Comparative Evaluation of Bruker Biotyper and ASTA MicroIDSys for Species Identification in a Clinical Microbiology Laboratory
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seng, P.; Drancourt, M.; Gouriet, F.; La Scola, B.; Fournier, P.E.; Rolain, J.M.; Raoult, D. Ongoing revolution in bacteriology: Routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin. Infect. Dis. 2009, 49, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Claydon, M.A.; Davey, S.N.; Edwards-Jones, V.; Gordon, D.B. The rapid identification of intact microorganisms using mass spectrometry. Nat. Biotechnol. 1996, 14, 1584–1586. [Google Scholar] [CrossRef] [PubMed]
- Martiny, D.; Busson, L.; Wybo, I.; El Haj, R.A.; Dediste, A.; Vandenberg, O. Comparison of the Microflex LT and Vitek MS systems for routine identification of bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2012, 50, 1313–1325. [Google Scholar] [CrossRef] [PubMed]
- Richter, S.S.; Sercia, L.; Branda, J.A.; Burnham, C.A.; Bythrow, M.; Ferraro, M.J.; Garner, O.B.; Ginocchio, C.C.; Jennemann, R.; Lewinski, M.A.; et al. Identification of Enterobacteriaceae by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using the VITEK MS system. Eur. J. Clin. Microbiol. Infect. Dis. 2013, 32, 1571–1578. [Google Scholar] [CrossRef] [PubMed]
- Bessede, E.; Angla-Gre, M.; Delagarde, Y.; Sep Hieng, S.; Menard, A.; Megraud, F. Matrix-assisted laser-desorption/ionization biotyper: Experience in the routine of a University hospital. Clin. Microbiol. Infect. 2011, 17, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Kassim, A.; Pfluger, V.; Premji, Z.; Daubenberger, C.; Revathi, G. Comparison of biomarker based Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) and conventional methods in the identification of clinically relevant bacteria and yeast. BMC Microbiol. 2017, 17, 128. [Google Scholar] [CrossRef] [PubMed]
- Wattal, C.; Oberoi, J.K.; Goel, N.; Raveendran, R.; Khanna, S. Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) for rapid identification of micro-organisms in the routine clinical microbiology laboratory. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 807–812. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Sung, J.Y.; Kim, H.; Yong, D.; Lee, K. Comparison of a New Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Platform, ASTA MicroIDSys, With Bruker Biotyper for Species Identification. Ann. Lab. Med. 2017, 37, 531–535. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Jung, J.; Kim, S.Y.; Park, Y.J.; Lee, J.; Suk, H.S.; Ha, S.I.; Shin, J.S.; Park, K.G.; Kim, Y. Comparison of the ASTA MicroIDSys and VITEK MS matrix-assisted laser desorption/ionization time-of-flight mass spectrometry systems for identification of clinical bacteria and yeasts. J. Infect. Chemother. 2020, 26, 1328–1333. [Google Scholar] [CrossRef] [PubMed]
- Bilecen, K.; Yaman, G.; Ciftci, U.; Laleli, Y.R. Performances and Reliability of Bruker Microflex LT and VITEK MS MALDI-TOF Mass Spectrometry Systems for the Identification of Clinical Microorganisms. BioMed. Res. Int. 2015, 2015, 516410. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Fan, Y.Y.; Kudinha, T.; Xu, Z.P.; Xiao, M.; Zhang, L.; Fan, X.; Kong, F.; Xu, Y.C. A Comprehensive Evaluation of the Bruker Biotyper MS and Vitek MS Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Systems for Identification of Yeasts, Part of the National China Hospital Invasive Fungal Surveillance Net (CHIF-NET) Study, 2012 to 2013. J. Clin. Microbiol. 2016, 54, 1376–1380. