Non-Classical Congenital Adrenal Hyperplasia-Causing Alleles in Adolescent Girls with PCOS and in Risk Group for PCOS Development
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Azziz, R.; Woods, K.S.; Reyna, R.; Key, T.J.; Knochenhauer, E.S.; Yildiz, B.O. The prevalence and features of the polycystic ovary syndrome in an unselected population. J. Clin. Endocrinol. Metab. 2004, 89, 2745–2749. [Google Scholar] [CrossRef]
- Lauritsen, M.P.; Bentzen, J.G.; Pinborg, A.; Loft, A.; Forman, J.L.; Thuesen, L.L.; Cohen, A.; Hougaard, D.M.; Nyboe Andersen, A. The prevalence of polycystic ovary syndrome in a normal population according to the Rotterdam criteria versus revised criteria including anti-Mullerian hormone. Hum. Reprod. 2014, 29, 791–801. [Google Scholar] [CrossRef]
- de Melo, A.S.; Dias, S.V.; de Carvalho Cavalli, R.; Cardoso, V.C.; Bettiol, H.; Barbieri, M.A.; Ferriani, R.A.; Vieira, C.S. Pathogenesis of polycystic ovary syndrome: Multifactorial assessment from the foetal stage to menopause. Reproduction 2015, 150, 11–24. [Google Scholar] [CrossRef]
- Teede, H.J.; Misso, M.L.; Costello, M.F.; Dokras, A.; Laven, J.; Moran, L.; Piltonen, T.; Norman, R.J. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertil. Steril. 2018, 110, 364–379. [Google Scholar] [CrossRef] [PubMed]
- Hepworth, J.T.; Bell, L.; Feller, C.; Hanson, D.; Sands, D.; Muhlenkamp, A. Gynecologic age: Prediction in adolescent female research. Nurs. Res. 1987, 36, 392–394. [Google Scholar] [CrossRef]
- Merke, D.P. Approach to the adult with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 2008, 93, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Turcu, A.F.; Auchus, R.J. Adrenal Steroidogenesis and Congenital Adrenal Hyperplasia. Endocrinol. Metab. Clin. N. Am. 2015, 44, 275–296. [Google Scholar] [CrossRef] [PubMed]
- Kelestimur, F. Non-classic congenital adrenal hyperplasia. Pediatr. Endocrinol. Rev. 2006, 3 (Suppl. 3), 451–454. [Google Scholar] [CrossRef] [PubMed]
- Turcu, A.F.; Auchus, R.J. The next 150 years of congenital adrenal hyperplasia. J. Steroid. Biochem. Mol. Biol. 2015, 153, 63–71. [Google Scholar] [CrossRef]
- White, P.C. Congenital Adrenal Hyperplasia and Related Disorders. In Nelson Textbook of Pediatrics; Elsevier: Amsterdam, The Netherlands, 2011; pp. 1930–1939. [Google Scholar]
- White, P.C.; Speiser, P.W. Congenital Adrenal Hyperplasia due to 21-Hydroxylase Deficiency. Endocr. Rev. 2000, 21, 245–291. [Google Scholar] [CrossRef]
- Sir-Petermann, T.; Codner, E.; Pérez, V.; Echiburú, B.; Maliqueo, M.; Ladron de Guevara, A.; Preisler, J.; Crisosto, N.; Sánchez, F.; Cassorla, F.; et al. Metabolic and reproductive features before and during puberty in daughters of women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2009, 94, 1923–1930. [Google Scholar] [CrossRef]
- Moran, C.; Azziz, R.; Carmina, E.; Dewailly, D.; Fruzzetti, F.; Ibañez, L.; Knochenhauer, E.S.; Marcondes, J.A.; Mendonca, B.B.; Pignatelli, D.; et al. 21-hydroxylase-deficient nonclassic adrenal hyperplasia is a progressive disorder: A multicenter study. Am. J. Obstet. Gynecol. 2000, 183, 1468–1474. [Google Scholar] [CrossRef] [PubMed]
- Armengaud, J.B.; Charkaluk, M.L.; Trivin, C.; Tardy, V.; Bréart, G.; Brauner, R.; Chalumeau, M. Precocious pubarche: Distinguishing late-onset congenital adrenal hyperplasia from premature adrenarche. J. Clin. Endocrinol. Metab. 2009, 94, 2835–2840. [Google Scholar] [CrossRef] [PubMed]
