Comparative Proteomic Study Shows the Expression of Hint-1 in Pituitary Adenomas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Histopathological Processing
2.2. Immunohistochemistry
2.3. Proteomic Process
2.3.1. Protein Pituitary Adenoma Extraction
2.3.2. Image and Data Analysis of Gel
2.3.3. Nanoflow LC-MS/MS
2.3.4. Automated Data Evaluation Work-Flow
3. Results
3.1. Clinical Characteristics
3.2. Histopathological Findings
3.3. Proteomic Analysis
3.4. Hint1 Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aguirre-Cruz, L.; Rangel-López, E.; De la Cruz-Aguilera, D.L.; Rodríguez-Pérez, C.E.; Ruano, L.; Velásquez-Pérez, L.; Martínez-Moreno, M.; Garduño-Espinosa, J.; Sotelo, J. Historical distribution of central nervous system tumors in the Mexican National Institute of Neurology and Neurosurgery. Salud Pública de Méxco. 2016, 58, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Hashmi, F.A.; Shamim, M.S. Pituitary Adenoma: A review of existing classification systems based on anatomic extension and invasion. J. Pak. Med. Assoc. 2020, 70, 368–370. [Google Scholar] [PubMed]
- Molitch, M.E. Diagnosis and Treatment of Pituitary Adenomas: A Review. JAMA. 2017, 317, 516–524. [Google Scholar] [CrossRef]
- Rojas, D. Management of pituitary tumors. Revista Médica Clínica Las Condes 2017, 28, 409–419. [Google Scholar]
- Zhan, X.; Wang, X.; Cheng, T. Human Pituitary Adenoma Proteomics: New Progresses and Perspectives. Front. Endocrinol. 2016, 54, 1–11. [Google Scholar] [CrossRef]
- Lake, M.G.; Krook, L.S.; Cruz, S.V. Pituitary adenomas: An overview. Am. Fam. Physician. 2013, 88, 319–327. [Google Scholar]
- Lim, C.T.; Korbonits, M. Update on the clinicopathology of pituitary adenomas. Endocr. Pract. 2018, 24, 473–488. [Google Scholar] [CrossRef] [PubMed]
- Langlois, F.; McCartney, S.; Fleseriu, M. Recent Progress in the Medical Therapy of Pituitary Tumors. Endocrinol. Metab. 2017, 32, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, P.; Rodríguez, V.; Díez, J. Giant pituitary adenoma: Histological types, clinical features and therapeutic approaches. Endocrine 2018, 61, 407–421. [Google Scholar] [CrossRef] [PubMed]
- Russ, S.; Shafiq, I. Pituitary Adenoma. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar] [PubMed]
- AlMalki, M.H.; Ahmad, M.M.; Buhary, B.M.; Aljawair, R.; Alyamani, A.; Alhozali, A.; Alshahrani, A.; Alzahrani, S.; Nasser, T.; Alzahrani, W.; et al. Clinical features and therapeutic outcomes of patients with acromegaly in Saudi Arabia: A retrospective analysis. Hormones (Athens) 2020, 19, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Shashidhar, A.; Arimappamagan, A.; Madhusudhan, N.; Narasinga-Rao, K.V.L.; Bhat, D.; Shukla, D.; Arvinda, H.R.; Srinivas, D.; Indira-Devi, B.; Somanna, S. Transcranial approach for pituitary adenomas—An evaluation of surgical approaches over two decades and factors influencing peri-operative morbidity. Clin. Neurol. Neurosurg. 2021, 200, 1–8. [Google Scholar] [CrossRef]
- Billings, M.; Dahlin, R.; Zampella, B.; Sweiss, R.; Lawandy, S.; Miulli, D. Conditions associated with giant pituitary tumors at the time of surgery effecting outcome morbidity and mortality. Surg. Neurol. Int. 2019, 10, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Raverot, G.; Vasiljevic, A.; Jouanneau, E.; Trouillas, J. A prognostic clinicopathologic classification of pituitary endocrine tumors. Endocrinol. Metab. Clin. North. Am. 2015, 44, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Asa, S.; Casar-Borota, O.; Chanson, P.; Delgrange, E.; Earls, P.; Ezzat, S.; Grossman, A.; Ikeda, H.; Inoshita, N.; Karavitaki, N.; et al. From pituitary adenoma to pituitary neuroendocrine tumor (PitNET): An International Pituitary Pathology Club proposal. Endocr. Relat. Cancer. 2017, 24, C5–C8. [Google Scholar] [CrossRef]
