Occupational Radiation Dose to Eye Lenses in CT-Guided Interventions Using MDCT-Fluoroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Scattered Radiation Distribution in the Phantom Study
2.2. Occupational Doses (Physician and Nurse) in a Clinical Setting
2.3. Statical Analysis
3. Results
3.1. Scattered Radiation Distribution in the Phantom Study
3.2. Occupational Doses (Physician and Nurse) in a Clinical Setting
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buls, N.; Pages, J.; de Mey, J.; Osteaux, M. Evaluation of patient and staff doses during various CT fluoroscopy guided interventions. Health Phys. 2003, 85, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Paulson, E.K.; Sheafor, D.H.; Enterline, D.S.; McAdams, H.P.; Yoshizumi, T.T. CT fluoroscopy-guided interventional procedures: Techniques and radiation dose to radiologists. Radiology 2001, 220, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Joemai, R.M.; Zweers, D.; Obermann, W.R.; Geleijins, J. Assessment of patient and occupational dose in established and new applications of MDCT fluoroscopy. Am. J. Roentgenol. 2009, 192, 881–886. [Google Scholar] [CrossRef] [PubMed]
- Sarti, M.; Brehmer, W.P.; Gay, S.B. Low-dose techniques in CT-guided interventions. Radiographics 2012, 32, 1109–1119. [Google Scholar] [CrossRef]
- Nawfel, R.D.; Judy, P.F.; Silverman, S.G.; Hooton, S.; Tuncali, K.; Adams, D.F. Patient and personnel exposure during CT fluoroscopy-guided interventional procedures. Radiology 2000, 216, 180–184. [Google Scholar] [CrossRef]
- Silverman, S.G.; Tuncali, K.; Adams, D.F.; Nawfel, R.D.; Zou, K.H.; Judy, P.F. CT fluoroscopy-guided abdominal interventions: Techniques, results, and radiation exposure. Radiology 1999, 212, 673–681. [Google Scholar] [CrossRef]
- Irie, T.; Kajitani, M.; Itai, Y. CT fluoroscopy-guided intervention: Marked reduction of scattered radiation dose to the physician’s hand by use of a lead plate and an improved I-I device. J. Vasc. Interv. Radiol. 2001, 12, 1417–1421. [Google Scholar] [CrossRef]
- Yamao, Y.; Yamakado, K.; Takaki, H.; Yamada, T.; Kodama, H.; Nagasawa, N.; Nakatsuka, A.; Uraki, J.; Takeda, K. CT-fluoroscopy in chest interventional radiology: Sliding scale of imaging parameters based on radiation exposure dose and factors increasing radiation exposure dose. Clin. Radiol. 2013, 68, 162–166. [Google Scholar] [CrossRef]
- Kim, G.R.; Hur, J.; Lee, S.M.; Lee, H.J.; Hong, Y.J.; Nam, J.E.; Kim, H.S.; Kim, Y.J.; Choi, B.W.; Kim, T.H.; et al. CT fluoroscopy-guided lung biopsy versus conventional CT-guided lung biopsy: A prospective controlled study to assess radiation doses and diagnostic performance. Eur. Radiol. 2011, 21, 232–239. [Google Scholar] [CrossRef]
- Prosch, H.; Stadler, A.; Schilling, M.; Burklin, S.; Eisenhuber, E.; Schober, E.; Mostbeck, G. CT fluoroscopy-guided vs. multislice CT biopsy mode-guided lung biopsies: Accuracy, complications and radiation dose. Eur. J. Radiol. 2012, 81, 1029–1033. [Google Scholar] [CrossRef]
- Aviles Lucas, P.; Dance, D.R.; Castellano, I.A.; Vano, E. Estimation of the peak entrance surface air kerma for patients undergoing computed tomography-guided procedures. Radiat. Prot. Dosim. 2005, 114, 317–320. [Google Scholar] [CrossRef]
- Hohl, C.; Suess, C.; Wildberger, J.E.; Honnef, D.; Das, M.; Muhlenbruch, G.; Schaller, A.; Gunther, R.W.; Mahnken, A.H. Dose reduction during CT fluoroscopy: Phantom study of angular beam modulation. Radiology 2008, 246, 519–525. [Google Scholar] [CrossRef]
