Incidence of Acute Kidney Injury in Polytrauma Patients and Predictive Performance of TIMP2 × IGFBP7 Biomarkers for Early Identification of Acute Kidney Injury
Abstract
:1. Background
2. Methods
2.1. Study Design
2.2. Definitions
2.3. Study Endpoints
2.4. Data Collection
2.5. Statistical Analyses
3. Results
3.1. Patients Characteristics
3.2. AKI Development and TIMP2 × IGFBP7
3.3. Renal Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Uchino, S.; Kellum, J.A.; Bellomo, R.; Doig, G.S.; Morimatsu, H.; Morgera, S.; Schetz, M.; Tan, I.; Bouman, C.; Macedo, E.; et al. Acute renal failure in critically ill patients: A multinational, multicenter study. JAMA 2005, 294, 813–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bihorac, A.; Delano, M.; Schold, J.D.; Lopez, M.C.; Nathens, A.B.; Maier, R.V.; Layon, A.J.; Baker, H.; Moldawer, L.L. Incidence, Clinical Predictors, Genomics, and Outcome of Acute Kidney Injury Among Trauma Patients. Ann. Surg. 2010, 252, 158–165. [Google Scholar] [CrossRef] [Green Version]
- Shashaty, M.G.; Meyer, N.J.; Localio, A.R.; Gallop, R.; Bellamy, S.L.; Holena, D.N.; Lanken, P.N.; Kaplan, S.; Yarar, D.; Kawut, S.M.; et al. African American race, obesity, and blood product transfusion are risk factors for acute kidney injury in critically ill trauma patients. J. Crit. Care 2012, 27, 496–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eriksson, M.; Brattström, O.; Mårtensson, J.; Larsson, E.; Oldner, A. Acute kidney injury following severe trauma: Risk factors and long-term outcome. J. Trauma Acute Care Surg. 2015, 79, 407–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Søvik, S.; Isachsen, M.S.; Nordhuus, K.M.; Tveiten, C.K.; Eken, T.; Sunde, K.; Brurberg, K.G.; Beitland, S. Acute kidney injury in trauma patients admitted to the ICU: A systematic review and meta-analysis. Intensive Care Med. 2019, 45, 407–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perkins, Z.B.; Captur, G.; Bird, R.; Gleeson, L.; Singer, B.; O’Brien, B. Trauma induced acute kidney injury. PLoS ONE 2019, 14, e0211001. [Google Scholar] [CrossRef] [Green Version]
- Bagshaw, S.M.; George, C.; Gibney, N.; Bellomo, R. A Multi-Center Evaluation of Early Acute Kidney Injury in Critically Ill Trauma Patients. Ren. Fail. 2008, 30, 581–589. [Google Scholar] [CrossRef]
- Skinner, D.; Hardcastle, T.; Rodseth, R.; Muckart, D. The incidence and outcomes of acute kidney injury amongst patients admitted to a level I trauma unit. Injury 2014, 45, 259–264. [Google Scholar] [CrossRef]
