Ethical Implications of Alzheimer’s Disease Prediction in Asymptomatic Individuals through Artificial Intelligence
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Individual Benefits and Disadvantages
3.2. Social Benefits and Disadvantages
3.3. Right to Know vs. Right Not to Know
4. Discussion
- The test should be voluntary and based on informed consent.
- The test should be offered with proper counseling and professional support.
- The test should only be available to mature adults.
- The test results should not cause discrimination.
- Testing should be delayed if there is evidence that the results will lead to psychosocial harm.
- The test results are confidential and the property of the individual.
4.1. Autonomy
4.2. Beneficence
4.3. Non-Maleficence
4.4. Justice
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Towards a Dementia Plan. A WHO Guide; World Health Organization: Geneva, Switzerland, 2018; ISBN 978-92-4-151413-2. [Google Scholar]
- World Health Organization. Dementia. Available online: https://www.who.int/en/news-room/fact-sheets/detail/dementia (accessed on 25 February 2020).
- Graham, S.A.; Lee, E.E.; Jeste, D.V.; van Patten, R.; Twamley, E.W.; Nebeker, C.; Yamada, Y.; Kim, H.-C.; Depp, C.A. Artificial intelligence approaches to predicting and detecting cognitive decline in older adults: A conceptual review. Psychiatry Res. 2020, 284, 112732. [Google Scholar] [CrossRef]
- Uspenskaya-Cadoz, O.; Alamuri, C.; Wang, L.; Yang, M.; Khinda, S.; Nigmatullina, Y.; Cao, T.; Kayal, N.; O’Keefe, M.; Rubel, C. Machine Learning Algorithm Helps Identify Non-Diagnosed Prodromal Alzheimer’s Disease Patients in the General Population. J. Prev. Alzheimers. Dis. 2019, 6, 185–191. [Google Scholar] [CrossRef]
- Bazzari, F.H.; Abdallah, D.M.; El-Abhar, H.S. Pharmacological Interventions to Attenuate Alzheimer’s Disease Progression: The Story So Far. Curr. Alzheimer Res. 2019, 16, 261–277. [Google Scholar] [CrossRef]
- Cummings, J.; Lee, G.; Ritter, A.; Zhong, K. Alzheimer’s disease drug development pipeline: 2018. Alzheimer’s Dement. 2018, 4, 195–214. [Google Scholar] [CrossRef] [PubMed]
- Bruun, M.; Frederiksen, K.S.; Rhodius-Meester, H.F.M.; Baroni, M.; Gjerum, L.; Koikkalainen, J.; Urhemaa, T.; Tolonen, A.; Van Gils, M.; Rueckert, D.; et al. Impact of a clinical decision support tool on prediction of progression in early-stage dementia: A prospective validation study. Alzheimer’s Res. Ther. 2019, 11, 25. [Google Scholar] [CrossRef]
- Laske, C.; Sohrabi, H.R.; Frost, S.M.; López-de-Ipiña, K.; Garrard, P.; Buscema, M.; Dauwels, J.; Soekadar, S.R.; Mueller, S.; Linnemann, C.; et al. Innovative diagnostic tools for early detection of Alzheimer’s disease. Alzheimer’s Dement. 2015, 11, 561–578. [Google Scholar] [CrossRef]
- Gautam, R.; Sharma, M. Prevalence and Diagnosis of Neurological Disorders Using Different Deep Learning Techniques: A Meta-Analysis. J. Med. Syst. 2020, 44, 49. [Google Scholar] [CrossRef]
- Ding, Y.; Sohn, J.H.; Kawczynski, M.G.; Trivedi, H.; Harnish, R.; Jenkins, N.W.; Lituiev, D.; Copeland, T.P.; Aboian, M.S.; Mari Aparici, C.; et al. A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using 18F-FDG PET of the Brain. Radiology 2019, 290, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Spasov, S.; Passamonti, L.; Duggento, A.; Liò, P.; Toschi, N. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease. Neuroimage 2019, 189, 276–287. [Google Scholar] [CrossRef] [PubMed]
- Whitehouse, P.J. Ethical issues in early diagnosis and prevention of Alzheimer disease. Dialogues Clin. Neurosci. 2019, 21, 101–108. [Google Scholar]
- Dubois, B.; Padovani, A.; Scheltens, P.; Rossi, A.; Dell’Agnello, G. Timely Diagnosis for Alzheimer’s Disease: A Literature Review on Benefits and Challenges. J. Alzheimer’s Dis. 2016, 49, 617–631. [Google Scholar] [CrossRef]
- Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer’s disease. Eur. J. Neurol. 2018, 25, 59–70. [Google Scholar] [CrossRef]
- Frisoni, G.B.; Boccardi, M.; Barkhof, F.; Blennow, K.; Cappa, S.; Chiotis, K.; Démonet, J.-F.; Garibotto, V.; Giannakopoulos, P.; Gietl, A.; et al. Strategic roadmap for an early diagnosis of Alzheimer’s disease based on biomarkers. Lancet Neurol. 2017, 16, 661–676. [Google Scholar] [CrossRef]
- Bundesärztekammer. Stellungnahme zum Umgang mit prädiktiven Tests auf das Risiko für die Alzheimer Krankheit. Dtsch. Arztebl. Ausg. A 2018, 115. [Google Scholar] [CrossRef]
- Topol, E.J. Welcoming new guidelines for AI clinical research. Nat. Med. 2020, 26, 1318–1320. [Google Scholar] [CrossRef] [PubMed]
- Schicktanz, S.; Perry, J.; Herten, B.; Stock Gissendanner, S. Demenzprädiktion als ethische Herausforderung: Stakeholder fordern Beratungsstandards für Deutschland. Nervenarzt 2021, 92, 66–68. [Google Scholar] [CrossRef] [PubMed]
- Smedinga, M.; Tromp, K.; Schermer, M.H.N.; Richard, E. Ethical Arguments Concerning the Use of Alzheimer’s Disease Biomarkers in Individuals with No or Mild Cognitive Impairment: A Systematic Review and Framework for Discussion. J. Alzheimer’s Dis. 2018, 66, 1309–1322. [Google Scholar] [CrossRef]
- Schweda, M.; Kögel, A.; Bartels, C.; Wiltfang, J.; Schneider, A.; Schicktanz, S. Prediction and Early Detection of Alzheimer’s Dementia: Professional Disclosure Practices and Ethical Attitudes. J. Alzheimer’s Dis. 2018, 62, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Ells, C.; Thombs, B.D. The ethics of how to manage incidental findings. Can. Med Assoc. J. 2014, 186, 655–656. [Google Scholar] [CrossRef] [PubMed]
- Franceschini, N.; Frick, A.; Kopp, J.B. Genetic Testing in Clinical Settings. Am. J. Kidney Dis. 2018, 72, 569–581. [Google Scholar] [CrossRef]
- Clarke, A.J.; Wallgren-Pettersson, C. Ethics in genetic counselling. J. Community Genet. 2018, 10, 3–33. [Google Scholar] [CrossRef]
- Bunnik, E.M.; Vernooij, M.W. Incidental findings in population imaging revisited. Eur. J. Epidemiol. 2016, 31, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Erdmann, P.; Langanke, M.; Assel, H. Zufallsbefunde-Risikobewusstsein von Probanden und forschungsethische Konsequenzen. In Medizin und Technik: Risiken und Folgen technologischen Fortschritts; Steger, F., Ed.; Mentis: Münster, Germany, 2013; pp. 15–47. [Google Scholar]
- Quaid, K.A.; Murrell, J.R.; Hake, A.M.; Farlow, M.R.; Ghetti, B. Presymptomatic Genetic Testing with an APP Mutation in Early-Onset Alzheimer Disease: A Descriptive Study of Sibship Dynamics. J. Genet. Couns. 2000, 9, 327–341. [Google Scholar] [CrossRef] [PubMed]
- Arribas-Ayllon, M. The ethics of disclosing genetic diagnosis for Alzheimer’s disease: Do we need a new paradigm? Br. Med. Bull. 2011, 100, 7–21. [Google Scholar] [CrossRef] [PubMed]
- Goldman, J.S.; Hou, C.E. Early-onset Alzheimer disease: When is genetic testing appropriate? Alzheimer Dis. Assoc. Disord. 2004, 18, 65–67. [Google Scholar] [CrossRef]
- Beauchamp, T.L.; Childress, J.F. Principles of Biomedical Ethics, 8th ed.; Oxford University Press: New York, NY, USA, 2019; ISBN 9780190640873. [Google Scholar]
- Vanderschaeghe, G.; Dierickx, K.; Vandenberghe, R. Review of the Ethical Issues of a Biomarker-Based Diagnoses in the Early Stage of Alzheimer’s Disease. J. Bioethical Inq. 2018, 15, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Angehrn, Z.; Sostar, J.; Nordon, C.; Turner, A.; Gove, D.; Karcher, H.; Keenan, A.; Mittelstadt, B.; Reydet-de Vulpillieres, F. Ethical and Social Implications of Using Predictive Modeling for Alzheimer’s Disease Prevention: A Systematic Literature Review. J. Alzheimer’s Dis. 2020, 76, 923–940. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef]