- Di Ieva, A.; Rotondo, F.; Syro, L.V.; Cusimano, M.D.; Kovacs, K. Aggressive pituitary adenomas--diagnosis and emerging treatments. Nat. Rev. Endocrinol. 2014, 10, 423–435. [Google Scholar] [CrossRef] [PubMed]
- Osamura, R.Y.; Lopes, M.B.S.; Grossman, A.; Matsuno, A.; Korbonits, M.; Trouillas, J.; Kovacs, K. Pituitary adenoma. In WHO classification of tumours of endocrine organs, 4th ed.Lloyd, R.V., Osamura, R.Y., Klöppel, G., Rosai, J., Eds.; IARC: Lyon, France, 2017; pp. 14–18. [Google Scholar]
- Nishioka, H.; Inoshita, N. New WHO classification of pituitary adenomas (4th edition): Assessment of pituitary transcription factors and the prognostic histological factors. Brain Tumor Pathol. 2018, 35, 57–61. [Google Scholar] [CrossRef]
- Ribeiro-Oliveira, A., Jr.; Franchi, G.; Kola, B.; Dalino, P.; Pinheiro, S.V.B.; Salahuddin, N.; Musat, M.; Góth, M.I.; Czirják, S.; Hanzély, Z.; et al. Protein western array analysis in human pituitary tumours: Insights and limitations. Endocr. Relat. Cancer. 2008, 15, 1099–1114. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wu, J.; Yan, G.; Hou, R.; Zhuang, D.; Chen, L.; Pang, Q.; Zhu, J. Proteomic analysis of prolactinoma cells by immuno-laser capture microdissection combined with online two-dimensional nano-scale liquid chromatography/mass spectrometry. Proteome. Sci. 2010, 8, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozeri, O.; Cohen, Z.R.; Hadani, M.; Nass, D.; Shimon, L.; Rubinfeld, H. Antibody array strategy for human growth factor secretome profiling of GH-secreting adenomas. Pituitary 2019, 22, 344–352. [Google Scholar] [CrossRef]
- Zhan, X.; Desiderio, D.M. Comparative proteomics analysis of human pituitary adenomas: Current status and future perspectives. Mass. Spectrom. Rev. 2005, 24, 783–813. [Google Scholar] [CrossRef]
- Bălinişteanu, B.; Ceauşu, R.A.; Cîmpean, A.M.; Baciu, I.; Băculescu, N.; Coculescu, M.; Raica, M. Conventional examination versus immunohistochemistry in the prediction of hormone profile of pituitary adenomas. An analysis on 142 cases. Rom. J. Morphol. Embryol. 2011, 52, 1041–1045. [Google Scholar]
- Lopes, B.S. The 2017 world health organization classification of tumors of the pituitary gland: A summary. Acta Neuropathol. 2017, 134, 521–535. [Google Scholar] [CrossRef] [PubMed]
- Seltzer, J.; Ashton, C.E.; Scotton, T.C.; Pangal, D.; Carmichael, J.D.; Zada, G. Gene and protein expression in pituitary corticotroph adenomas: A systematic review of the literature. Neurosurg. Focus 2015, 38, E17. [Google Scholar] [CrossRef] [Green Version]
- Bao, X.; Wang, G.; Yu, S.; Sun, J.; He, L.; Zhao, H.; Ma, Y.; Wang, F.; Wang, X.; Wang, R.; et al. Transcriptomic analysis identifies a tumor subtype mRNA classifier for invasive non-functioning pituitary neuroendocrine tumor diagnostics. Theranostics 2021, 11, 132–146. [Google Scholar] [CrossRef]
- Shen, A.J.J.; King, J.; Scott, H.; Colman, P.; Yates, C.J. Insights into pituitary tumorigenesis: From Sanger sequencing to next-generation sequencing and beyond. Expert. Rev. Endocrinol. Metab. 2019, 14, 399–418. [Google Scholar] [CrossRef]