- Bidet, M.; Bellanné-Chantelot, C.; Galand-Portier, M.B.; Tardy, V.; Billaud, L.; Laborde, K.; Coussieu, C.; Morel, Y.; Vaury, C.; Golmard, J.L.; et al. Clinical and molecular characterization of a cohort of 161 unrelated women with nonclassical congenital adrenal hyperplasia due to 21-hydroxylase deficiency and 330 family members. J. Clin. Endocrinol. Metab. 2009, 94, 1570–1578. [Google Scholar] [CrossRef]
- Falhammar, H.; Nordenström, A. Nonclassic congenital adrenal hyperplasia due to 21-hydroxylase deficiency: Clinical presentation, diagnosis, treatment, and outcome. Endocrine 2015, 50, 32–50. [Google Scholar] [CrossRef] [PubMed]
- Emans, S.J.; Laufer, R.M. Congenital Adrenal Hyperplasia. In Pediatric and Adolescent Gynecology, 6th ed.; Lippincott Williams & Wilkins, a Wolters Kluwer business: Philadelphia, PA, USA, 2012; p. 585. [Google Scholar]
- Pall, M.; Azziz, R.; Beires, J.; Pignatelli, D. The phenotype of hirsute women: A comparison of polycystic ovary syndrome and 21-hydroxylase-deficient nonclassic adrenal hyperplasia. Fertil. Steril. 2010, 94, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Morreale, H.F.; Sanchón, R.; San Millán, J.L. A prospective study of the prevalence of nonclassical congenital adrenal hyperplasia among women presenting with hyperandrogenic symptoms and signs. J. Clin. Endocrinol. Metab. 2008, 93, 527–533. [Google Scholar] [CrossRef]
- Witchel, S.F.; Lee, P.A.; Suda-Hartman, M.; Hoffman, E.P. Hyperandrogenism and manifesting heterozygotes for 21-hydroxylase deficiency. Biochem. Mol. Med. 1997, 62, 151–158. [Google Scholar] [CrossRef]
- Cisternino, M.; Dondi, E.; Martinetti, M.; Lorini, R.; Salvaneschi, L.; Cuccia, M.; Severi, F. Exaggerated 17-hydroxyprogesterone response to short-term adrenal stimulation and evidence for CYP21B gene point mutations in true precocious puberty. Clin. Endocrinol. 1998, 48, 555–560. [Google Scholar] [CrossRef]
- Dacou-Voutetakis, C.; Dracopoulou, M. High incidence of molecular defects of the CYP21 gene in patients with premature adrenarche. J. Clin. Endocrinol. Metab. 1999, 84, 1570–1574. [Google Scholar] [CrossRef]
- Pucci, L.; Lucchesi, D.; Longo, V.; Prato, S.; Maffei, S. Lack of association between CYP21 V281L variant and polycystic ovary syndrome in Italian women. Gynecol. Endocrinol. 2010, 26, 596–599. [Google Scholar] [CrossRef] [PubMed]
- Witchel, S.F.; Aston, C.E. The role of heterozygosity for CYP21 in the polycystic ovary syndrome. J. Pediatr. Endocrinol. Metab. 2000, 13 (Suppl. 5), 1315–1317. [Google Scholar]
- Doshi, A.; Zaheer, A.; Stiller, M.J. A comparison of current acne grading systems and proposal of a novel system. Int. J. Dermatol. 1997, 36, 416–418. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. AnthroPlus for Personal Computers. Manual: Software for Assessing Growth of the World’s Children and Adolescents; WHO: Geneva, Switzerland, 2009; Available online: https://www.who.int/docs/default-source/child-growth/growth-reference-5-19-years/who-anthroplus-manual.pdf?sfvrsn=ddd24b2_0 (accessed on 1 September 2020).
- Concolino, P.; Mello, E.; Toscano, V.; Ameglio, F.; Zuppi, C.; Capoluongo, E. Multiplex ligation-dependent probe amplification (MLPA) assay for the detection of CYP21A2 gene deletions/duplications in Congenital Adrenal Hyperplasia: First technical report. Clin. Chim. Acta 2009, 402, 164–170. [Google Scholar] [CrossRef] [PubMed]
- MLPA General Protocol for the Detection and Quantification of DNA Sequences. MRC-Holland. 2018. Available online: https://www.mrcholland.com/products/4880/MSMLPA%20General%20Protocol%20MSP-v011.pdf (accessed on 1 October 2020).