- Joannidis, M.; Druml, W.; Forni, L.G.; Groeneveld, A.B.J.; Honore, P.M.; Hoste, E.; Ostermann, M.; Oudemans-van Straaten, H.; Schetz, M. Prevention of acute kidney injury and protection of renal function in the intensive care unit: Update 2017. Intensive Care Med. 2017, 43, 730–749. [Google Scholar] [CrossRef]
- Ronco, C.; A Kellum, J.; Haase, M. Subclinical AKI is still AKI. Crit. Care 2012, 16, 313. [Google Scholar] [CrossRef]
- Heung, M.; Ortega, L.M.; Chawla, L.S.; Wunderink, R.G.; Self, W.H.; Koyner, J.L.; Shi, J.; Kellum, J.A. Common chronic conditions do not affect performance of cell cycle arrest biomarkers for risk stratification of acute kidney injury. Nephrol. Dial. Transplant. 2016, 31, 1633–1640. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L.; De Mendonça, A.; Cantraine, F.; Moreno, R.; Takala, J.; Suter, P.M.; Sprung, C.L.; Colardyn, F.; Blecher, S. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: Results of a multicenter, prospective study. Crit. Care Med. 1998, 26, 1793–1800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bihorac, A.; Chawla, L.S.; Shaw, A.D.; Al-Khafaji, A.; Davison, D.L.; DeMuth, G.E.; Fitzgerald, R.; Gong, M.N.; Graham, D.D.; Gunnerson, K.; et al. Validation of Cell-Cycle Arrest Biomarkers for Acute Kidney Injury Using Clinical Adjudication. Am. J. Respir. Crit. Care Med. 2014, 189, 932–939. [Google Scholar] [CrossRef] [PubMed]
- Khwaja, A. KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Nephron Exp. Nephrol. 2012, 120, c179–c184. [Google Scholar] [CrossRef] [PubMed]
- Hoste, E.; McCullough, P.A.; Kashani, K.; Chawla, L.; Joannidis, M.; Shaw, A.D.; Feldkamp, T.; Uettwiller-Geiger, D.L.; McCarthy, P.; Shi, J.; et al. Derivation and validation of cutoffs for clinical use of cell cycle arrest biomarkers. Nephrol. Dial. Transplant. 2014, 29, 2054–2061. [Google Scholar] [CrossRef]
- Baker, S.P.; O’Neill, B.; Haddon, W., Jr.; Long, W.B. The injury severity score: A method for describing patients with multiple injuries and evaluating emergency care. J. Trauma 1974, 14, 187–196. [Google Scholar] [CrossRef]
- Kellum, J.A.; Lameire, N.; on behalf of the KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: A KDIGO summary (Part 1). Crit. Care 2013, 17, 204. [Google Scholar] [CrossRef] [Green Version]
- Haines, R.W.; Fowler, A.J.; Kirwan, C.J.; Prowle, J.R. The incidence and associations of acute kidney injury in trauma patients admitted to critical care: A systematic review and meta-analysis. J. Trauma Acute Care Surg. 2019, 86, 141–147. [Google Scholar] [CrossRef]
- Liu, K.; Thompson, B.T.; Ancukiewicz, M.; Steingrub, J.S.; Douglas, I.; Matthay, M.A.; Wright, P.; Peterson, M.W.; Rock, P.; Hyzy, R.C.; et al. Acute kidney injury in patients with acute lung injury: Impact of fluid accumulation on classification of acute kidney injury and associated outcomes. Crit. Care Med. 2011, 39, 2665–2671. [Google Scholar] [CrossRef] [Green Version]
