Comparative Evaluation of Bruker Biotyper and ASTA MicroIDSys for Species Identification in a Clinical Microbiology Laboratory
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seng, P.; Drancourt, M.; Gouriet, F.; La Scola, B.; Fournier, P.E.; Rolain, J.M.; Raoult, D. Ongoing revolution in bacteriology: Routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin. Infect. Dis. 2009, 49, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Claydon, M.A.; Davey, S.N.; Edwards-Jones, V.; Gordon, D.B. The rapid identification of intact microorganisms using mass spectrometry. Nat. Biotechnol. 1996, 14, 1584–1586. [Google Scholar] [CrossRef] [PubMed]
- Martiny, D.; Busson, L.; Wybo, I.; El Haj, R.A.; Dediste, A.; Vandenberg, O. Comparison of the Microflex LT and Vitek MS systems for routine identification of bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2012, 50, 1313–1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richter, S.S.; Sercia, L.; Branda, J.A.; Burnham, C.A.; Bythrow, M.; Ferraro, M.J.; Garner, O.B.; Ginocchio, C.C.; Jennemann, R.; Lewinski, M.A.; et al. Identification of Enterobacteriaceae by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using the VITEK MS system. Eur. J. Clin. Microbiol. Infect. Dis. 2013, 32, 1571–1578. [Google Scholar] [CrossRef] [PubMed]
- Bessede, E.; Angla-Gre, M.; Delagarde, Y.; Sep Hieng, S.; Menard, A.; Megraud, F. Matrix-assisted laser-desorption/ionization biotyper: Experience in the routine of a University hospital. Clin. Microbiol. Infect. 2011, 17, 533–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kassim, A.; Pfluger, V.; Premji, Z.; Daubenberger, C.; Revathi, G. Comparison of biomarker based Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) and conventional methods in the identification of clinically relevant bacteria and yeast. BMC Microbiol. 2017, 17, 128. [Google Scholar] [CrossRef] [PubMed]
- Wattal, C.; Oberoi, J.K.; Goel, N.; Raveendran, R.; Khanna, S. Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) for rapid identification of micro-organisms in the routine clinical microbiology laboratory. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 807–812. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Sung, J.Y.; Kim, H.; Yong, D.; Lee, K. Comparison of a New Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Platform, ASTA MicroIDSys, With Bruker Biotyper for Species Identification. Ann. Lab. Med. 2017, 37, 531–535. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Kim, S.Y.; Park, Y.J.; Lee, J.; Suk, H.S.; Ha, S.I.; Shin, J.S.; Park, K.G.; Kim, Y. Comparison of the ASTA MicroIDSys and VITEK MS matrix-assisted laser desorption/ionization time-of-flight mass spectrometry systems for identification of clinical bacteria and yeasts. J. Infect. Chemother. 2020, 26, 1328–1333. [Google Scholar] [CrossRef] [PubMed]
- Bilecen, K.; Yaman, G.; Ciftci, U.; Laleli, Y.R. Performances and Reliability of Bruker Microflex LT and VITEK MS MALDI-TOF Mass Spectrometry Systems for the Identification of Clinical Microorganisms. BioMed. Res. Int. 2015, 2015, 516410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Fan, Y.Y.; Kudinha, T.; Xu, Z.P.; Xiao, M.; Zhang, L.; Fan, X.; Kong, F.; Xu, Y.C. A Comprehensive Evaluation of the Bruker Biotyper MS and Vitek MS Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Systems for Identification of Yeasts, Part of the National China Hospital Invasive Fungal Surveillance Net (CHIF-NET) Study, 2012 to 2013. J. Clin. Microbiol. 