- Escobar-Morreale, H.F.; San Millán, J.L.; Smith, R.R.; Sancho, J.; Witchel, S.F. The presence of the 21-hydroxylase deficiency carrier status in hirsute women: Phenotype-genotype correlations. Fertil. Steril. 1999, 72, 629–638. [Google Scholar] [CrossRef]
- Glintborg, D.; Hermann, A.P.; Brusgaard, K.; Hangaard, J.; Hagen, C.; Andersen, M. Significantly higher adrenocorticotropin-stimulated cortisol and 17-hydroxyprogesterone levels in 337 consecutive, premenopausal, caucasian, hirsute patients compared with healthy controls. J. Clin. Endocrinol. Metab. 2005, 90, 1347–1353. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ghanaati, Z.; Peters, H.; Müller, S.; Ventz, M.; Pfüller, B.; Enchshargal, Z.A.; Rohde, W.; Dörner, G. Endocrinological and genetic studies in patients with Polycystic Ovary Syndrome (PCOS). Neuro. Endocrinol. Lett. 1999, 20, 323–327. [Google Scholar]
- Ostlere, L.S.; Rumsby, G.; Holownia, P.; Jacobs, H.S.; Rustin, M.H.A.; Honour, J.W. Carrier status for steroid 21-hydroxylase deficiency is only one factor in the variable phenotype of acne. Clin. Endocrinol. 1998, 48, 209–215. [Google Scholar] [CrossRef]
- Herodez, Š.S.; Fijavz, L.; Zagradišnik, B.; Kokalj Vokač, N. Detection of Mutations in the CYP21A2 Gene: Genotype-Phenotype Correlation in Slovenian Couples with Conceiving Problems. Balk J. Med. Genet. 2015, 18, 25–32. [Google Scholar] [CrossRef][Green Version]
- Araújo, R.S.; Mendonca, B.B.; Barbosa, A.S.; Lin, C.J.; Marcondes, J.A.; Billerbeck, A.E.; Bachega, T.A. Microconversion between CYP21A2 and CYP21A1P promoter regions causes the nonclassical form of 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 2007, 92, 4028–4034. [Google Scholar] [CrossRef]
- Polat, S.E.; Karaburgu, S.; Ünlühizarcı, K.; Dündar, M.U.; Özkul, Y.U.; Arslan, Y.K.; Karaca, Z.Ü.; Kelestimur, F. Comprehensive genotyping of Turkish women with hirsutism. J. Endocrinol. Investig. 2019, 42, 1077–1087. [Google Scholar] [CrossRef] [PubMed]
- Witchel, S.F.; Kahsar-Miller, M.; Aston, C.E.; White, C.; Azziz, R. Prevalence of CYP21 mutations and IRS1 variant among women with polycystic ovary syndrome and adrenal androgen excess. Fertil. Steril. 2005, 83, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Kelestimur, F.; Everest, H.; Dundar, M.; Tanriverdi, F.; White, C.; Witchel, S.F. The frequency of CYP 21 gene mutations in Turkish women with hyperandrogenism. Exp. Clin. Endocrinol. Diabetes 2009, 117, 205–208. [Google Scholar] [CrossRef]
- Settas, N.; Dracopoulou-Vabouli, M.; Dastamani, A.; Katsikis, I.; Chrousos, G.; Panidis, D.; Dacou-Voutetakis, C. CYP21A2 mutations in women with polycystic ovary syndrome (PCOS). Horm. Metab. Res. 2013, 45, 383–386. [Google Scholar] [CrossRef]
- Zawadzki, J.K.; Dunaif, A. Diagnostic Criteria for Polycystic Ovary Syndrome: Towards a Rationale Approach. Polycystic Ovary Syndrome. 1992. Available online: https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=1265464 (accessed on 18 February 2021).
- Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil. Steril. 2004, 81, 19–25. [Google Scholar] [CrossRef] [PubMed]
Characteristic | PCOS Group (n = 55) | Risk Group (n = 23) | Control Group (n = 49) | p Value |
---|---|---|---|---|
Gynecological age, median (IQR) | 3.0 (2.0) | 4.0 (2.0) | 4.0 (1.0) | 0.441 |
mFG score, median (IQR) | 9.0 (6.0) | 7.5 (6.3) | 2.0 (2.0) | <0.001 |
PCOM, n (%) | 19 (34.5) | 4 (17.4) | 2 (4.1) | 0.001 |
BMI, median percentile (IQR) | 89.4 (46.1) | 75.6 (38.3) | 45.1 (45.8) | <0.001 |
Waist–hip ratio, median (IQR) | 0.81 (0.1) | 0.81 (0.1) | 0.76 (0.1) | 0.001 |
GAGS score, median (IQR) | 16.0 (17.5) | 8.0 (9.0) | 6.0 (11.0) | <0.001 |
Testosterone (ng/mL), median (IQR) | 0.4 (0.4) | 0.3 (0.3) | ND 1 | 0.547 |
DHEA-SO4 (µg/mL), median (IQR) | 221.5 (177.2) | 248.0 (190.7) | ND | 0.232 |
Androstenedione (ng/mL), median (IQR) | 3.1 (2.7) | 2.7 (1.8) | ND | 0.287 |
17-OH progesterone (ng/mL), median (IQR) | 1.1 (0.7) | 1.3 (1.0) | ND | 0.972 |
CYP21A2 Pathogenic Variant | PCOS Group (n = 55) | Risk Group (n = 23) | Control Group (n = 49) | p Value |
---|---|---|---|---|
IVS2-12A > G, n (%) | 2 (3.6) | 1 (4.3) | 1 (2.0) | 0.831 |
-113G > A, n (%) | 0 (0) | 1 (4.3) | 0 (0) | 0.181 |
I172N, n (%) | 1 (1.8) | 0 (0) | 0 (0) | 1.000 |
IVS2-12A > G + -113G > A, n (%) | 0 (0) | 0 (0) | 2 (4.1) | 0.319 |
Adolescent | No. 1 | No. 2 | No. 3 | No. 4 | No. 5 | No. 6 | No. 7 | No. 8 |
---|---|---|---|---|---|---|---|---|
Group | PCOS group | PCOS group | PCOS group | Risk group | Risk group | Control group | Control group | Control group |
CYP21A2 pathogenic variant 1 | IVS2-12A > G | IVS2-12A > G | I172N | -113G > A | IVS2-12A > G | IVS2-12A > G | IVS2-12A > G + -113G > A | IVS2-12A > G + -113G > A |
Age, years | 18 | 17 | 14 | 18 | 16 | 16 | 17 | 16 |
BMI, percentile | 31.7 | 18.8 | 31.1 | 24.6 | 29.7 | 22.8 | 24.5 | 26.7 |
Waist–hip ratio | 0.93 | 0.81 | 0.99 | 0.82 | 0.85 | 0.84 | 0.69 | 0.86 |
mFG score | 28 | 9 | 8 | 5 | 26 | 2 | 0 | 0 |
Menarche, years | 12 | 13 | 12 | 12 | 12 | 13 | 14 | 14 |
Menstrual cycle, days | 30–90 | 20–50 | 90–360 | 28 | 28 | 30 | 22 | 21 |
GAGS score | 18 | 24 | 31 | 24 | 9 | 13 | 0 | 12 |
PCOM | Detected | Detected | Not detected | Not detected | Not detected | Not detected | Not detected | Not detected |
Testosterone, ng/mL | 0.59 | 0.63 | 0.78 | 0.64 | 0.33 | NA 2 | NA | NA |
DHEA-SO4, µg/mL | 208.0 | 90.6 | 180.0 | 298.0 | 313.0 | NA | NA | NA |
Androstenedione, ng/mL | 4.10 | 4.48 | 5.77 | 5.88 | 3.16 | NA | NA | NA |
17-OH progesterone, ng/mL | 1.77 | 1.45 | 1.48 | 1.05 | 0.99 | NA | NA | NA |
LH/FSH ratio | 1.36 | 1.62 | 2.58 | 0.67 | 0.35 | NA | NA | NA |
Glucose, mmol/L | 6.11 | 4.70 | 4.94 | 4.65 | 5.07 | NA | NA | NA |
Group: PCOS Patients (n = 55) | |||
Allelic Variant: I172N | |||
Characteristic | Variant Carriers (n = 1, 1.8%) | Non-Carriers (n = 54, 98.2%) | pValue |
mFG score, median (IQR) | 8 | 9.0 (6.0) | 0.741 |
PCOM, n (%) | 0 (0) | 19 (35.2) | 0.627 |
BMI, median percentile (IQR) | 99.5 | 89.2 (47.3) | 0.353 |
Waist–hip ratio, median (IQR) | 0.99 | 0.81 (0.14) | 0.192 |
GAGS score, median (IQR) | 31 | 15.5 (16.8) | 0.038 |
Testosterone (ng/mL), median (IQR) | 0.78 | 0.40 (0.39) | 0.235 |