- Macedo, E.; Bouchard, J.; Soroko, S.H.; Chertow, G.M.; Himmelfarb, J.; Ikizler, T.A.; Paganini, E.P.; Mehta, R.L. Fluid accumulation, recognition and staging of acute kidney injury in critically-ill patients. Crit. Care 2010, 14, R82. [Google Scholar] [CrossRef]
- Moore, E.; Tobin, A.; Reid, D.; Santamaria, J.; Paul, E.; Bellomo, R. The impact of fluid balance on the detection, classification and outcome of acute kidney injury after cardiac surgery. J. Cardiothorac. Vasc. Anesth. 2015, 29, 1229–1235. [Google Scholar] [CrossRef] [PubMed]
- Annetta, M.; Silvestri, D.; Grieco, D.; La Torre, M.; Magarelli, N.; Policola, C.; Caricato, A.; Della Casa, S.; Antonelli, M. Muscle wasting in icu trauma patients: Quantitative and qualitative changes. Intensiv. Care Med. Exp. 2015, 3, A181. [Google Scholar] [CrossRef] [Green Version]
- Thomas, M.E.; Blaine, C.; Dawnay, A.; Devonald, M.A.; Ftouh, S.; Laing, C.; Latchem, S.; Lewington, A.; Milford, D.V.; Ostermann, M. The definition of acute kidney injury and its use in practice. Kidney Int. 2015, 87, 62–73. [Google Scholar] [CrossRef]
- De Rosa, S.; Samoni, S.; Ronco, C. Creatinine-based definitions: From baseline creatinine to serum creatinine adjustment in intensive care. Crit. Care 2016, 20, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levey, A.S. Defining AKD: The Spectrum of AKI, AKD, and CKD. Nephron 2022, 146, 302–305. [Google Scholar] [CrossRef] [PubMed]
- Bellomo, R.; Ronco, C.; Kellum, J.A.; Mehta, R.L.; Palevsky, P.; Acute Dialysis Quality Initiative Workgroup. Acute renal failure—Definition, outcome measures, animal models, fluid therapy and information technology needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care 2004, 8, R204–R2122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouchard, J.; Soroko, S.B.; Chertow, G.M.; Himmelfarb, J.; Ikizler, T.A.; Paganini, E.P.; Mehta, R.L. Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int. 2009, 76, 422–427. [Google Scholar] [CrossRef] [Green Version]
- Samoni, S.; Vigo, V.; Reséndiz, L.I.B.; Villa, G.; De Rosa, S.; Nalesso, F.; Ferrari, F.; Meola, M.; Brendolan, A.; Malacarne, P.; et al. Impact of hyperhydration on the mortality risk in critically ill patients admitted in intensive care units: Comparison between bioelectrical impedance vector analysis and cumulative fluid balance recording. Crit. Care 2016, 20, 95. [Google Scholar] [CrossRef] [Green Version]