2016, 54, 1376–1380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, S.M.; Kim, C.K.; Roh, J.; Byun, J.H.; Yang, S.J.; Choi, S.B.; Chun, J.; Yong, D. Application of the Whole Genome-Based Bacterial Identification System, TrueBac ID, Using Clinical Isolates That Were Not Identified With Three Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) Systems. Ann. Lab. Med. 2019, 39, 530–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.; Park, J.H.; Oh, J.; Cho, S.; Koo, J.; Park, I.C.; Kim, J.; Park, S.; Choi, J.S.; Shin, S.Y.; et al. Evaluation of a new matrix-assisted laser desorption/ionization time-of-flight mass spectrometry system for the identification of yeast isolation. J. Clin. Lab. Anal. 2019, 33, e22685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.; Ji, S.; Kim, J.R.; Kim, M.; Byun, J.H.; Yum, J.H.; Yong, D.; Lee, K. Performance evaluation of a new matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, ASTA MicroIDSys system, in bacterial identification against clinical isolates of anaerobic bacteria. Anaerobe 2020, 61, 102131. [Google Scholar] [CrossRef] [PubMed]
- Yoo, I.Y.; Shim, H.J.; Yun, S.A.; Kang, O.K.; Chung, Y.N.; Kim, T.Y.; Lee, H.; Kim, J.; Park, Y.J.; Huh, H.J.; et al. Evaluation of the ASTA MicroIDSys matrix-assisted laser desorption ionization time-of-flight mass spectrometry system for identification of mycobacteria directly from positive MGIT liquid cultures. Int. J. Infect. Dis. 2021, 102, 172–177. [Google Scholar] [CrossRef]
- Lee, H.; Oh, J.; Sung, G.H.; Koo, J.; Lee, M.H.; Lee, H.J.; Cho, S.I.; Choi, J.S.; Park, Y.J.; Shin, J.H.; et al. Multilaboratory Evaluation of the MALDI-TOF Mass Spectrometry System, MicroIDSys Elite, for the Identification of Medically Important Filamentous Fungi. Mycopathologia 2021, 186, 15–26. [Google Scholar] [CrossRef]
- Mignard, S.; Flandrois, J.P. 16S rRNA sequencing in routine bacterial identification: A 30-month experiment. J. Microbiol. Methods 2006, 67, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Mollet, C.; Drancourt, M.; Raoult, D. rpoB sequence analysis as a novel basis for bacterial identification. Mol. Microbiol. 1997, 26, 1005–1011. [Google Scholar] [CrossRef] [PubMed]
- Gorkiewicz, G.; Feierl, G.; Schober, C.; Dieber, F.; Köfer, J.; Zechner, R.; Zechner, E.L. Species-specific identification of campylobacters by partial 16S rRNA gene sequencing. J. Clin. Microbiol. 2003, 41, 2537–2546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Species | Bruker ≥ 2.0 | Bruker 1.7≤, <2.0 | Total | ||
---|---|---|---|---|---|
ASTA ≥ 140 | ASTA < 140 | ASTA ≥ 140 | ASTA < 140 | ||
Gram-negative bacilli | |||||
Escherichia coli | 134 | 1 | 1 * 1 | 136 | |
Klebsiella pneumoniae | 79 | 79 | |||
Acinetobacter baumannii | 48 | 48 | |||
Pseudomonas aeruginosa | 45 | 1 | 46 | ||
Proteus mirabilis | 18 | 18 | |||
Enterobacter aerogenes | 15 | 15 | |||
Enterobacter cloacae | 9 | 9 | |||
Serratia marcescens | 8 | 8 | |||
Stenotrophomonas maltophilia | 7 | 7 | |||
Haemophilus influenzae | 5 | 5 | |||
Citrobacter freundii | 4 | 4 | |||
Acinetobacter baylyi | 3 * 2 | 3 | |||
Providencia rettgeri | 2 | 2 | |||
Alcaligenes faecalis | 2 | 2 | |||
Morganella morganii | 2 | 2 | |||
Citrobacter amalonaticus | 2 | 2 | |||
Achromobacter xylosoxidans | 2 | 2 | |||
Acinetobacter nosocomialis | 2 | 2 | |||
Acinetobacter pittii | 1 | 1 * 3 | 2 | ||
Providencia stuartii | 1 | 1 | |||
Salmonella spp. | 1 | 1 | |||
Aeromonas veronii | 1 | 1 | |||
Pseudomonas stutzeri | 1 | 1 | |||
Neisseria gonorrhoeae | 1 | 1 | |||
Aeromonas caviae | 1 | 1 | |||
Campylobacter jejuni | 1 | 1 | |||
Haemophilus parainfluenzae | 1 | 1 | |||
Brevundimonas vesicularis | 1 * 4 | 1 | |||
No. of subtotal (%) | 393 (98.0%) | 1 (0.2%) | 6 (1.5%) | 1 (0.2%) | 401 (100%) |
Gram-positive cocci | |||||
Staphylococcus aureus | 99 | 99 | |||
Enterococcus faecium | 63 | 63 | |||