- Wilkins, M.R.; Pasquali, C.; Appel, R.D.; Ou, K.; Golaz, O.; Sanchez, J.C.; Yan, J.X.; Gooley, A.A.; Hughes, G.; Humphery-Smith, I.; et al. From Proteins to Proteomes: Large Scale Protein Identification by Two-Dimensional Electrophoresis and Amino Acid Analysis. Biotechnology. 1996, 14, 61–65. [Google Scholar] [CrossRef]
- Wilkins, M.R.; Sanchez, J.C.; Gooley, A.A.; Appel, R.D.; Humphery-Smith, I.; Hochstrasser, D.F.; Williams, K.L. Progress With Proteome Projects: Why All Proteins Expressed by a Genome Should Be Identified and How to Do It. Biotechnol. Genet. Eng. Rev. 1996, 13, 19–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhan, X.; Desiderio, D.M. A reference map of a human pituitary adenoma proteome. Proteomics. 2003, 3, 699–713. [Google Scholar] [CrossRef] [PubMed]
- Moreno, C.S.; Evans, C.O.; Zhan, X.; Okor, M.; Desiderio, D.M.; Oyesiku, N.M. Novel molecular signaling and classification of human clinically nonfunctional pituitary adenomas identified by gene expression profiling and proteomic analyses. Cancer Res. 2005, 65, 10214–10222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, C.O.; Moreno, C.S.; Zhan, X.; McCabe, M.T.; Vertino, P.M.; Desiderio, D.M.; Oyeiku, N.M. Molecular pathogenesis of human prolactinomas identified by gene expression profiling, RT-qPCR, and proteomic analyses. Pituitary 2008, 11, 231–245. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liu, Y.; Fang, W.; Chen, W.; Li, C.; Xiao, Z. Establishment of differential expression profiles from invasive and non-invasive pituitary adenomas. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2009, 34, 569–575. [Google Scholar] [PubMed]
- Zhan, X.; Desiderio, D.M.; Wang, X.; Zhan, X.; Guo, T.; Li, M.; Peng, F.; Chen, X.; Yang, H.; Zhang, P.; et al. Identification of the proteomic variations of invasive relative to non-invasive non-functional pituitary adenomas. Electrophoresis 2014, 35, 2184–2194. [Google Scholar]
- Long, Y.; Lu, M.; Cheng, T.; Zhan, X.; Zhan, X. Multiomics-Based Signaling Pathway Network Alterations in Human Non-functional Pituitary Adenomas. Front Endocrinol (Lausanne) 2019, 10, 835. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, T.; Lu, M.; Mu, Y.; Li, B.; Li, X.; Zhan, X. TMT-based quantitative proteomics revealed follicle-stimulating hormone (FSH)-related molecular characterizations for potentially prognostic assessment and personalized treatment of FSH-positive non-functional pituitary adenomas. EPMA J. 2019, 10, 395–414. [Google Scholar] [CrossRef] [Green Version]
- Cheng, T.; Wang, Y.; Lu, M.; Zhan, X.; Zhou, T.; Li, B.; Zhan, X. Quantitative Analysis of Proteome in Non-functional Pituitary Adenomas: Clinical Relevance and Potential Benefits for the Patients. Front. Endocrinol. (Lausanne) 2019, 10, 854. [Google Scholar] [CrossRef] [Green Version]
- Qian, S.; Yang, Y.; Li, N.; Cheng, T.; Wang, X.; Liu, J.; Li, X.; Desiderio, D.M.; Zhan, X. Prolactin Variants in Human Pituitaries and Pituitary Adenomas Identified With Two-Dimensional Gel Electrophoresis and Mass Spectrometry. Front. Endocrinol. (Lausanne) 2018, 9, 468. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Zhang, Q.; Zhou, Y.; Yu, S.; Hong, L.; Zhao, S.; Yang, J.; Wan, H.; Xu, G.; Zhang, Y.; et al. Integration of Proteomics and Metabolomics Revealed Metabolite-Protein Networks in ACTH-Secreting Pituitary Adenoma. Front. Endocrinol. (Lausanne) 2018, 9, 678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, S.Y.; Hong, L.C.; Feng, J.; Wu, Y.T.; Zhang, Y.Z. Integrative proteomics and transcriptomics identify novel invasive-related biomarkers of non-functioning pituitary adenomas. Tumour Biol. 2016, 37, 8923–8930. [Google Scholar] [CrossRef]