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.M.; Kim, C.K.; Roh, J.; Byun, J.H.; Yang, S.J.; Choi, S.B.; Chun, J.; Yong, D. Application of the Whole Genome-Based Bacterial Identification System, TrueBac ID, Using Clinical Isolates That Were Not Identified With Three Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) Systems. Ann. Lab. Med. 2019, 39, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Park, J.H.; Oh, J.; Cho, S.; Koo, J.; Park, I.C.; Kim, J.; Park, S.; Choi, J.S.; Shin, S.Y.; et al. Evaluation of a new matrix-assisted laser desorption/ionization time-of-flight mass spectrometry system for the identification of yeast isolation. J. Clin. Lab. Anal. 2019, 33, e22685. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Ji, S.; Kim, J.R.; Kim, M.; Byun, J.H.; Yum, J.H.; Yong, D.; Lee, K. Performance evaluation of a new matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, ASTA MicroIDSys system, in bacterial identification against clinical isolates of anaerobic bacteria. Anaerobe 2020, 61, 102131. [Google Scholar] [CrossRef] [PubMed]
- Yoo, I.Y.; Shim, H.J.; Yun, S.A.; Kang, O.K.; Chung, Y.N.; Kim, T.Y.; Lee, H.; Kim, J.; Park, Y.J.; Huh, H.J.; et al. Evaluation of the ASTA MicroIDSys matrix-assisted laser desorption ionization time-of-flight mass spectrometry system for identification of mycobacteria directly from positive MGIT liquid cultures. Int. J. Infect. Dis. 2021, 102, 172–177. [Google Scholar] [CrossRef]
- Lee, H.; Oh, J.; Sung, G.H.; Koo, J.; Lee, M.H.; Lee, H.J.; Cho, S.I.; Choi, J.S.; Park, Y.J.; Shin, J.H.; et al. Multilaboratory Evaluation of the MALDI-TOF Mass Spectrometry System, MicroIDSys Elite, for the Identification of Medically Important Filamentous Fungi. Mycopathologia 2021, 186, 15–26. [Google Scholar] [CrossRef]
- Mignard, S.; Flandrois, J.P. 16S rRNA sequencing in routine bacterial identification: A 30-month experiment. J. Microbiol. Methods 2006, 67, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Mollet, C.; Drancourt, M.; Raoult, D. rpoB sequence analysis as a novel basis for bacterial identification. Mol. Microbiol. 1997, 26, 1005–1011. [Google Scholar] [CrossRef] [PubMed]
- Gorkiewicz, G.; Feierl, G.; Schober, C.; Dieber, F.; Köfer, J.; Zechner, R.; Zechner, E.L. Species-specific identification of campylobacters by partial 16S rRNA gene sequencing. J. Clin. Microbiol. 2003, 41, 2537–2546. [Google Scholar] [CrossRef] [PubMed]
Species | Bruker ≥ 2.0 | Bruker 1.7≤, <2.0 | Total | ||
---|---|---|---|---|---|
ASTA ≥ 140 | ASTA < 140 | ASTA ≥ 140 | ASTA < 140 | ||
Gram-negative bacilli | |||||
Escherichia coli | 134 | 1 | 1 * 1 | 136 | |
Klebsiella pneumoniae | 79 | 79 | |||
Acinetobacter baumannii | 48 | 48 | |||
Pseudomonas aeruginosa | 45 | 1 | 46 | ||
Proteus mirabilis | 18 | 18 | |||
Enterobacter aerogenes | 15 | 15 | |||
Enterobacter cloacae | 9 | 9 | |||
Serratia marcescens | 8 | 8 | |||
Stenotrophomonas maltophilia | 7 | 7 | |||
Haemophilus influenzae | 5 | 5 | |||
Citrobacter freundii | 4 | 4 | |||
Acinetobacter baylyi | 3 * 2 | 3 | |||
Providencia rettgeri | 2 | 2 | |||
Alcaligenes faecalis | 2 | 2 | |||
Morganella morganii | 2 | 2 | |||
Citrobacter amalonaticus | 2 | 2 | |||
Achromobacter xylosoxidans | 2 | 2 | |||
Acinetobacter nosocomialis | 2 | 2 | |||
Acinetobacter pittii | 1 | 1 * 3 | 2 | ||
Providencia stuartii | 1 | 1 | |||
Salmonella spp. | 1 | 1 | |||
Aeromonas veronii | 1 | 1 | |||
Pseudomonas stutzeri | 1 | 1 | |||
Neisseria gonorrhoeae | 1 | 1 | |||
Aeromonas caviae | 1 | 1 | |||
Campylobacter jejuni | 1 | 1 | |||
Haemophilus parainfluenzae | 1 | 1 | |||
Brevundimonas vesicularis | 1 * 4 | 1 | |||
No. of subtotal (%) | 393 (98.0%) | 1 (0.2%) | 6 (1.5%) | 1 (0.2%) | 401 (100%) |
Gram-positive cocci | |||||
Staphylococcus aureus | 99 | 99 | |||
Enterococcus faecium | 63 | 63 | |||