- Lossius, H.M.; Rehn, M.; Tjosevik, K.E.; Eken, T. Calculating trauma triage precision: Effects of different definitions of major trauma. J. Trauma Manag. Outcomes 2012, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Boyd, C.R.; Tolson, M.A.; Copes, W.S. Evaluating trauma care: The TRISS method. J. Trauma 1987, 27, 370–378. [Google Scholar] [CrossRef]
- Kane-Gill, S.L.; Peerapornratana, S.; Wong, A.; Murugan, R.; Groetzinger, L.M.; Kim, C.; Smithburger, P.L.; Then, J.; Kellum, J.A. Use of tissue inhibitor of metalloproteinase 2 and insulin-like growth factor binding protein 7 [TIMP2]•[IGFBP7] as an AKI risk screening tool to manage patients in the real-world setting. J. Crit. Care 2020, 57, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Meersch, M.; Schmidt, C.; Hoffmeier, A.; Van Aken, H.; Wempe, C.; Gerss, J.; Zarbock, A. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: The PrevAKI randomized controlled trial. Intensive Care Med. 2017, 43, 1551–1561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Göcze, I.; Jauch, D.; Götz, M.; Kennedy, P.; Jung, B.; Zeman, F.; Gnewuch, C.; Graf, B.M.; Gnann, W.; Banas, B.; et al. Biomarker-guided Intervention to Prevent Acute Kidney Injury After Major Surgery: The Prospective Randomized BigpAK Study. Ann. Surg. 2018, 267, 1013–1020. [Google Scholar] [CrossRef]
- Guzzi, L.M.; Bergler, T.; Binnall, B.; Engelman, D.T.; Forni, L.; Germain, M.J.; Gluck, E.; Göcze, I.; Joannidis, M.; Koyner, J.L.; et al. Clinical use of [TIMP-2]•[IGFBP7] biomarker testing to assess risk of acute kidney injury in critical care: Guidance from an expert panel. Crit. Care 2019, 23, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehman, L.-W.; Saeed, M.; Moody, G.; Mark, R. Hypotension as a Risk Factor for Acute Kidney Injury in ICU Patients. Comput. Cardiol. 2010, 37, 1095–1098. [Google Scholar]
- Cho, W.Y.; Lim, S.Y.; Yang, J.H.; Oh, S.W.; Kim, M.-G.; Jo, S.-K. Urinary tissue inhibitor of metalloproteinase-2 and insulin-like growth factor-binding protein 7 as biomarkers of patients with established acute kidney injury. Korean J. Intern. Med. 2020, 35, 662–671. [Google Scholar] [CrossRef]
- Forni, L.G.; Darmon, M.; Ostermann, M.; Oudemans-van Straaten, H.M.; Pettilä, V.; Prowle, J.R.; Schetz, M.; Joannidis, M. Renal recovery after acute kidney injury. Intensive Care Med. 2017, 43, 855–866. [Google Scholar] [CrossRef]
Characteristic | Entire Cohort N = 153 1 | AKI N = 45 1 | No AKI N = 108 1 | p-Value 2 |
---|---|---|---|---|
Patient history and chronic medications | ||||
Age | 55 (36, 72) | 68 (54, 79) | 49 (31, 66) | <0.001 |
Gender | 0.2 | |||
Female | 26 (17%) | 5 (11%) | 21 (19%) | |
Male | 127 (83%) | 40 (89%) | 87 (81%) | |
BMI | 24.8 (22.9, 27.8) | 26.2 (23.9, 28.4) | 24.7 (22.9, 27.7) | 0.048 |