- Strech, D.; Sofaer, N. How to write a systematic review of reasons. J. Med. Ethics 2012, 38, 121–126. [Google Scholar] [CrossRef]
- Vaismoradi, M.; Turunen, H.; Bondas, T. Content analysis and thematic analysis: Implications for conducting a qualitative descriptive study. Nurs. Health Sci. 2013, 15, 398–405. [Google Scholar] [CrossRef]
- Braun, V.; Clarke, V. Using thematic analysis in psychology. Qual. Res. Psychol. 2006, 3, 77–101. [Google Scholar] [CrossRef]
- Davis, D.S. Ethical issues in Alzheimer’s disease research involving human subjects. J. Med. Ethics 2017, 43, 852–856. [Google Scholar] [CrossRef] [PubMed]
- Erdmann, P.; Langanke, M. The Ambivalence of Early Diagnosis-Returning Results in Current Alzheimer Research. Curr. Alzheimer Res. 2018, 15, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Schermer, M.H.N.; Richard, E. On the reconceptualization of Alzheimer’s disease. Bioethics 2019, 33, 138–145. [Google Scholar] [CrossRef]
- Ivanoiu, A.; Engelborghs, S.; Hanseeuw, B. Early diagnosis of Alzheimer’s disease (with the announcement of the diagnosis). Rev. Prat. 2020, 70, 158–163. [Google Scholar] [PubMed]
- Vanderschaeghe, G.; Vandenberghe, R.; Dierickx, K. Stakeholders’ Views on Early Diagnosis for Alzheimer’s Disease, Clinical Trial Participation and Amyloid PET Disclosure: A Focus Group Study. J. Bioethical Inq. 2019, 16, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.C.; Ingram, T.A.; Jarvis, A.; Denton, E.; Lampshire, Z.; Wernham, C. Consent for the diagnosis of preclinical dementia states: A review. Maturitas 2017, 98, 30–34. [Google Scholar] [CrossRef][Green Version]
- Bortolotti, L.; Widdows, H. The right not to know: The case of psychiatric disorders. J. Med. Ethics 2011, 37, 673–676. [Google Scholar] [CrossRef]
- Mattsson, N.; Brax, D.; Zetterberg, H. To Know or Not to Know-Ethical Issues Related to Early Diagnosis of Alzheimer’s Disease. Int. J. Alzheimer’s Dis. 2010, 2010, 841941. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimighahnavieh, A.; Luo, S.; Chiong, R. Deep learning to detect Alzheimer’s disease from neuroimaging: A systematic literature review. Comput. Methods Programs Biomed. 2019, 187, 105242. [Google Scholar] [CrossRef]
- Stites, S.D.; Milne, R.; Karlawish, J. Advances in Alzheimer’s imaging are changing the experience of Alzheimer’s disease. Alzheimer’s Dement. 2018, 10, 285–300. [Google Scholar] [CrossRef]
- Milne, R.; Karlawish, J. Expanding engagement with the ethical implications of changing definitions of Alzheimer’s disease. Lancet Psychiatry 2017, 4, e6–e7. [Google Scholar] [CrossRef][Green Version]
- World Federation of Neurology Research Group on Huntington’s Disease. Guidelines for the molecular genetics predictive test in Huntington’s disease. J. Med Genet. 1994, 31, 555–559. [Google Scholar]
- Kerwin, A. None Too Solid. Knowl. Creat. Diffus. Util. 1993, 15, 166–185. [Google Scholar] [CrossRef]
- Kraft, T.; Rott, H. Was ist Nichtwissen. In Das sogenannte Recht auf Nichtwissen: Normatives Fundament und anwendungspraktische Geltungskraft; Duttge, G., Lenk, C., Eds.; Mentis: Paderborn, Germany, 2019; pp. 21–48. ISBN 3957431344. [Google Scholar]
- Beauchamp, T.L. The ‘Four Principles’ Approach to Health Care Ethics. In Principles of Health Care Ethics, 2nd ed.; Ashcroft, R.E., Dawson, A., Draper, H., McMillan, J., Eds.; John Wiley & Sons: Chichester, UK; Hoboken, NJ, USA, 2007; pp. 3–10. ISBN 9780470842461. [Google Scholar]
- Bonotti, M. Food labels, autonomy, and the right (not) to know. Kennedy Inst. Ethics J. 2014, 24, 301–321. [Google Scholar] [CrossRef] [PubMed]
- Andorno, R. Foundations and implications of the right not to know. In Das sogenannte Recht auf Nichtwissen: Normatives Fundament und anwendungspraktische Geltungskraft; Duttge, G., Lenk, C., Eds.; Mentis: Paderborn, Germany, 2019; pp. 69–81. ISBN 3957431344. [Google Scholar]