Enterococcus faecalis | 33 | 33 | |||
Staphylococcus epidermidis | 25 | 25 | |||
Staphylococcus haemolyticus | 14 | 4 | 18 | ||
Streptococcus anginosus | 10 | 4 | 14 | ||
Streptococcus agalactiae | 10 | 10 | |||
Staphylococcus hominis | 8 | 1 | 9 | ||
Staphylococcus lugdunensis | 7 | 7 | |||
Staphylococcus capitis | 7 | 7 | |||
Staphylococcus caprae | 5 | 2 | 7 | ||
Enterococcus casseliflavus | 4 | 4 | |||
Staphylococcus pettenkoferi | 3 | 3 | |||
Streptococcus pyogenes | 2 | 2 | |||
Enterococcus avium | 2 | 2 | |||
Streptococcus constellatus | 2 | 2 | |||
Enterococcus raffinosus | 2 | 2 | |||
Streptococcus mitis | 2 | 2 | |||
Streptococcus salivarius | 1 | 1 | 2 | ||
Streptococcus pneumoniae | 1 | 1 | 2 | ||
Staphylococcus simulans | 1 | 1 | |||
Micrococcus luteus | 1 | 1 | |||
Streptococcus dysgalactiae | 1 | 1 | |||
Enterococcus gallinarum | 1 | 1 | |||
Streptococcus intermedius | 1 | 1 | |||
Streptococcus parasanguinis | 1 | 1 | |||
No. of subtotal (%) | 306 (95.9%) | 1 (0.3%) | 12 (3.8%) | 0 (0.0%) | 319 (100%) |
Other bacteria | |||||
Corynebacterium striatum | 25 | 25 | |||
Clostridium difficile | 9 | 1 | 10 | ||
Corynebacterium jeikeium | 1 | 1 | 2 | ||
Clostridium hathewayi | 1 | 1 | |||
Bacillus cereus | 1 | 1 | |||
Actinomyces odontolyticus | 1 | 1 | |||
Bacillus circulans | 1 | 1 | |||
Corynebacterium tuberculostearicum | 1 | 1 | |||
No. of subtotal (%) | 39 (92.9%) | 0 (0.0%) | 2 (4.8%) | 1 (2.4%) | 42 (100%) |
Candida spp. and other fungi † | |||||
Candida tropicalis | 41 | 1 | 42 | ||
Candida albicans | 35 | 1 | 36 | ||
Candida glabrata | 18 | 1 | 19 | ||
Candida parapsilosis | 6 | 1 | 7 | ||
Trichosporon asahii | 2 | 2 | |||
Cryptococcus neoformans | 1 | 1 | |||
No. of subtotal (%) | 102 (95.3%) | 0 (0.0%) | 4 (3.7%) | 1 (0.9%) | 107 (100%) |
No. of total (%) | 840 (96.7%) | 2 (0.2%) | 24 (2.8%) | 3 (0.3%) | 869 (100%) |
Bruker | ASTA | Identification by 16S rRNA Sequencing (Accession) | |||
---|---|---|---|---|---|
Identification | Score | Identification | Score | ||
Concordant at genus level | Klebsiella variicola | 1.984 | Klebsiella pneumoniae | 203 | Klebsiella variicola (CP010523.2) |
Klebsiella variicola | 2.111 | Klebsiella pneumoniae | 177 | Klebsiella variicola (CP010523.2) | |
Klebsiella variicola | 2.264 | Klebsiella pneumoniae | 236 | N/T | |
Klebsiella variicola | 2.242 | Klebsiella pneumoniae | 144 | N/T | |
Klebsiella variicola | 1.903 | Klebsiella pneumoniae | 157 | N/T | |
Streptococcus pneumoniae | 2.216 | Streptococcus mitis | 194 | Streptococcus pneumoniae (LN831051.1) | |
Streptococcus pneumoniae | 2.117 | Streptococcus mitis | 176 | Streptococcuspneumoniae (NR_028665.1) | |
Streptococcus pneumoniae | 2.144 | Streptococcus mitis | 169 | Streptococcus mitis (NR_028665.1) | |
Streptococcus pneumoniae | 1.894 | Streptococcus sobrinus | 111 | Streptococcus mitis (NR_028664.1) | |
Streptococcus vestibularis | 2.149 | Streptococcus salivarius | 223 | Streptococcus salivarius (CP009913.1) | |
Streptococcus infantis | 1.884 | Streptococcus mitis | 169 | Streptococcus infantis (LC096227.1) | |
Streptococcus oralis | 2.056 | Streptococcus mitis | 160 | N/T | |
Enterobacter asburiae | 2.111 | Enterobacter cloacae | 207 | Enterobacter kobei (CP017181.1) | |
Enterobacter asburiae | 2.151 | Enterobacter cloacae | 206 | N/T | |
Enterobacter kobei | 2.263 | Enterobacter cloacae | 207 | N/T | |
Citrobacter youngae | 2.108 | Citrobacter freundii | 179 | Citrobacter braakii (NR_028687.1) | |
Citrobacter koseri | 2.291 | Citrobacter amalonaticus | 226 | N/T | |
Paenibacillus urinalis | 2.127 | Paenibacillus macerans | 112 | Paenibacillus urinalis (NR_044178.1) | |