- Neeman, Z.; Dromi, S.A.; Sarin, S.; Wood, B.J. CT fluoroscopy shielding: Decreases in scattered radiation for the patient and operator. J. Vasc. Interv. Radiol. 2006, 17, 1999–2004. [Google Scholar] [CrossRef] [Green Version]
- International Commission on Radiolocial Protoection (ICRP). 2012 ICRP Statement on Tissue Reactions/Early and Late Effects of Radiation in Normal Tissues and Organs—Threshold Doses for Tissue Reactions in a Radiation Protection Context. ICRP Publication 118. Ann. ICRP 2012, 41, 1–322. Available online: https://journals.sagepub.com/doi/pdf/10.1177/ANIB_41_1-2 (accessed on 30 October 2020). [CrossRef]
- International Atomic Energy Agency (IAEA). Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards; General Safety Requirements Part 3; IAEA: Vienna, Austria, 2014. [Google Scholar]
- Haga, Y.; Chida, K.; Kaga, Y.; Sota, M.; Meguro, T.; Zuguchi, M. Occupational Eye Dose in Interventional Cardiology Procedures. Sci. Rep. 2017, 7, 569. [Google Scholar] [CrossRef] [Green Version]
- Chida, K.; Kaga, Y.; Haga, Y.; Kataoka, N.; Kumasaka, E.; Meguro, T.; Zuguchi, M. Occupational Dose in Interventional Radiology Procedures. Am. J. Roentgenol. 2013, 200, 138–141. [Google Scholar] [CrossRef]
- Morishima, Y.; Chida, K.; Watanabe, H. Estimation of the Dose of Radiation Received by Patient and Physician during a Videofluoroscopic Swallowing Study. Dysphagia 2016, 31, 574–578. [Google Scholar] [CrossRef]
- Haga, Y.; Chida, K.; Sota, M.; Yuji, K.; Abe, M.; Inaba, Y.; Suzuki, M.; Meguro, T.; Zuguchi, M. Hybrid Operating Room System for the Treatment of Thoracic and Abdominal Aortic Aneurysms: Evaluation of the Radiation Dose Received by Patients. Diagnostics 2020, 10, 846. [Google Scholar] [CrossRef]
- Chida, K.; Kato, M.; Kagaya, Y.; Zuguchi, M.; Saito, H.; Ishibashi, T.; Takahashi, S.; Yamada, S.; Takai, Y. Radiation dose and radiation protection for patients and physicians during interventional procedure. J. Radiat. Res. 2010, 51, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Kato, M.; Chida, K.; Ishida, T.; Sasaki, F.; Toyoshima, H.; Oosaka, H.; Terata, K.; Abe, Y.; Kinoshita, T. Occupational radiation exposure dose of the eye in department of cardiac arrhythmia physician. Radiat. Prot. Dosim. 2019, 187, 361–368. [Google Scholar] [CrossRef]
- Kato, M.; Chida, K.; Ishida, T.; Toyoshima, H.; Yoshida, Y.; Yoshioka, S.; Moroi, J.; Kinoshita, T. Occupational radiation exposure of the eye in neurovascular interventional physician. Radiat. Prot. Dosim. 2019, 185, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Ishii, H.; Chida, K.; Satsurai, K.; Haga, Y.; Kaga, Y.; Abe, M.; Inaba, Y.; Zuguchi, M. A Phantom Study to Determine the Optimal Placement of Eye Dosemeters on Interventional Cardiology Staff. Radiat. Prot. Dosim. 2019, 185, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Vano, E.; Sanchez, R.M.; Fernandez, J.M. Strategies to optimize occupational radiation protection in interventional cardiology using simultaneous registration of patient and staff doses. J. Radiol. Prot. 2018, 38, 1077–1088. [Google Scholar] [CrossRef]