Type 2 diabetes | 14 (9.2%) | 6 (13%) | 8 (7.5%) | 0.4 |
Hypertension | 41 (27%) | 22 (49%) | 19 (18%) | <0.001 |
Antiplatelet and anticoagulation therapy | 30 (20%) | 18 (40%) | 12 (11%) | <0.001 |
Previous cardiac disease | 18 (12%) | 12 (27%) | 6 (5.6%) | <0.001 |
Previous renal disease | 3 (2.0%) | 2 (4.4%) | 1 (0.9%) | 0.2 |
COPD | 1 (0.7%) | 1 (2.2%) | 0 (0%) | 0.3 |
Status on admission | ||||
GCS at admission | 15.0 (12.0, 15.0) | 15.0 (13.0,15.0) | 15.0 (10.5, 15.0) | 0.2 |
Systolic BP at admission | 130 (109, 150) | 124 (105, 148) | 133 (110, 151) | 0.2 |
Heart rate at admission | 88 (74, 104) | 84 (73, 104) | 89 (76, 103) | 0.7 |
Shock index | 0.69 (0.55, 0.84) | 0.70 (0.54, 1.00) | 0.68 (0.55, 0.81) | 0.5 |
ISS | 17 (12, 24) | 18 (13, 22) | 17 (12, 24) | 0.8 |
TRISS (based on ISS) | 0.96 (0.89, 0.98) | 0.96 (0.89, 0.98) | 0.96 (0.89, 0.99) | 0.2 |
TRISS (based on NISS) | 0.94 (0.83, 0.98) | 0.94 (0.86, 0.98) | 0.94 (0.83, 0.98) | 0.3 |
Type of injury | 0.3 | |||
Blunt | 140 (92%) | 40 (89%) | 100 (93%) | |
Penetrating | 12 (7.9%) | 5 (11%) | 7 (6.5%) | |
Mechanism of injury | 0.6 | |||
Bicycle hit | 21 (14%) | 4 (8.9%) | 17 (16%) | |
Fall < 6 m | 28 (18%) | 8 (18%) | 20 (19%) | |
Fall > 6 m | 5 (3.3%) | 2 (4.4%) | 3 (2.8%) | |
Gunshot wound | 2 (1.3%) | 2 (4.4%) | 0 (0%) | |
Machinery | 4 (2.6%) | 1 (2.2%) | 3 (2.8%) | |
Motor vehicle traffic accident | 24 (16%) | 8 (18%) | 16 (15%) | |
Motorcycle | 31 (20%) | 10 (22%) | 21 (20%) | |
Other | 17 (11%) | 4 (8.9%) | 13 (12%) | |
Pedestrian | 17 (11%) | 6 (13%) | 11 (10%) | |
Stab wound | 3 (2.0%) | 0 (0%) | 3 (2.8%) |
Characteristic | Entire Cohort N = 153 1 | AKI N = 45 1 | No AKI N = 108 1 | p-Value 2 |
---|---|---|---|---|
sCr admission | 0.84 (0.70, 1.01) | 1.12 (0.95, 1.34) | 0.78 (0.66, 0.90) | <0.001 |
sCr 24 h | 0.82 (0.70, 0.99) | 1.16 (0.97, 1.50) | 0.76 (0.63, 0.87) | <0.001 |
sCr 48 h | 0.81 (0.68, 1.07) | 1.18 (1.00, 1.39) | 0.73 (0.60, 0.84) | <0.001 |
sCr 72 h | 0.75 (0.64, 0.92) | 0.98 (0.86, 1.31) | 0.69 (0.57, 0.80) | <0.001 |
TIMP2 × IGFBP7 admission | 0.40 (0.21, 0.96) | 0.60 (0.32, 1.25) | 0.36 (0.15, 0.84) | 0.016 |
TIMP2 × IGFBP7 24 h | 0.22 (0.09, 0.69) | 0.53 (0.06, 0.76) | 0.18 (0.09, 0.60) | 0.7 |
TIMP2 × IGFBP7 48 h | 0.22 (0.12, 0.46) | 0.29 (0.12, 0.56) | 0.22 (0.14, 0.30) | 0.8 |
TIMP2 × IGFBP7 72 h | 4.98 (2.58, 7.38) | 9.78 (9.78, 9.78) | 0.18 (0.18, 0.18) | >0.9 |
Myoglobin admission | 974 (458, 1888) | 1632 (984, 2091) | 638 (364, 1316) | 0.065 |
Myoglobin 24 h | 1354 (630, 2705) | 1827 (969, 2,994) | 944 (482, 2026) | 0.10 |
Myoglobin 48 h | 697 (258, 1595) | 3025 (2063, 3502) | 409 (188, 844) | <0.001 |