- Chen, Y.; Chuan, H.L.; Yu, S.Y.; Li, C.Z.; Wu, Z.B.; Li, G.L.; Zhang, Y.Z. A Novel Invasive-Related Biomarker in Three Subtypes of Nonfunctioning Pituitary Adenomas. World Neurosurg. 2017, 100, 514–521. [Google Scholar] [CrossRef]
- Liu, D.; Li, J.; Li, N.; Lu, M.; Wen, S.; Zhan, X. Integration of quantitative phosphoproteomics and transcriptomics revealed phosphorylation-mediated molecular events as useful tools for a potential patient stratification and personalized treatment of human nonfunctional pituitary adenomas. EPMA J. 2020, 11, 419–467. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi-Ponciano, K.; Peña-Martínez, E.; Silva-Román, G.; Vela-Patiño, S.; Guzman-Ortiz, A.L.; Quezada, H.; Gomez-Apo, E.; Chavez-Macias, L.; Mercado-Medrez, S.; Vargas-Ortega, G.; et al. Proteomic and Transcriptomic Analysis Identify Spliceosome as a Significant Component of the Molecular Machinery in the Pituitary Tumors Derived from POU1F1- and NR5A1-Cell Lineages. Genes (Basel) 2020, 11, 1422. [Google Scholar] [CrossRef]
- Viacava, P.; Gasperi, M.; Acerbi, G.; Manetti, L.; Cecconi, E.; Bonadio, A.G.; Genovesi, M. Microvascular density and vascular endothelial growth factor expression in normal pituitary tissue and pituitary adenomas. J. Endocrinol. Invest. 2003, 26, 23–28. [Google Scholar] [CrossRef]
- Görg, A.; Obermaier, C.; Boguth, G.; Harder, A.; Scheibe, B.; Wildgruber, R.; Weiss, W. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 2000, 21, 1037–1053. [Google Scholar] [CrossRef]
- Shevchenko, A.; Tomas, H.; Havlis, J.; Olsen, J.; Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 2006, 1, 2856–2860. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Lee, Y.S.; Jung, M.J.; Hong, Y.K. The Predictive Value of Pathologic Features in Pituitary Adenoma and Correlation with Pituitary Adenoma Recurrence. J. Pathol. Transl. Med. 2016, 50, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Su, T.; Suzui, M.; Wang, L.; Lin, C.S.; Xing, W.Q.; Weinstein, I.B. Deletion of histidine triad nucleotide-binding protein 1/PKC-interacting protein in mice enhances cell growth and carcinogenesis. Proc. Natl. Acad. Sci. USA 2003, 100, 13–7824. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhang, Y.; Su, T.; Santella, R.M.; Weinstein, J.B. Hint1 is a haplo-insufficient tumor suppressor in mice. Oncogene 2006, 25, 713–721. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.; St-Pierre, M.V.; Dufour, J.F. Hit proteins, mitochondria and cancer. Biochim. Biophys. Acta 2011, 1807, 626–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, T.Y.; Jin, G.R.; Koo, Y.B.; Jang, M.M.; Kim, C.W.; Lee, S.Y.; Kim, H.; Lee, C.Y.; Lee, S.Y.; Ju, B.G.; et al. Deacetylation by SIRT1 promotes the tumor-suppressive activity of HINT1 by enhancing its binding capacity for β-catenin or MITF in colon cancer and melanoma cells. Exp. Mol. Med. 2020, 52, 1075–1089. [Google Scholar] [CrossRef]