- Chida, K.; Morishima, Y.; Inaba, Y.; Taura, M.; Ebata, A.; Takeda, K.; Shimura, H.; Zuguchi, M. Physician-received scatter radiation with angiography systems used for interventional radiology: Comparison among many X-ray systems. Radiat. Prot. Dosim. 2012, 149, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Inaba, Y.; Chida, K.; Kobayashi, R.; Kaga, Y.; Zuguchi, M. Fundamental study of a real-time occupational dosimetry system for interventional radiology staff. J. Radiol. Prot. 2014, 34, N65–N71. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, K.; Takei, Y.; Mori, H.; Kobayashi, I.; Noto, K.; Igarashi, T.; Suzuki, S.; Akahane, K. A multicenter study of radiation doses to the eye lenses of medical staff performing non-vascular imaging and interventional radiology procedures in Japan. Phys. Med. 2020, 74, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, K.; Lertsuwunseri, V.; Srimahachota, S.; Krisanachinda, A.; Tulvatana, W.; Khambhiphant, B.; Sudchai, W.; Rehani, M. Eye lens dosimetry and the study on radiation cataract in interventional cardiologists. Phys. Med. 2017, 44, 232–235. [Google Scholar] [CrossRef] [PubMed]
- Coppeta, L.; Pietroiusti, A.; Neri, A.; Spataro, A.; Angelis, E.D.; Perrone, S.; Magrini, A. Risk of radiation-induced lens opacities among surgeons and interventional medical staff. Radiol. Phys. Technol. 2019, 12, 26–29. [Google Scholar] [CrossRef]
- Koenig, A.M.; Etzel, R.; Greger, W.; Viniol, S.; Fiebich, M.; Thomas, R.P.; Mahnken, A.H. Protective efficacy of different ocular radiation protection devices: A phantom study. Cardiovasc. Interv. Radiol. 2020, 43, 127–134. [Google Scholar] [CrossRef]
- Mortensen, C.; Chung, J.; Liu, D.; Ho, S.; Legiehn, G.; Machan, L.; Klass, D. Prospective study on total fluoroscopic time in patients undergoing uterine artery embolization: Comparing tranradial and transfemoral approaches. Cardiovasc. Interv. Radiol. 2019, 42, 441–447. [Google Scholar] [CrossRef]
- Mihic, M.S.; Pavelic, L.; Kortmis, M.V.; Sisko, J.; Strmecki, N.M.; Prlic, I. 3D-printed eye lens dosemeter holder for use in interventional radiology and interventional cardiology. Radiat. Meas. 2020, 135, 1–6. [Google Scholar] [CrossRef]
- Dehairs, M.; Marshall, N.M.; Bosmans, H.; Leghissa, M. Radiation protection operators and patients in a hybrid angio-MR suite. Phys. Med. 2020, 74, 143–154. [Google Scholar] [CrossRef]
- Matsubara, K.; Yoshida, S.; Hirosawa, A.; Chusin, T.; Furukawa, Y. Characterization of Small Dosimeters Used for Measurement of Eye Lens Dose for Medical Staff during Fluoroscopic Examination. Diagnostics 2021, 11, 150. [Google Scholar] [CrossRef]
Locations | Bone | Soft Tissue | Sum | Eye Dose [μSv] |
---|---|---|---|---|
Face (Salivary glands et al.) | 0 | 10 | 10 | 31.2 ± 32.6 |
Neck (Cervical spine et al.) | 5 | 7 | 12 | 37.3 ± 26.9 |
Chest (Thoracic spine, Libs et al.) | 50 | 14 | 64 | 45.9 ± 43.4 |
Abdomen (Lumbar spine et al.) | 28 | 11 | 39 | 50.8 ± 49.8 |
Pelvis (Sacrum, Ilium et al.) | 36 | 8 | 44 | 32.9 ± 27.3 |
Upper extremity (Shoulder, Arm et al.) | 18 | 3 | 21 | 39.3 ± 28.8 |
Lower extremity (Thigh, Tibial bone et al.) | 39 | 3 | 42 | 32.1 ± 30.2 |
All procedures | 176 | 56 | 232 | 39.1 ± 36.3 |
Characteristics | Ave. ± SD | Median | Range |
---|---|---|---|
Age (years) | 52.8 ± 20.9 | 58.0 | 1.0~88.0 |
BMI | 23.0 ± 5.2 | 22.5 | 15.1~60.2 |
Acquisitions No. | 34.7 ± 23.1 | 27.0 | 3.0~160.0 |
CT-fluoroscopic time (s) | 26.6 ± 17.8 | 20.9 | 2.3~123.3 |
CT-fluoroscopic mAs | 650.0 ± 598.4 | 441.0 | 23.0~4750.0 |
CTDI vol (mGy) | 14.2 ± 39.4 | 9.0 | 3.1~606.0 |
DLP (mGy*cm) | 262.4 ± 144.2 | 217.9 | 37.3~972.6 |
Target depth (mm) | 66.6 ± 23.6 | 66.2 | 11.0~134.3 |
Physician dose (μSv) | |||
Eye dose | 39.1 ± 36.3 | 26.7 | 0.9~285.2 |