Allelic variant: IVS2-12A > G | |||
Characteristic | Variant Carriers (n = 2, 3.6%) | Non-Carriers (n = 53, 96.4%) | pValue |
mFG score, median (IQR) | 18.5 | 9.0 (6.0) | 0.274 |
BMI, median percentile (IQR) | 59.4 | 89.4 (45.3) | 0.659 |
Waist–hip ratio, median (IQR) | 0.87 | 0.81 (0.14) | 0.462 |
GAGS score, median (IQR) | 21.0 | 15.0 (17.0) | 0.395 |
Testosterone (ng/mL), median (IQR) | 0.61 | 0.39 (0.40) | 0.480 |
Group: Risk Patients (n = 23) | |||
Allelic Variant: IVS2-12A > G | |||
Characteristic | Variant Carriers (n = 1, 4.3%) | Non-Carriers (n = 22, 95.7%) | pValue |
mFG score, median (IQR) | 26 | 7.0 (6.0) | 0.091 |
BMI, median percentile (IQR) | 98.3 | 75.4 (39.2) | 0.348 |
Waist–hip ratio, median (IQR) | 0.85 | 0.80 (0.06) | 0.273 |
GAGS score, median (IQR) | 9 | 8.0 (9.5) | 0.857 |
Testosterone (ng/mL), median (IQR) | 0.33 | 0.37 (0.35) | 1.000 |
Allelic Variant: -113G > A | |||
Characteristic | Variant Carriers (n = 1, 4.3%) | Non-Carriers (n = 22, 95.7%) | pValue |
mFG score, median (IQR) | 5 | 8.0 (6.0) | 0.545 |
BMI, median percentile (IQR) | 82.0 | 75.4 (40.3) | 0.783 |
Waist–hip ratio, median (IQR) | 0.82 | 0.80 (0.07) | 0.910 |
GAGS score, median (IQR) | 24 | 8.0 (7.8) | 0.190 |
Testosterone (ng/mL), median (IQR) | 0.64 | 0.32 (0.28) | 0.471 |
Group: Control Subjects (n = 49) | |||
Allelic Variant: IVS2-12A > G | |||
Characteristic | Variant Carriers (n = 1, 2.0%) | Non-Carriers (n = 48, 98.0%) | pValue |
GAGS score, median (IQR) | 13 | 6.0 (10.3) | 0.318 |
BMI, median percentile (IQR) | 74.0 | 45.6 (46.5) | 0.429 |
Waist–hip ratio, median (IQR) | 0.84 | 0.75 (0.06) | 0.168 |
Allelic Variants: -113G > A + IVS2-12A > G | |||
Characteristic | Variant Carriers (n = 2, 4.1%) | Non-Carriers (n = 47, 95.9%) | pValue |
GAGS score, median (IQR) | 3.5 | 6.0 (11.5) | 0.382 |
BMI, median percentile (IQR) | 89.3 | 45.1 (45.8) | 0.036 |
Waist–hip ratio, median (IQR) | 0.77 | 0.76 (0.06) | 0.957 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lidaka, L.; Bekere, L.; Lazdane, G.; Dzivite-Krisane, I.; Kivite-Urtane, A.; Gailite, L. Non-Classical Congenital Adrenal Hyperplasia-Causing Alleles in Adolescent Girls with PCOS and in Risk Group for PCOS Development. Diagnostics 2021, 11, 980. https://doi.org/10.3390/diagnostics11060980
Lidaka L, Bekere L, Lazdane G, Dzivite-Krisane I, Kivite-Urtane A, Gailite L. Non-Classical Congenital Adrenal Hyperplasia-Causing Alleles in Adolescent Girls with PCOS and in Risk Group for PCOS Development. Diagnostics. 2021; 11(6):980. https://doi.org/10.3390/diagnostics11060980
Chicago/Turabian StyleLidaka, Lasma, Laine Bekere, Gunta Lazdane, Iveta Dzivite-Krisane, Anda Kivite-Urtane, and Linda Gailite. 2021. "Non-Classical Congenital Adrenal Hyperplasia-Causing Alleles in Adolescent Girls with PCOS and in Risk Group for PCOS Development" Diagnostics 11, no. 6: 980. https://doi.org/10.3390/diagnostics11060980
APA StyleLidaka, L., Bekere, L., Lazdane, G., Dzivite-Krisane, I., Kivite-Urtane, A., & Gailite, L. (2021). Non-Classical Congenital Adrenal Hyperplasia-Causing Alleles in Adolescent Girls with PCOS and in Risk Group for PCOS Development. Diagnostics, 11(6), 980. https://doi.org/10.3390/diagnostics11060980