- Cornett, P.F.; Hall, J.R. Issues in disclosing a diagnosis of dementia. Arch. Clin. Neuropsychol. 2008, 23, 251–256. [Google Scholar] [CrossRef]
- Smith, A.P.; Beattie, B.L. Disclosing a Diagnosis of Alzheimer’s Disease: Patient and Family Experiences. Can. J. Neurol. Sci. 2001, 28, S67–S71. [Google Scholar] [CrossRef] [PubMed]
- Lenk, C.; Duttge, G.; Flatau, L.; Frommeld, D.; Poser, W.; Reitt, M.; Schulze, T.; Weber, A.; Zoll, B. A look into the future? Patients’ and health care staff’s perception and evaluation of genetic information and the right not to know. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2019, 180, 576–588. [Google Scholar] [CrossRef]
- Jha, A.; Tabet, N.; Orrell, M. To tell or not to tell-comparison of older patients’ reaction to their diagnosis of dementia and depression. Int. J. Geriatr. Psychiatry 2001, 16, 879–885. [Google Scholar] [CrossRef]
- Davies, B. The right not to know and the obligation to know. J. Med. Ethics 2020, 300–303. [Google Scholar] [CrossRef]
- Porteri, C.; Galluzzi, S.; Geroldi, C.; Frisoni, G.B. Diagnosis disclosure of prodromal Alzheimer disease-ethical analysis of two cases. Can. J. Neurol. Sci. 2010, 37, 67–75. [Google Scholar] [CrossRef]
- Marzban, E.N.; Teipel, S.J.; Buerger, K.; Fliessbach, K.; Heneka, M.T.; Kilimann, I.; Laske, C.; Peters, O.; Priller, J.; Schneider, A.; et al. P3-361: Explainable Convolutional Networks and multimodal Imaging Data: The next Step towards using Artificial Intelligence as diagnostic Tool for early Detection of Alzheimer’s Disease. Alzheimer’s Dement. 2019, 15, P1083–P1084. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. In Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD): Discussion Paper and Request for Feedback. Available online: https://www.fda.gov/media/122535/download (accessed on 10 March 2020).
- Jo, T.; Nho, K.; Saykin, A.J. Deep Learning in Alzheimer’s Disease: Diagnostic Classification and Prognostic Prediction Using Neuroimaging Data. Front. Aging Neurosci. 2019, 11, 220. [Google Scholar] [CrossRef]
- Cohen, I.G. Informed Consent and Medical Artificial Intelligence: What to Tell the Patient? Georget. Law J. 2020, 108, 1425–1469. [Google Scholar] [CrossRef]
- Schmidhuber, M. Neuroimaging für eine frühe Diagnose der Alzheimer-Demenz. In Neuroimaging und Neuroökonomie: Grundlagen, ethische Fragestellungen, soziale und rechtliche Relevanz; Ach, J.S., Lüttenberg, B., Nossek, A., Eds.; Lit Verlag: Berlin, Germany, 2015; pp. 103–118. [Google Scholar]
- Paulsen, J.S.; Nance, M.; Kim, J.-I.; Carlozzi, N.E.; Panegyres, P.K.; Erwin, C.; Goh, A.; McCusker, E.; Williams, J.K. A review of quality of life after predictive testing for and earlier identification of neurodegenerative diseases. Prog. Neurobiol. 2013, 110, 2–28. [Google Scholar] [CrossRef]
- Martín Noguerol, T.; Paulano-Godino, F.; Martín-Valdivia, M.T.; Menias, C.O.; Luna, A. Strengths, Weaknesses, Opportunities, and Threats Analysis of Artificial Intelligence and Machine Learning Applications in Radiology. J. Am. Coll. Radiol. 2019, 16, 1239–1247. [Google Scholar] [CrossRef] [PubMed]
- London, A.J. Artificial Intelligence and Black-Box Medical Decisions: Accuracy versus Explainability. Hastings Center Rep. 2019, 49, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Weikert, T.; Cyriac, J.; Yang, S.; Nesic, I.; Parmar, V.; Stieltjes, B. A Practical Guide to Artificial Intelligence-Based Image Analysis in Radiology. Investig. Radiol. 2020, 55, 1–7. [Google Scholar] [CrossRef]
- Evans, J.P.; Skrzynia, C.; Burke, W. The complexities of predictive genetic testing. BMJ 2001, 322, 1052–1056. [Google Scholar] [CrossRef]
- Alzheimer’s Disease International. World Alzheimer Report 2019. Available online: https://www.alz.co.uk/research/world-report-2019 (accessed on 25 February 2020).