- Weiske, J.; Huber, O. The histidine triad protein Hint1 interacts with Pontin and Reptin and inhibits TCF-beta-catenin-mediated transcription. J. Cell. Sci. 2005, 118, 3117–3129. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Dong, W.; Li, Z.; Wang, H.; Gao, H.; Zhang, Y. Impact of SLC20A1 on the Wnt/β-catenin signaling pathway in somatotroph adenomas. Mol. Med. Rep. 2019, 20, 3276–3284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.S.; Bao, T.H.; Ke, Y.; Sun, D.Y.; Shi, Z.T.; Tang, H.R.; Wang, L. Hint1 suppresses migration and invasion of hepatocellular carcinoma cells in vitro by modulating girdin activity. Tumour Biol. 2016, 37, 14711–14719. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, Z.; Li, R.; Mao, F.; Sun, W.; Chen, J.; Zhang, H.; Bartsch, J.W.; Shu, K.; Lei, T. ADAM12 induces EMT and promotes cell migration, invasion and proliferation in pituitary adenomas via EGFR/ERK signaling pathway. Biomed. Pharmacother. 2018, 97, 1066–1077. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Zhou, J.; Hong, L.; Xu, Z.; Zhao, H.; Wu, X.; Chen, J. Hint1 expression inhibits proliferation and promotes radiosensitivity of human SGC7901 gastric cancer cells. Oncol. Lett. 2018, 16, 2135–2142. [Google Scholar] [CrossRef] [Green Version]
- Ivanova, I.; Loughrana, G.; Sachsc, M.; Atkins, J. Initiation context modulates autoregulation of eukaryotic translation initiation factor 1 (eIF1). PNAS 2010, 107, 18056–18060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, M.U.; Ur Rahman, M.S.; Jia, Z.; Jiang, C. Eukaryotic translation initiation factors and cancer. Tumour Biol. 2017, 39, 1010428317709805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yunxia, M.; Yuan, C.; Iver, P. Expression and epigenetic regulation of Cystatin B in lung cancer and colorectal cancer. Pathol. Res. Pract. 2017, 213, 1568–1574. [Google Scholar] [CrossRef]
- Wencai, G.M.; Xingxing, W.; Qunbo, L.; Jinguo, Z.; Weimin, R.; Guoxiong, X. Transforming growth factor β/miR 143 3p/cystatin B axisis a therapeutic target in human ovarian cancer. Int. J. Oncolo. 2019, 55, 267–276. [Google Scholar] [CrossRef]
- Huang, Q.; Wei, J.; Wei, L.; Zhang, X.; Bai, F.; Wen, S.; Wei, Y.; Tan, S.; Lu, Z.; Lin, X. Role of RKIP in human hepatic stellate cell proliferation, invasion, and metastasis. J. Cell. Biochem. 2019, 120, 6168–6177. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Fang, Y.; Weinberger, P.; Ding, L.; Cowell, J.; Hudson, F.; Ren, M. Transgelin increases metastasic potencial of colorectal cancer cells in vivo and alters expression of genes involved in cell motility. BMC Cancer. 2016, 16, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sayar, N.; Karahan, G.; Konu, O.; Bozkurt, B. Transgelin gene is frequently downregulated by promoter DNA hypermethylation in breast cancer. Clin. Epigenetics. 2015, 7, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Speransky, S.; Serafini, P.; Caroli, J.; Bicciato, S.; Lippman, M.E.; Bishopric, N.H. A novel RNA aptamer identifies plasma membrane ATP synthase beta subunit as an early marker and therapeutic target in aggressive cancer. Breast Cancer Res. Treat. 2019, 176, 271–289. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Song, Q.; Jiang, S.; Wang, W.; Zhang, G. Identification of ATP synthase beta subunit (ATPB) on the cell surface as a non-small cell lung cancer (NSCLC) associated antigen. BMC Cancer. 2009, 9, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moraes, L.A.; Ampomah, P.B.; Lim, L.H.K. Annexin A1 in inflammation and breast cancer: A new axis in the tumor microenvironment, Cell. Adh. Migr. 2018, 12, 417–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, Y.; Zhou, B.; Lv, D.; Shu, F.; Song, X. Phosphoglycerate mutase 1 knockdown inhibits prostate cancer cell growth, migration, and invasion. Asian, J. Androl. 2018, 20, 178–183. [Google Scholar] [CrossRef]
