan, P.; Zheng, L.; Liang, H.; Li, Y.; Zhao, H.; Li, R.; Lai, L.; Zhang, Q.; Wang, W. A novel mutation in the TUBB8 gene is associated with complete cleavage failure in fertilized eggs. J. Assist. Reprod. Genet. 2018, 35, 1349–1356. [Google Scholar] [CrossRef] [PubMed]
- Eichenlaub-Ritter, U.; Vogt, E.; Cukurcam, S.; Sun, F.; Pacchierotti, F.; Parry, J. Exposure of mouse oocytes to bisphenol A causes meiotic arrest but not aneuploidy. Mutat. Res. Toxicol. Environ. Mutagen. 2008, 651, 82–92. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, B.; Fu, J.; Li, R.; Diao, F.; Li, C.; Chen, B.; Du, J.; Zhou, Z.; Mu, J.; et al. Bi-allelic missense pathogenic variants in TRIP13 cause female ınfertility characterized by oocyte maturation arrest. Am. J. Hum. Genet. 2020, 107, 15–23. [Google Scholar] [CrossRef]
- Sagata, N. Meiotic metaphase arrest in animal oocytes: Its mechanisms and biological significance. Trends Cell Biol. 1996, 6, 22–28. [Google Scholar] [CrossRef]
- Verlhac, M.H.; Kubiak, J.Z.; Clarke, H.J.; Maro, B. Microtubule and chromatin behavior follow MAP kinase activity but not MPF activity during meiosis in mouse oocytes. Development 1994, 120, 1017–1025. [Google Scholar] [CrossRef]
- Meng, T.; Lei, W.; Li, J.; Wang, F.; Zhao, Z.; Li, A.; Wang, Z.; Sun, Q.; Ou, X. Biochemical and biophysical research communications degradation of CCNB3 is essential for maintenance of MII arrest in oocyte. Biochem. Biophys. Res. Commun. 2020, 521, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Fujihara, Y.; Oji, A.; Kojima-Kita, K.; Larasati, T.; Ikawa, M. Co-expression of sperm membrane proteins CMTM2A and CMTM2B is essential for ADAM3 localization and male fertility in mice. J. Cell Sci. 2018, 131, jcs.221481. [Google Scholar] [CrossRef] [PubMed]
- Inoue, N.; Ikawa, M.; Isotani, A.; Okabe, M. The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature. 2005, 434, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Ikawa, M.; Wada, I.; Kominami, K.; Watanabe, D.; Toshimori, K.; Nishimune, Y.; Okabe, M. The putative chaperone calmegin is required for sperm fertility. Nature 1997, 387, 607–611. [Google Scholar] [CrossRef]
- Alazami, A.M.; Awad, S.M.; Coskun, S.; Al-Hassan, S.; Hijazi, H.; Abdulwahab, F.M.; Poizat, C.; Alkuraya, F.S. TLE6 mutation causes the earliest known human embryonic lethality. Genome Biol. 2015, 16, 240. [Google Scholar] [CrossRef]
- Sang, Q.; Li, B.; Kuang, Y.; Wang, X.; Zhang, Z.; Chen, B.; Wu, L.; Lyu, Q.; Fu, Y.; Yan, Z.; et al. Homozygous mutations in WEE2 cause fertilization failure and female ınfertility. Am. J. Hum. Genet. 2018, 102, 649–657. [Google Scholar] [CrossRef]
- Zhao, L.; Xue, S.; Yao, Z.; Shi, J.; Chen, B.; Wu, L.; Sun, L.; Xu, Y.; Yan, Z.; Li, B.; et al. Biallelic mutations in CDC20 cause female infertility characterized by abnormalities in oocyte maturation and early embryonic development. Protein Cell. 2020, 11, 921–927. [Google Scholar] [CrossRef]
- Lipkin, S.M.; Moens, P.B.; Wang, V.; Lenzi, M.; Shanmugarajah, D.; Gilgeous, A.; Thomas, J.; Cheng, J.; Touchman, J.W.; Green, E.D.; et al. Meiotic arrest and aneuploidy in MLH3-deficient mice. Nat. Genet. 2002, 31, 385–390. [Google Scholar] [CrossRef]
- Ryu, K.-Y.; Sinnar, S.A.; Reinholdt, L.G.; Vaccari, S.; Hall, S.; Garcia, M.A.; Zaitseva, T.S.; Bouley, D.M.; Boekelheide, K.; Handel, M.A.; et al. The mouse polyubiquitin gene Ubb ıs essential for meiotic progression. Mol. Cell. Biol. 2008, 28, 1136–1146. [Google Scholar] [CrossRef]
- Zheng, W.; Zhou, Z.; Sha, Q.; Niu, X.; Sun, X.; Shi, J.; Zhao, L.; Zhang, S.; Dai, J.; Cai, S.; et al. Homozygous mutations in BTG4 cause zygotic cleavage failure and female ınfertility. Am. J. Hum. Genet. 2020, 107, 24–33. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hatirnaz, S.; Hatirnaz, E.; Çelik, S.; Çalışkan, C.S.; Tinelli, A.; Malvasi, A.; Sparic, R.; Baldini, D.; Stark, M.; Dahan, M.H. Unraveling the Puzzle: Oocyte Maturation Abnormalities (OMAS). Diagnostics 2022, 12, 2501. https://doi.org/10.3390/diagnostics12102501
Hatirnaz S, Hatirnaz E, Çelik S, Çalışkan CS, Tinelli A, Malvasi A, Sparic R, Baldini D, Stark M, Dahan MH. Unraveling the Puzzle: Oocyte Maturation Abnormalities (OMAS). Diagnostics. 2022; 12(10):2501. https://doi.org/10.3390/diagnostics12102501
Chicago/Turabian StyleHatirnaz, Safak, Ebru Hatirnaz, Samettin Çelik, Canan Soyer Çalışkan, Andrea Tinelli, Antonio Malvasi, Radmila Sparic, Domenico Baldini, Michael Stark, and Michael H. Dahan. 2022. "Unraveling the Puzzle: Oocyte Maturation Abnormalities (OMAS)" Diagnostics 12, no. 10: 2501. https://doi.org/10.3390/diagnostics12102501
APA StyleHatirnaz, S., Hatirnaz, E., Çelik, S., Çalışkan, C. S., Tinelli, A., Malvasi, A., Sparic, R., Baldini, D., Stark, M., & Dahan, M. H. (2022). Unraveling the Puzzle: Oocyte Maturation Abnormalities (OMAS). Diagnostics, 12(10), 2501. https://doi.org/10.3390/diagnostics12102501