- Erlangsen, A.; Stenager, E.; Conwell, Y.; Andersen, P.K.; Hawton, K.; Benros, M.E.; Nordentoft, M.; Stenager, E. Association Between Neurological Disorders and Death by Suicide in Denmark. JAMA 2020, 323, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Almqvist, E.W.; Bloch, M.; Brinkman, R.; Craufurd, D.; Hayden, R.M. A worldwide assessment of the frequency of suicide, suicide attempts, or psychiatric hospitalization after predictive testing for Huntington disease. Am. J. Hum. Genet. 1999, 64, 1293–1304. [Google Scholar] [CrossRef] [PubMed]
- Bird, T.D. Outrageous fortune: The risk of suicide in genetic testing for Huntington disease. Am. J. Hum. Genet. 1999, 64, 1289–1292. [Google Scholar] [CrossRef] [PubMed]
- Geis, J.R.; Brady, A.P.; Wu, C.C.; Spencer, J.; Ranschaert, E.; Jaremko, J.L.; Langer, S.G.; Kitts, A.B.; Birch, J.; Shields, W.F.; et al. Ethics of Artificial Intelligence in Radiology: Summary of the Joint European and North American Multisociety Statement. Can. Assoc. Radiol. J. 2019, 70, 329–334. [Google Scholar] [CrossRef]
- Morley, J.; Floridi, L.; Kinsey, L.; Elhalal, A. From What to How: An Initial Review of Publicly Available AI Ethics Tools, Methods and Research to Translate Principles into Practices. Sci. Eng. Ethics 2019. [Google Scholar] [CrossRef]
- Brady, A.P.; Neri, E. Artificial Intelligence in Radiology-Ethical Considerations. Diagnostics 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, J.; Li, Q.; Appelbaum, D.; Doi, K. Computer-aided diagnosis and artificial intelligence in clinical imaging. Semin. Nucl. Med. 2011, 41, 449–462. [Google Scholar] [CrossRef] [PubMed]
- Holm, E.A. In defense of the black box. Science 2019, 364, 26–27. [Google Scholar] [CrossRef]
- Alexander, A.; Jiang, A.; Ferreira, C.; Zurkiya, D. An Intelligent Future for Medical Imaging: A Market Outlook on Artificial Intelligence for Medical Imaging. J. Am. Coll. Radiol. 2020, 17, 165–170. [Google Scholar] [CrossRef]
- Topol, E.J. Deep medicine. How Artificial Intelligence Can Make Healthcare Human Again, 1st ed.; Basic Books: New York, NY, USA, 2019; ISBN 9781541644632. [Google Scholar]
- Heilinger, J.-C. Cosmopolitan responsibility. In Global Injustice, Relational Equality, and Individual Agency, 1st ed.; De Gruyter: Berlin, Germany, 2020; ISBN 9783110600780. [Google Scholar]
Authors | Title | Type of Study | Date |
---|---|---|---|
Smedinga, Tromp, Schermer, Richard | Ethical Arguments Concerning the Use of Alzheimer’s Disease Biomarkers in Individuals with No or Mild Cognitive Impairment: A Systematic Review and Framework for Discussion | Systematic Review | 2018 |
Vanderschaeghe, Dierickx, Vandenberghe | Review of the Ethical Issues of a Biomarker-Based Diagnoses in the Early Stage of Alzheimer’s Disease | Systematic Review | 2018 |
Milne, Karlawish | Expanding engagement with the ethical implications of changing definitions of Alzheimer’s disease | Correspondence (conceptual) | 2017 |
Whitehouse | Ethical issues in early diagnosis and prevention of Alzheimer disease | Original Article (conceptual) | 2019 |
Vanderschaeghe, Vandenberghe, Dierickx | Stakeholders’ Views on Early Diagnosis for Alzheimer’s Disease, Clinical Trial Participation and Amyloid PET Disclosure: A Focus Group Study | Focus Group (qualitative) | 2019 |
Erdmann, Langanke | The Ambivalence of Early Diagnosis—Returning Results in Current Alzheimer Research | Risk-Benefit-Assessment (conceptual) | 2018 |
Schermer, Richard | On the reconceptualization of Alzheimer’s disease | Original Work (conceptual) | 2019 |
Hughes, Ingram, Jarvis, et al. | Consent for the diagnosis of preclinical dementia states: A review | Review | 2017 |
Davis | Ethical issues in Alzheimer’s disease research involving human subjects | Original Work (conceptual) | 2017 |
Schweda, Kögel, Bartels, Wiltfang, Schneider, Schicktanz | Prediction and Early Detection of Alzheimer’s Dementia: Professional Disclosure Practices and Ethical Attitudes | Survey (qualitative and quantitative) | 2017 |