- Zhong, Z.; Chen, X.; Qi, X. Adaptor protein LNK promotes anaplastic thyroid carcinoma cell growth via 14-3-3 ε/γ binding. Cancer Cell Int. 2020, 20, 1–12. [Google Scholar] [CrossRef]
- Leal, M.; Calcagno, D.; Demachki, S.; Assumpção, P.; Chammas, R.; Burbano, R.; Smith, M. Clinical implication of 14-3-3 epsilon expression in gastric cancer. World J. Gastroenterol. 2012, 18, 1531–1537. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.; Yip, C.; Poon, T.; Cheng, C. Identification and characterization of tropomyosin 3 associated with granulin-ephithelin precursor in human hepatocelluar carcinoma. PLoS ONE. 2012, 7, e40324. [Google Scholar] [CrossRef] [Green Version]
- Klein, M.G.; Yao, Y.; Slosberg, E.D.; Lima, C.D.; Doki, Y.; Weinstein, I.B. Characterization of PKCI and comparative studies with FHIT, related members of the HIT protein family. Exp. Cell. Res. 1998, 244, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.D.; Klein, M.G.; Hendrickson, W.A. Structure-based analysis of catalysis and substrate definition in the HIT protein family. Science 1997, 10, 278–286. [Google Scholar] [CrossRef]
- Lima, C.D.; Klein, M.G.; Weinstein, I.B.; Hendrickson, W.A. Three-dimensional structure of human protein kinase C interacting protein 1, a member of the HIT family of proteins. Proc. Natl. Acad. Sci. USA 1996, 28, 93–5357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes, L.D.; Garrison, P.N.; Siprashvili, Z.; Guranowski, A.; Robinson, A.K.; Ingram, S.W.; Croce, C.M.; Ohta, M.; Huebner, K. Fhit, a putative tumor suppressor in humans, is a dinucleoside 5’,5”‘-P1,P3-triphosphate hydrolase. Biochemistry 1996, 35, 11529–11535. [Google Scholar] [CrossRef] [PubMed]
- Brenner, C.; Bieganowski, P.; Pace, H.C.; Huebner, K. The histidine triad superfamily of nucleotide-binding proteins. J. Cell. Physiol. 1999, 181, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Genovese, G.; Ghosh, O.; Li, H.; Rettino, A.; Sioletic, S.; Cittadini, A.; Sgambato, A. The tumor suppressor HINT1 regulates MITF and β-catenin transcriptional activity in melanoma cells. Cell Cycle 2012, 11, 2206–2215. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Chou, T.F.; Aubol, B.E.; Park, C.J.; Wolfenden, R.; Adams, J.; Wagner, C.R. Kinetic mechanism of human histidine triad nucleotide binding protein 1. Biochemistry 2013, 21, 3588–3600. [Google Scholar] [CrossRef]
- Carmi-Levy, I.; Yannay-Cohen, N.; Kay, G.; Razin, E.; Nechushtan, H. Diadenosine tetraphosphate hydrolase is part of the transcriptional regulation network in immunologically activated mast cells. Mol. Cell. Biol. 2008, 28, 5777–5784. [Google Scholar] [CrossRef] [Green Version]
- Motzik, A.; Amir, E.; Erlich, T.; Wang, J.; Kim, B.G.; Han, J.M.; Kim, J.H.; Nechushtan, H.; Guo, M.; Razin, E.; et al. Post-translational modification of HINT1 mediates activation of MITF transcriptional activity in human melanoma cells. Oncogene 2017, 36, 4732–4738. [Google Scholar] [CrossRef] [PubMed]