Myoglobin 72 h | 835 (442, 2236) | 1655 (968, 4860) | 553 (71, 777) | 0.023 |
Glucose admission | 150 (128, 179) | 161 (143, 210) | 146 (127, 175) | 0.023 |
Glucose 24 h | 135 (118, 160) | 141 (121, 168) | 134 (117, 156) | 0.2 |
Glucose 48 h | 129 (114, 152) | 130 (118, 160) | 127 (110, 147) | 0.13 |
Glucose 72 h | 129 (113, 150) | 133 (120, 159) | 126 (110, 146) | 0.11 |
PCT admission | 0.27 (0.07, 1.15) | 0.25 (0.10, 1.16) | 0.27 (0.07, 1.15) | 0.8 |
PCT 24 h | 0.87 (0.32, 3.05) | 1.13 (0.60, 3.33) | 0.56 (0.30, 2.99) | 0.8 |
PCT 48 h | 0.9 (0.5, 3.9) | 2.3 (0.8, 5.0) | 0.8 (0.4, 2.3) | 0.12 |
PCT 72 h | 0.7 (0.3, 2.1) | 1.5 (0.6, 4.4) | 0.6 (0.2, 1.3) | 0.13 |
Crystalloids use 24 h | 152 (97%) | 45 (100%) | 107 (99%) | >0.9 |
Crystalloids use 48 h | 113 (72%) | 35 (78%) | 78 (72%) | 0.5 |
Crystalloids use 72 h | 86 (55%) | 26 (58%) | 60 (56%) | 0.8 |
Colloids use 24 h | 59 (39%) | 23 (51%) | 36 (34%) | 0.044 |
Colloids use 48 h | 32 (28%) | 12 (34%) | 20 (26%) | 0.3 |
Colloids use 72 h | 16 (19%) | 7 (27%) | 9 (15%) | 0.2 |
FB 24 h | 1430 (457, 2636) | 1803 (782, 3725) | 1211 (269, 2289) | 0.031 |
FB 48 h | 850 (-16, 1938) | 1580 (459, 2953) | 648 (-66, 1557) | 0.017 |
FB 72 h | 860 (102, 1671) | 1091 (524, 2315) | 574 (-30, 1413) | 0.045 |
% FO 24 h | 18 (5, 35) | 25 (9, 47) | 17 (3, 33) | 0.068 |
% FO 48 h | 11 (0, 25) | 22 (6, 27) | 8 (-1, 23) | 0.042 |
% FO 72 h | 11 (1, 20) | 16 (5, 24) | 8 (0, 17) | 0.14 |
UO 24 h | 1855 (1289, 2575) | 1402 (1160, 2050) | 1945 (1525, 2800) | 0.003 |
UO 48 h | 2300 (1725, 3000) | 1845 (1410, 2455) | 2450 (1840, 3085) | 0.005 |
UO 72 h | 2570 (1888, 3140) | 2120 (1702, 3530) | 2590 (2035, 3012) | 0.6 |
Furosemide 24 h | 42 (27%) | 19 (42%) | 23 (21%) | 0.009 |
Furosemide 48 h | 41 (26%) | 19 (42%) | 22 (20%) | 0.007 |
Furosemide 72 h | 22 (14%) | 7 (16%) | 15 (14%) | 0.9 |
Urine pH admission | 5.25 (5.00, 6.75) | 5.00 (5.00, 5.00) | 5.50 (5.00, 7.00) | 0.4 |
Urine pH 24 h | 5.75 (5.00, 7.00) | 5.25 (5.00, 6.50) | 6.00 (5.50, 7.50) | 0.058 |
Urine pH 48 h | 7.50 (5.38, 8.50) | 5.00 (5.00, 7.25) | 7.50 (5.50, 8.50) | 0.003 |
Urine pH 72 h | 6.00 (5.50, 7.50) | 7.50 (5.75, 8.25) | 5.50 (5.25, 7.00) | 0.2 |
RRT 24 h | 1 (0.7%) | 1 (2.2%) | 0 (0%) | 0.3 |
RRT 48 h | 4 (3.5%) | 4 (11%) | 0 (0%) | 0.008 |
RRT 72 h | 4 (4.7%) | 4 (15%) | 0 (0%) | 0.007 |
Characteristics | Entire Cohort N = 153 1 | AKI N = 45 1 | No AKI N = 108 1 | p-Value 2 |
---|---|---|---|---|
VIS admission | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.0) | 0.4 |
VIS 24 h | 0 (0, 5) | 0 (0, 5) | 0 (0, 5) | 0.4 |
VIS 48 h | 0 (0, 8) | 0 (0, 10) | 0 (0, 6) | 0.2 |
VIS 72 h | 0 (0, 7) | 0 (0, 12) | 0 (0, 7) | 0.3 |