Stites, Milne, Karlawish | Advances in Alzheimer’s imaging are changing the experience of Alzheimer’s disease | Narrative Review (conceptual) | 2018 |
Angehrn, Sostar, et al. | Ethical and Social Implications of Using Predictive Modeling for Alzheimer’s Disease Prevention: A Systematic Literature Review | Systematic Review | 2020 |
Ivanoiu, Engelborghs, Hanseeuw | Early diagnosis of Alzheimer’s disease (with the announcement of the diagnosis) | Original Work (conceptual) | 2020 |
Mattsson, Brax, Zetterberg | To Know or Not to Know—Ethical Issues Related to Early Diagnosis of Alzheimer’s Disease | Original Work (conceptual) | 2010 |
Frisoni, Boccardi, Barkhof, et al. | Strategic roadmap for an early diagnosis of Alzheimer’s disease based on biomarkers | Whitepaper | 2017 |
Ebrahimighahnavieh, Luo, Chiong | Deep learning to detect Alzheimer’s disease from neuroimaging: A systematic literature review | Systematic Review | 2019 |
Graham, Lee, Jeste, et al. | Artificial intelligence approaches to predicting and detecting cognitive decline in older adults: A conceptual review | Conceptual Review | 2020 |
Gautam, Sharma | Prevalence and Diagnosis of Neurological Disorders Using Different Deep Learning Techniques: A Meta-Analysis | Systematic Meta Review | 2020 |
Use Cases | Ethical Assessments | Source |
---|---|---|
(1) research | protected by good clinical practice research frameworks, ethics approvals by ethics committees, and informed consent | [15,19,36] |
(1a) symptomatic patients actively seeking support | benefits of early detection outweigh potential adverse effects | [37] |
(1b) asymptomatic volunteers which consent to predictive testing | potential adverse effects overweigh the benefits, therefore restrictive disclosure policy according to the “principle of caution” | [37] |
(2) screening everyone | “turning everyone into patients” and “patients-in-waiting” | [31,38] |
(3) screening those with known risk factors | partial exclusion of patients and “patients-in-waiting” | [31,38] |
(4) psychological screening before screening | partial exclusion of potential patients | [31] |
(5) voluntary access to screening for everyone | considered ethically justified to disclose biomarker results on request | [31,39] |
(5a) symptomatic patients actively seeking support | benefits of early detection outweigh potential adverse effects | [37] |
(5b) asymptomatic patients actively seeking support | considered ethically unjustified to disclose biomarker results | [39] |
Themes | Argument | Source |
---|---|---|
Benefits | resolving uncertainty of one’s risk is beneficial when it brings clinically meaningful information and the subject is willing to know his risk or diagnosis | [19,31,37] |
knowing one’s risk enables future planning | [19,20,31,37,38,40] | |
knowing one’s risk enables promotion of research and control of the disease’s progression | [19,20,38] | |
knowing one’s risk enables change of unhealthy lifestyle | [37,41] | |
Right to know | good communication requires a physician to determine whether an individual wishes disclosure based on personal preferences | [19,30,38,41,42] |
respect for the individual’s autonomy and empowerment | [37,41] | |
clarity, informing family members, and planning for the future | [40,43] | |
Slippery-slope-argument | voluntary screening is justified since commercial genetic testing for AD is already available | [31,36] |
Economy | cost-effectiveness is a requirement for predictive tests and future hypothetical preventive treatment, but opinions are divided whether tests would save money or increase costs | [19,20,31] |
restriction of tests beyond research use cases that are used for profit in individuals for whom a risk assessment is not indicated | [15] |
Themes | Argument | Source |
---|---|---|
Lack of disease modifying treatment | knowing one’s risk or diagnosis does not alter the disease | [19,30,31] |
general screening is only considered useful if effective treatment options are available | [19,20] | |