Enterococcus faecalis | 33 | 33 | |||
Staphylococcus epidermidis | 25 | 25 | |||
Staphylococcus haemolyticus | 14 | 4 | 18 | ||
Streptococcus anginosus | 10 | 4 | 14 | ||
Streptococcus agalactiae | 10 | 10 | |||
Staphylococcus hominis | 8 | 1 | 9 | ||
Staphylococcus lugdunensis | 7 | 7 | |||
Staphylococcus capitis | 7 | 7 | |||
Staphylococcus caprae | 5 | 2 | 7 | ||
Enterococcus casseliflavus | 4 | 4 | |||
Staphylococcus pettenkoferi | 3 | 3 | |||
Streptococcus pyogenes | 2 | 2 | |||
Enterococcus avium | 2 | 2 | |||
Streptococcus constellatus | 2 | 2 | |||
Enterococcus raffinosus | 2 | 2 | |||
Streptococcus mitis | 2 | 2 | |||
Streptococcus salivarius | 1 | 1 | 2 | ||
Streptococcus pneumoniae | 1 | 1 | 2 | ||
Staphylococcus simulans | 1 | 1 | |||
Micrococcus luteus | 1 | 1 | |||
Streptococcus dysgalactiae | 1 | 1 | |||
Enterococcus gallinarum | 1 | 1 | |||
Streptococcus intermedius | 1 | 1 | |||
Streptococcus parasanguinis | 1 | 1 | |||
No. of subtotal (%) | 306 (95.9%) | 1 (0.3%) | 12 (3.8%) | 0 (0.0%) | 319 (100%) |
Other bacteria | |||||
Corynebacterium striatum | 25 | 25 | |||
Clostridium difficile | 9 | 1 | 10 | ||
Corynebacterium jeikeium | 1 | 1 | 2 | ||
Clostridium hathewayi | 1 | 1 | |||
Bacillus cereus | 1 | 1 | |||
Actinomyces odontolyticus | 1 | 1 | |||
Bacillus circulans | 1 | 1 | |||
Corynebacterium tuberculostearicum | 1 | 1 | |||
No. of subtotal (%) | 39 (92.9%) | 0 (0.0%) | 2 (4.8%) | 1 (2.4%) | 42 (100%) |
Candida spp. and other fungi † | |||||
Candida tropicalis | 41 | 1 | 42 | ||
Candida albicans | 35 | 1 | 36 | ||
Candida glabrata | 18 | 1 | 19 | ||
Candida parapsilosis | 6 | 1 | 7 | ||
Trichosporon asahii | 2 | 2 | |||
Cryptococcus neoformans | 1 | 1 | |||
No. of subtotal (%) | 102 (95.3%) | 0 (0.0%) | 4 (3.7%) | 1 (0.9%) | 107 (100%) |
No. of total (%) | 840 (96.7%) | 2 (0.2%) | 24 (2.8%) | 3 (0.3%) | 869 (100%) |
Bruker | ASTA | Identification by 16S rRNA Sequencing (Accession) | |||
---|---|---|---|---|---|
Identification | Score | Identification | Score | ||
Concordant at genus level | Klebsiella variicola | 1.984 | Klebsiella pneumoniae | 203 | Klebsiella variicola (CP010523.2) |
Klebsiella variicola | 2.111 | Klebsiella pneumoniae | 177 | Klebsiella variicola (CP010523.2) | |
Klebsiella variicola | 2.264 | Klebsiella pneumoniae | 236 | N/T | |
Klebsiella variicola | 2.242 | Klebsiella pneumoniae | 144 | N/T | |
Klebsiella variicola | 1.903 | Klebsiella pneumoniae | 157 | N/T | |
Streptococcus pneumoniae | 2.216 | Streptococcus mitis | 194 | Streptococcus pneumoniae (LN831051.1) | |
Streptococcus pneumoniae | 2.117 | Streptococcus mitis | 176 | Streptococcuspneumoniae (NR_028665.1) | |
Streptococcus pneumoniae | 2.144 | Streptococcus mitis | 169 | Streptococcus mitis (NR_028665.1) | |
Streptococcus pneumoniae | 1.894 | Streptococcus sobrinus | 111 | Streptococcus mitis (NR_028664.1) | |
Streptococcus vestibularis | 2.149 | Streptococcus salivarius | 223 | Streptococcus salivarius (CP009913.1) | |
Streptococcus infantis | 1.884 | Streptococcus mitis | 169 | Streptococcus infantis (LC096227.1) | |
Streptococcus oralis | 2.056 | Streptococcus mitis | 160 | N/T | |
Enterobacter asburiae | 2.111 | Enterobacter cloacae | 207 | Enterobacter kobei (CP017181.1) | |
Enterobacter asburiae | 2.151 | Enterobacter cloacae | 206 | N/T | |
Enterobacter kobei | 2.263 | Enterobacter cloacae | 207 | N/T | |
Citrobacter youngae | 2.108 | Citrobacter freundii | 179 | Citrobacter braakii (NR_028687.1) | |
Citrobacter koseri | 2.291 | Citrobacter amalonaticus | 226 | N/T | |
Paenibacillus urinalis | 2.127 | Paenibacillus macerans | 112 | Paenibacillus urinalis (NR_044178.1) | |