- Lei, C.; Jing, G.; Jichao, W.; Xiaohui, L.; Fang, Q.; Hua, G.; Yazhou, M.; Zhang, Y. MiR-137’s tumor suppression on prolactinomas by targeting mitf and modulating Wnt signaling pathway. J. Clin. Endocrinol. Metab. 2019, 104, 6391–6402. [Google Scholar] [CrossRef]
- Gruppetta, M.; Formosa, R.; Falzon, S.; Ariff Scicluna, S.; Falzon, E.; Degeatano, J.; Vassallo, J. Expression of cell cycle regulators and biomarkers of proliferation and regrowth in human pituitary adenomas. Pituitary 2017, 20, 358–371. [Google Scholar] [CrossRef]
- Wu, Y.; Bai, J.; Hong, L.; Liu, C.; Yu, S.; Yu, G.; Zhang, Y. Low expression of secreted frizzled-related protein 2 and nuclear accumulation of β-catenin in aggressive nonfunctioning pituitary adenoma. Oncol. Lett. 2016, 12, 199–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, J.S.; Lee, M.K.; Choi, E.; Hong, N.; Il Jee, S.; Kim, S.H.; Lee, E.J. Hormonal aggressiveness according to the expression of cellular markers in corticotroph adenomas. Endocrine 2019, 64, 147–156. [Google Scholar] [CrossRef]
- Weiske, J.; Huber, O. The histidine triad protein Hint1 triggers apoptosis independent of its enzymatic activity. J. Biol. Chem. 2006, 281, 27356–27366. [Google Scholar] [CrossRef] [Green Version]
- Zuk, K.; Peczek, L.; Stec-Michalska, K.; Medrek, M.; Nawrot, B. Family history of gastric cancer correlates with decreased expression of HINT1 tumor suppressor gene in gastric mucosa of dyspeptic patients. Oncol. Lett. 2012, 3, 219–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, T.; Ke, Y.; Wang, Y.; Wang, W.; Li, Y.; Wang, Y.; Kui, X.; Zhou, Q.; Zhou, H.; Zhang, C.; et al. Taraxasterol suppresses the growth of human liver cancer by upregulating Hint1 expression. J. Mol. Med. (Berl) 2018, 96, 661–672. [Google Scholar] [CrossRef]
- Cristina, C.; Luque, G.M.; Demarchi, G.; Lopez Vicchi, F.; Zubeldia-Brenner, L.; Perez Millan, M.I.; Perrone, S.; Ornstein, A.M.; Lacau-Mengido, I.M.; Berner, S.I.; et al. Angiogenesis in pituitary adenomas: Human studies and new mutant mouse models. Int. J. Endocrinol. 2014, 2014, 608497. [Google Scholar] [CrossRef] [PubMed]
- Burcea, I.; Poiana, C. Updates in aggressive pituitary tumors. Acta Endocrinol. (Buchar) 2020, 16, 267–273. [Google Scholar] [CrossRef]
- Corlan, A.S.; Cîmpean, A.M.; Melnic, E.; Raica, M.; Sarb, S. VEGF, VEGF165b and EG-VEGF expression is specifically related with hormone profile in pituitary adenomas. Eur. J. Histochem. 2019, 5, 63–3010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lloyd, R.V.; Scheithauer, B.W.; Kuroki, T.; Vidal, S.; Kovacs, K.; Stefaneanu, L. Vascular Endothelial Growth Factor (VEGF) expression in human pituitary adenomas and carcinomas. Endocr. Pathol. 1999, 10, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Zemmoura, I.; Wierinckx, A.; Vasiljevic, A.; Jan, M.; Trouillas, J.; François, P. Aggressive and malignant prolactin pituitary tumors: Pathological diagnosis and patient management. Pituitary 2013, 16, 515–522. [Google Scholar] [CrossRef]
- Trouillas, J.; Delgrange, E.; Wierinckx, A.; Vasiljevic, A.; Jouanneau, E.; Burman, P.; Raverot, G. Clinical, Pathological, and Molecular Factors of Aggressiveness in Lactotroph Tumours. Neuroendocrinology 2019, 109, 70–76. [Google Scholar] [CrossRef]