predictive testing is only seen as ethically acceptable in research because predictive value is unclear and preventive measures are not available | [19,38] | |
Accuracy | although predictive AI systems have a high accuracy, there is no social consensus about which predictive power is sufficient | [3,9,31,44] |
no clinical use before regulatory approval because of the risk of false-negative and false-positive diagnoses, no consensus about sufficiency of predictive power, amyloid cascade hypothesis is contested in research, patients may not understand the predictive value and undergo therapeutic misconception | [12,30,31,38,40] | |
false-negative diagnoses may lead to false reassurance and exclusion from treatment or clinical trials | [15,31,37] | |
false-positive diagnoses may lead to over-diagnosis, over-treatment, inappropriate inclusion in clinical trials, invasive biomarker testing can be harmful | [15,31,37] | |
Risks | avoidance of psychosocial harm because of distress, anxiety, remaining post-testing uncertainty, possible false-positive or false-negative diagnoses, stigmatization (public stigma, self-stigma, spillover stigma), discrimination in health insurance and at work | [19,20,30,31,38,40,41,45,46] |
avoidance of harm to third parties because of family burdens, social burdens (isolation, discrimination, and social rejection) | [40,41,45] | |
avoidance of harm to subjects and third-parties because of “rational suicide” based on financial reasons and to reduce family burden | [30] | |
Right not to know | wish not to know because of anxiety and disease modifying treatments are not available | [19,30,40,41] |
avoidance of forced information because it violates respect for autonomy | [20] | |
Explicability | patient’s different degrees of understanding the disease and the uncertainty of preclinical risk assessment entail a challenging communication of diagnosis or risk assessment | [12,30,31,40,45] |
demand for the transparency of the “diagnostic decision” due to involvement of AI/ML (machine learning) systems and black box algorithms | [3] | |
demand for governance models for patient’s data, data security, infrastructure for gathering and managing data, accountability, algorithm bias, passive surveillance tools, and regulatory approval | [3] | |
Threats for social rights | need for international agreements on the protection of subjects that underwent a biomarker test like in the case of genetic privacy | [36,45] |
worries that health insurances deny coverage or charge higher premiums | [19,20,30,36,45] | |
worries about employment discrimination, exclusion from medical decision making, or the withdrawal of one’s driving license | [3,20,30,45,46] | |
Training | demand for structured training of physicians to counsel patients about AI/ML systems | [15,45] |
Guidelines and standardization | demand for guidelines about information and disclosure practice | [15,20,36] |
demand for standardization of test methods, threshold values, data protection | [15,20] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ursin, F.; Timmermann, C.; Steger, F. Ethical Implications of Alzheimer’s Disease Prediction in Asymptomatic Individuals through Artificial Intelligence. Diagnostics 2021, 11, 440. https://doi.org/10.3390/diagnostics11030440
Ursin F, Timmermann C, Steger F. Ethical Implications of Alzheimer’s Disease Prediction in Asymptomatic Individuals through Artificial Intelligence. Diagnostics. 2021; 11(3):440. https://doi.org/10.3390/diagnostics11030440
Chicago/Turabian StyleUrsin, Frank, Cristian Timmermann, and Florian Steger. 2021. "Ethical Implications of Alzheimer’s Disease Prediction in Asymptomatic Individuals through Artificial Intelligence" Diagnostics 11, no. 3: 440. https://doi.org/10.3390/diagnostics11030440
APA StyleUrsin, F., Timmermann, C., & Steger, F. (2021). Ethical Implications of Alzheimer’s Disease Prediction in Asymptomatic Individuals through Artificial Intelligence. Diagnostics, 11(3), 440. https://doi.org/10.3390/diagnostics11030440