Paenibacillus urinalis | 2.247 | Paenibacillus lactis | 153 | Paenibacillus urinalis (NR_044178.1) | |
Paenibacillus barengoltzii | 2.167 | Paenibacillus macerans | 171 | Paenibacillus barengoltzii (NR_113988.1) | |
Paenibacillus glucanolyticus | 1.931 | Paenibacillus ginsengagri | 196 | N/T | |
Pseudomonas monteilii | 2.084 | Pseudomonas putida | 181 | N/T | |
Burkholderia lata | 2.155 | Burkholderia cepacia | 198 | N/T | |
Corynebacterium simulans | 2.237 | Corynebacterium striatum | 151 | N/T | |
Providencia rettgeri | 1.833 | Providencia stuartii | 168 | N/T | |
Candida metapsilosis | 1.708 | Candida orthopsilosis | 134 | N/T | |
Discordant at the genus level | Kluyvera ascorbata | 2.128 | Raoultella ornithinolytica | 167 | Kluyvera ascorbata (NR_028677.1) |
Escherichia coli | 2.059 | Weissella confusa | 239 | Weissella cibaria (LC096236.1) | |
Staphylococcus warneri | 1.970 | Azotobacter nigricans | 143 | Staphylococcus warneri (NR_025922.1) | |
Streptococcus pneumoniae | 2.073 | Saccharomyces cerevisiae | 120 | N/T | |
Clostridium difficile | 1.961 | Eggerthella lenta | 171 | N/T |
Bruker | ASTA | Identification by 16S rRNA Sequencing (Accession) | |||
---|---|---|---|---|---|
Identification | Score | Identification | Score | ||
Correct identification by Bruker * | Pantoea calida | 2.236 | Invalid Identification | Pantoea calida (AB907785.1) | |
Weeksella virosa | 2.184 | Invalid Identification | Weeksella virosa (CP002455.1) | ||
Streptococcus mitis | 1.805 | Invalid Identification | Streptococcus mitis (NR_028664.1) | ||
Correct identification by ASTA * | Invalid Identification | Propionibacterium acnes | 200 | Propionibacterium acnes (CP003084.1) | |
Invalid Identification | Moraxella osloensis | 160 | Moraxella osloensis (CP014234.1) | ||
Invalid Identification | Weissella confusa | 203 | Weissela cibaria (LC096236.1) | ||
Invalid Identification | Brevibacillus centrosporus | 134 | Brevibacillus limnophilus (NR_024822.1) | ||
Invalid Identification | Paenibacillus lactis | 115 | Paenibacillus spp. (JN377815.1) | ||
Incorrect identification | Lactobacillus jensenii | 2.003 | Invalid Identification | Brevibacterium frigoritolerans (NR_117474.1) | |
Invalid Identification | Staphylococcus arlettae | 117 | Pseudoglutamicibacter cumminsii (NR_044895.1) | ||
Invalid Identification | Parvimonas micra | 125 | Dermabacter vaginalis (CP012117.1) | ||
Invalid Identification | Bacillus simplex | 131 | Brevibacterium frigoritolerans (NR_117474.1) | ||
Invalid Identification | Knoellia subterranea | 132 | Janibacter hoylei (NR_104794.1) | ||
Invalid Identification | Paenibacillus timonensis | 125 | Lysinibacillus spp. (HE586367.1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, Y.; Han, M.; Kim, J.-S. Comparative Evaluation of Bruker Biotyper and ASTA MicroIDSys for Species Identification in a Clinical Microbiology Laboratory. Diagnostics 2021, 11, 1683. https://doi.org/10.3390/diagnostics11091683
Chung Y, Han M, Kim J-S. Comparative Evaluation of Bruker Biotyper and ASTA MicroIDSys for Species Identification in a Clinical Microbiology Laboratory. Diagnostics. 2021; 11(9):1683. https://doi.org/10.3390/diagnostics11091683
Chicago/Turabian StyleChung, Yousun, Minje Han, and Jae-Seok Kim. 2021. "Comparative Evaluation of Bruker Biotyper and ASTA MicroIDSys for Species Identification in a Clinical Microbiology Laboratory" Diagnostics 11, no. 9: 1683. https://doi.org/10.3390/diagnostics11091683
APA StyleChung, Y., Han, M., & Kim, J.-S. (2021). Comparative Evaluation of Bruker Biotyper and ASTA MicroIDSys for Species Identification in a Clinical Microbiology Laboratory. Diagnostics, 11(9), 1683. https://doi.org/10.3390/diagnostics11091683