MAP admission | 84 (69, 93) | 79 (65, 88) | 84 (72, 94) | 0.066 |
MAP 24 h | 78 (72, 89) | 77 (71, 88) | 80 (73, 90) | 0.2 |
MAP 48 h | 82 (73, 90) | 81 (72, 89) | 82 (74, 90) | 0.4 |
MAP 72 h | 83 (73, 91) | 77 (72, 85) | 86 (73, 91) | 0.038 |
Lactate admission | 1.70 (1.20, 3.00) | 2.25 (1.40, 4.12) | 1.70 (1.20, 2.50) | 0.016 |
Lactate 24 h | 1.40 (1.10, 2.00) | 1.70 (1.20, 2.40) | 1.30 (1.00, 1.90) | 0.002 |
Lactate 48 h | 1.10 (0.90, 1.50) | 1.40 (0.90, 1.90) | 1.00 (0.90, 1.30) | 0.079 |
Lactate 72 h | 1.00 (0.80, 1.20) | 1.05 (0.83, 1.45) | 0.90 (0.80, 1.20) | 0.2 |
SOFA score admission | 3.00 (2.00, 5.00) | 4.00 (2.00, 6.25) | 2.00 (1.00, 5.00) | 0.002 |
SOFA score 24 h | 5.0 (2.0, 9.0) | 6.5 (3.8, 11.0) | 4.0 (2.0, 8.0) | 0.001 |
SOFA score 48 h | 7.0 (3.0, 10.0) | 9.0 (6.0, 12.0) | 5.5 (2.0, 9.0) | <0.001 |
SOFA score 72 h | 8.0 (5.0, 11.0) | 10.0 (7.0, 11.0) | 7.0 (4.0, 9.0) | <0.001 |
Arterial BE admission | -1.9 (-4.2, 0.3) | -2.7 (-5.8, -0.2) | -1.6 (-3.4, 0.5) | 0.041 |
Arterial BE 24 h | 2.30 (0.00, 3.80) | 1.30 (-0.77, 3.92) | 2.40 (0.30, 3.70) | 0.4 |
Arterial BE 48 h | 3.60 (1.90, 5.00) | 3.30 (1.02, 5.20) | 3.80 (2.20, 4.95) | 0.4 |
Arterial BE 72 h | 3.50 (1.90, 5.30) | 3.95 (1.35, 5.97) | 3.50 (2.10, 4.70) | 0.6 |
Arterial PaO2 admission | 110 (86, 170) | 104 (86, 143) | 119 (87, 174) | 0.3 |
Arterial PaO2 24 h | 99 (81, 134) | 91 (79, 109) | 105 (81, 135) | 0.081 |
Arterial PaO2 48 h | 102 (80, 130) | 102 (85, 118) | 103 (80, 138) | 0.4 |
Arterial PaO2 72 h | 108 (89, 132) | 105 (91, 123) | 113 (88, 132) | 0.7 |
P/F ratio admission | 350 (265, 440) | 340 (226, 422) | 356 (274, 453) | 0.12 |
P/F ratio 24 h | 314 (242, 390) | 268 (217, 324) | 340 (250, 414) | 0.001 |
P/F ratio 48 h | 290 (227, 367) | 250 (208, 320) | 311 (238, 371) | 0.031 |
P/F ratio 72 h | 287 (211, 330) | 262 (200, 303) | 291 (224, 335) | 0.10 |
PEEP admission | 7.00 (6.00, 8.00) | 6.00 (5.00, 8.00) | 8.00 (6.00, 8.00) | 0.12 |
PEEP 24 h | 7.00 (6.00, 8.00) | 8.00 (6.00, 8.00) | 7.00 (6.00, 8.00) | 0.7 |
PEEP 48 h | 8.00 (6.00, 9.00) | 8.00 (7.00, 10.00) | 8.00 (6.00, 8.50) | 0.2 |
PEEP 72 h | 8.00 (7.00, 10.00) | 8.00 (7.00, 10.00) | 8.00 (7.75, 10.00) | >0.9 |
Characteristics | Entire Cohort N = 153 1 | AKI N = 45 1 | No AKI N = 108 1 | p-Value 2 |
---|---|---|---|---|
Mechanical ventilation days | 1 (0, 8) | 1 (0, 9) | 1 (0, 8) | 0.6 |
Vasopressor use days | 1 (0, 2) | 1 (0, 1) | 1 (0, 2) | <0.001 |
Length of ICU stay | 3 (1, 10) | 6 (2, 10) | 3 (1, 10) | 0.6 |
Length of hospital stay | 13 (7, 25) | 11 (7, 27) | 15 (7, 25) | >0.9 |
ICU mortality | 7 (4.5) | 2 (4.4%) | 5 (4.5%) | >0.9 |
Hospital mortality | 10 (6.4%) | 5 (11%) | 5 (4.5%) | 0.2 |