Hand dose | 28.6 ± 31.0 | 19.0 | 0.0~279.8 |
Neck dose | 23.1 ± 23.7 | 16.6 | 0.4~220.7 |
Effective dose | 2.2 ± 2.8 | 1.3 | 0.0~16.9 |
Nurse dose (μSv) | |||
Neck dose | 2.3 ± 5.0 | 0.7 | 0.0~55.1 |
Chest dose | 2.4 ± 4.4 | 1.0 | 0.0~44.4 |
Correlation Coefficient (r) | CT-Acquisitions No. | CT-Fluoroscopic Time (s) | CT-Fluoroscopic mAs |
---|---|---|---|
Physician dose (μSv) | |||
Eye dose | 0.74 | 0.73 | 0.90 |
Hand dose | 0.61 | 0.60 | 0.75 |
Neck dose | 0.67 | 0.67 | 0.83 |
Nurse dose (μSv) | |||
Neck dose | 0.29 | 0.29 | 0.36 |
Chest dose | 0.36 | 0.37 | 0.43 |
Dosase Groups | Bone | Soft Tissue | Biopsy |
---|---|---|---|
Ratio | 176 | 56 | p-Value |
CT-acquisitions No. | 36.8 ± 24.9 | 30.8 ± 19.3 | 0.074 |
CT-fluoroscopic time (s) | 27.4 ± 18.6 | 26.3 ± 17.7 | 0.690 |
CT-fluoroscopic mAs | 698 ± 685 | 590 ± 440 | 0.195 |
CTDI vol (mGy) | 10.9 ± 7.6 | 11.1 ± 6.9 | 0.864 |
DLP (mGycm) | 263 ± 138 | 248 ± 129 | 0.487 |
Target depth (mm) | 66.9 ± 22.6 | 66.1 ± 26.1 | 0.836 |
Physician dose (μSv) | |||
Eye dose | 41.1 ± 37.7 | 37.1 ± 37.2 | 0.511 |
Hand dose | 28.6 ± 32.4 | 28.0 ± 28.8 | 0.890 |
Neck dose | 24.6 ± 25.6 | 21.0 ± 21.5 | 0.323 |
Effective dose | 2.2 ± 2.7 | 2.5 ± 3.0 | 0.602 |
Nurse dose (μSv) | |||
Neck dose | 2.0 ± 3.5 | 3.4 ± 8.8 | 0.287 |
Chest dose | 2.1 ± 3.3 | 3.6 ± 7.5 | 0.199 |
Dosase Groups | Without | With | Lead Drape |
---|---|---|---|
Ratio | 173 | 59 | p-Value |
CT-acquisitions No. | 35.8 ± 24.2 | 34.3 ± 22.7 | 0.674 |
CT-fluoroscopic time (s) | 28.1 ± 19.1 | 23.7 ± 15.0 | 0.910 |
CT-fluoroscopic mAs | 688 ± 697 | 629 ± 439 | 0.471 |
CTDI vol (mGy) | 10.9 ± 7.6 | 11.1 ± 6.8 | 0.854 |
DLP (mGycm) | 259 ± 135 | 261 ± 137 | 0.927 |
Target depth (mm) | 66.2 ± 24.2 | 67.9 ± 21.5 | 0.627 |
Physician dose (μSv) | |||
Eye dose | 42.8 ± 40.2 | 33.1 ± 29.0 | 0.055 |
Hand dose | 32.7 ± 33.8 | 17.6 ± 21.4 | 0.0002 * |
Neck dose | 25.2 ± 26.0 | 19.8 ± 20.7 | 0.124 |
Effective dose | 2.6 ± 3.0 | 1.5 ± 1.8 | 0.0008 * |
Nurse dose (μSv) | |||
Neck dose | 2.6 ± 6.0 | 1.8 ± 3.0 | 0.213 |
Chest dose | 2.7 ± 5.1 | 1.9 ± 2.9 | 0.154 |
Reference [1] | Reference [2] | Our Study | |
---|---|---|---|
No. of cases | N = 82 | N = 85 | N = 232 |
Fluoroscopic time (sec) | - | 17.9 | 20.9 |
Proximal eye dose (μSv) | 210 | 10 | 27.1 |
Distal eye dose (μSv) | - | - | 2.4 |
Proximal neck dose (μSv) | 240 | - | 17.2 |
Distal neck dose (μSv) | - | - | 0.5 |
Proximal hand dose (μSv) | 760 | 12 | 18.7 |
Distal hand dose (μSv) | 180 | - | 11.0 |
Dosimeter Type | TLD | TLD | RaySafe i2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inaba, Y.; Hitachi, S.; Watanuki, M.; Chida, K. Occupational Radiation Dose to Eye Lenses in CT-Guided Interventions Using MDCT-Fluoroscopy. Diagnostics 2021, 11, 646. https://doi.org/10.3390/diagnostics11040646
Inaba Y, Hitachi S, Watanuki M, Chida K. Occupational Radiation Dose to Eye Lenses in CT-Guided Interventions Using MDCT-Fluoroscopy. Diagnostics. 2021; 11(4):646. https://doi.org/10.3390/diagnostics11040646
Chicago/Turabian StyleInaba, Yohei, Shin Hitachi, Munenori Watanuki, and Koichi Chida. 2021. "Occupational Radiation Dose to Eye Lenses in CT-Guided Interventions Using MDCT-Fluoroscopy" Diagnostics 11, no. 4: 646. https://doi.org/10.3390/diagnostics11040646
APA StyleInaba, Y., Hitachi, S., Watanuki, M., & Chida, K. (2021). Occupational Radiation Dose to Eye Lenses in CT-Guided Interventions Using MDCT-Fluoroscopy. Diagnostics, 11(4), 646. https://doi.org/10.3390/diagnostics11040646