Paenibacillus urinalis | 2.247 | Paenibacillus lactis | 153 | Paenibacillus urinalis (NR_044178.1) | |
Paenibacillus barengoltzii | 2.167 | Paenibacillus macerans | 171 | Paenibacillus barengoltzii (NR_113988.1) | |
Paenibacillus glucanolyticus | 1.931 | Paenibacillus ginsengagri | 196 | N/T | |
Pseudomonas monteilii | 2.084 | Pseudomonas putida | 181 | N/T | |
Burkholderia lata | 2.155 | Burkholderia cepacia | 198 | N/T | |
Corynebacterium simulans | 2.237 | Corynebacterium striatum | 151 | N/T | |
Providencia rettgeri | 1.833 | Providencia stuartii | 168 | N/T | |
Candida metapsilosis | 1.708 | Candida orthopsilosis | 134 | N/T | |
Discordant at the genus level | Kluyvera ascorbata | 2.128 | Raoultella ornithinolytica | 167 | Kluyvera ascorbata (NR_028677.1) |
Escherichia coli | 2.059 | Weissella confusa | 239 | Weissella cibaria (LC096236.1) | |
Staphylococcus warneri | 1.970 | Azotobacter nigricans | 143 | Staphylococcus warneri (NR_025922.1) | |
Streptococcus pneumoniae | 2.073 | Saccharomyces cerevisiae | 120 | N/T | |
Clostridium difficile | 1.961 | Eggerthella lenta | 171 | N/T |
Bruker | ASTA | Identification by 16S rRNA Sequencing (Accession) | |||
---|---|---|---|---|---|
Identification | Score | Identification | Score | ||
Correct identification by Bruker * | Pantoea calida | 2.236 | Invalid Identification | Pantoea calida (AB907785.1) | |
Weeksella virosa | 2.184 | Invalid Identification | Weeksella virosa (CP002455.1) | ||
Streptococcus mitis | 1.805 | Invalid Identification | Streptococcus mitis (NR_028664.1) | ||
Correct identification by ASTA * | Invalid Identification | Propionibacterium acnes | 200 | Propionibacterium acnes (CP003084.1) | |
Invalid Identification | Moraxella osloensis | 160 | Moraxella osloensis (CP014234.1) | ||
Invalid Identification | Weissella confusa | 203 | Weissela cibaria (LC096236.1) | ||
Invalid Identification | Brevibacillus centrosporus | 134 | Brevibacillus limnophilus (NR_024822.1) | ||
Invalid Identification | Paenibacillus lactis | 115 | Paenibacillus spp. (JN377815.1) | ||
Incorrect identification | Lactobacillus jensenii | 2.003 | Invalid Identification | Brevibacterium frigoritolerans (NR_117474.1) | |
Invalid Identification | Staphylococcus arlettae | 117 | Pseudoglutamicibacter cumminsii (NR_044895.1) | ||
Invalid Identification | Parvimonas micra | 125 | Dermabacter vaginalis (CP012117.1) | ||
Invalid Identification | Bacillus simplex | 131 | Brevibacterium frigoritolerans (NR_117474.1) | ||
Invalid Identification | Knoellia subterranea | 132 | Janibacter hoylei (NR_104794.1) | ||
Invalid Identification | Paenibacillus timonensis | 125 | Lysinibacillus spp. (HE586367.1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, Y.; Han, M.; Kim, J.-S. Comparative Evaluation of Bruker Biotyper and ASTA MicroIDSys for Species Identification in a Clinical Microbiology Laboratory. Diagnostics 2021, 11, 1683. https://doi.org/10.3390/diagnostics11091683
Chung Y, Han M, Kim J-S. Comparative Evaluation of Bruker Biotyper and ASTA MicroIDSys for Species Identification in a Clinical Microbiology Laboratory. Diagnostics. 2021; 11(9):1683. https://doi.org/10.3390/diagnostics11091683
Chicago/Turabian StyleChung, Yousun, Minje Han, and Jae-Seok Kim. 2021. "Comparative Evaluation of Bruker Biotyper and ASTA MicroIDSys for Species Identification in a Clinical Microbiology Laboratory" Diagnostics 11, no. 9: 1683. https://doi.org/10.3390/diagnostics11091683
APA StyleChung, Y., Han, M., & Kim, J.-S. (2021). Comparative Evaluation of Bruker Biotyper and ASTA MicroIDSys for Species Identification in a Clinical Microbiology Laboratory. Diagnostics, 11(9), 1683. https://doi.org/10.3390/diagnostics11091683