Total | By AKI Severity | ||||
---|---|---|---|---|---|
N = 153 1 | None, N = 108 1 | Stage 1, N = 29 1 | Stage 2–3, N = 16 1 | p-Value 2 | |
Days free of MV | 1.00 (0.00, 2.00) | 1.00 (0.00, 2.00) | 1.00 (1.00, 2.00) | 1.00 (0.00, 3.25) | >0.9 |
Days on ventilator | 1 (0, 8) | 1 (0, 8) | 1 (0, 6) | 5 (1, 9) | 0.5 |
LOS | 13 (7, 25) | 15 (7, 25) | 12 (10, 29) | 9 (6, 22) | 0.7 |
ICU stay | 3 (1, 10) | 3 (1, 10) | 2 (1, 10) | 6 (3, 12) | 0.3 |
Characteristics | Entire Cohort N = 153 1 | AKI N = 45 1 | No AKI N = 108 1 | p-Value 2 |
---|---|---|---|---|
Episode of hypotension | 98 (64%) | 35 (78%) | 63 (59%) | 0.026 |
RBC transfusion | 80 (53%) | 30 (67%) | 50 (47%) | 0.025 |
Plasma transfusion | 38 (25%) | 19 (42%) | 19 (18%) | 0.001 |
Platelets transfusion | 20 (13%) | 11 (24%) | 9 (8.4%) | 0.008 |
Sepsis | 32 (21%) | 9 (20%) | 23 (21%) | 0.8 |
Multi-organ failure | 4 (2.6%) | 0 (0%) | 4 (3.7%) | 0.3 |
Coagulopathy | 28 (18%) | 11 (24%) | 17 (16%) | 0.2 |
Liver failure | 2 (1.3%) | 1 (2.2%) | 1 (0.9%) | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golino, G.; Greco, M.; Rigobello, A.; Danzi, V.; De Cal, M.; Malchiorna, N.; Zannella, M.; Navalesi, P.; Costa-Pinto, R.; Ronco, C.; et al. Incidence of Acute Kidney Injury in Polytrauma Patients and Predictive Performance of TIMP2 × IGFBP7 Biomarkers for Early Identification of Acute Kidney Injury. Diagnostics 2022, 12, 2481. https://doi.org/10.3390/diagnostics12102481
Golino G, Greco M, Rigobello A, Danzi V, De Cal M, Malchiorna N, Zannella M, Navalesi P, Costa-Pinto R, Ronco C, et al. Incidence of Acute Kidney Injury in Polytrauma Patients and Predictive Performance of TIMP2 × IGFBP7 Biomarkers for Early Identification of Acute Kidney Injury. Diagnostics. 2022; 12(10):2481. https://doi.org/10.3390/diagnostics12102481
Chicago/Turabian StyleGolino, Gianlorenzo, Massimiliano Greco, Alessandro Rigobello, Vinicio Danzi, Massimo De Cal, Nicola Malchiorna, Monica Zannella, Paolo Navalesi, Rahul Costa-Pinto, Claudio Ronco, and et al. 2022. "Incidence of Acute Kidney Injury in Polytrauma Patients and Predictive Performance of TIMP2 × IGFBP7 Biomarkers for Early Identification of Acute Kidney Injury" Diagnostics 12, no. 10: 2481. https://doi.org/10.3390/diagnostics12102481
APA StyleGolino, G., Greco, M., Rigobello, A., Danzi, V., De Cal, M., Malchiorna, N., Zannella, M., Navalesi, P., Costa-Pinto, R., Ronco, C., & De Rosa, S. (2022). Incidence of Acute Kidney Injury in Polytrauma Patients and Predictive Performance of TIMP2 × IGFBP7 Biomarkers for Early Identification of Acute Kidney Injury. Diagnostics, 12(10), 2481. https://doi.org/10.3390/diagnostics12102481