- Sánchez-Ortiga, R.; Sánchez-Tejada, L.; Moreno-Perez, O.; Riesgo, P.; Niveiro, M.; Picó-Alfonso, A.M. Over-expression of vascular endothelial growth factor in pituitary adenomas is associated with extrasellar growth and recurrence. Pituitary 2013, 16, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Niveiro, M.; Aranda, F.I.; Peiró, G.; Alenda, C.; Picó, A. Immunohistochemical analysis of tumor angiogenic factors in human pituitary adenomas. Hum. Pathol. 2005, 36, 1090–1095. [Google Scholar] [CrossRef]
- Jugenburg, M.; Kovacs, K.; Stefaneanu, L.; Scheithauer, B.W. Vasculature in nontumorous hypophyses, pituitary adenomas, and carcinomas: A quantitative morphologic study. Endocr. Pathol. Summer. 1995, 6, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Turner, H.E.; Nagy, Z.; Gatter, K.C.; Esiri, M.M.; Harris, A.L.; Wass, J.A.H. Angiogenesis in pituitary adenomas—relationship to endocrine function, treatment and outcome. J. Endocrinol. 2000, 165, 475–481. [Google Scholar] [CrossRef] [PubMed]
Antibody | Dilution | Company | Catalog Number |
---|---|---|---|
Prolactin | Ready to use | Thermo Scientific | MS-9083-R7 |
Growth Hormone | Ready to use | BioGenex | AM028-5M |
Follicle-stimulating hormone | Ready to use | BioGenex | AM026-5M |
Luteinizing hormone | Ready to use | Thermo Scientific | MS-1448-R7 |
Thyroid stimulating hormone | Ready to use | Thermo Scientific | MS-1453-R7 |
Adrenocorticotropic hormone | 1:50 | Dako | M3501 |
Ki67 (MIB-1) | 1:50 | Dako | M7240 |
P53 | Ready to use | BioGenex | AM195-5M |
CD 34 | 1:50 | Biocare medical | CM084B |
VEGF | 1:100 | Biocare medical | CME356B |
Flk-1 | 1:100 | Santa Cruz Biotechnology | Sc-6251 |
Hint1 | 1:300 | Abcam | 124912 |
Dates. | n | Frequency % |
---|---|---|
Cases | 128 | 100 |
Male | 63 | 49.2 |
Female | 65 | 50.8 |
Age (range) | 48 ± 12.9 (16–80) | |
Size: | ||
Macroadenoma | 111 | 86.7 |
Giant | 17 | 13.2 |
Invasiveness: | ||
Invasive | 107 | 83.5 |
| 81 | 75.7 |
| 26 | 24.2 |
Non-invasive | 21 | 16.4 |
| 13 | 61.9 |
| 8 | 38.1 |
Radiological Classificación | ||
Hardy–Vezina | n = 114 | |
I | 2 | 1.7 |
II | 21 | 18.4 |
III | 50 | 43.8 |
IV | 41 | 35.9 |
Knosp | n = 48 | |
I | 5 | 10.4 |
II | 11 | 22.9 |
III | 16 | 33.3 |
IV | 16 | 33.3 |
Recurrence (number of neurosurgery): | ||
1 | 73 | 76.8 |
2 | 12 | 12.6 |
3 | 7 | 7.3 |
4 | 2 | 2.1 |
5 | 1 | 1.1 |
Surgical procedure | ||
transnasal–transsphenoidal | 106 | 82.8 |
Transcranial | 22 | 17.2 |
Date | n | Frequency % |
---|---|---|
Patients with dry sample | 64 | 100 |
Male | 30 | 46.8 |
Female | 34 | 53.1 |
Age (range) | 48 years (19–76) | |
Tumor size: | ||
Macroadenoma | 54 | 84.3 |
Giant adenoma | 10 | 15.6 |
Invasiveness: | ||
Invasive | 56 | 87.5 |
| 49 | 87.5 |
| 7 | 12.5 |
Non-invasive | 8 | 12.5 |
| 4 | 50 |
| 4 | 50 |
Radiological classification: | ||
Hardy–Vezina | ||
I | 1 | 1.7 |
II | 6 | 10.3 |
III | 29 | 50 |
IV | 22 | 37.9 |
Knosp | ||
I | 5 | 8.6 |
II | 5 | 21.7 |
III | 9 | 39.1 |
IV | 7 | 30.4 |
Recurrence (surgery number): | ||
1 | 53 | 82.8 |
2 | 4 | 6.2 |
3 | 6 | 9.3 |
4 | 0 | 0 |
5 | 1 | 1.5 |
Spot | Accession | Protein Name | Score | Coverage | MW (KDa) | pI | Description | Ref |
---|---|---|---|---|---|---|---|---|
1 | P49773 | Histidine triad nucleotide-binding protein 1 OS = Homo sapiens OX = 9606 GN = HINT1 PE = 1 SV = 2–(HINT1_HUMAN) | 290.95 | 85.71 | 13.8 | 6.95 | Tumoral suppressor | [48,49,50,51,52,53,54,55,56] |
2 | O60739 | Eukaryotic translation initiation factor 1b OS = Homo sapiens OX = 9606 GN = EIF1B PE = 1 SV = 2–(EIF1B_HUMAN) | 67.60 | 66.37 | 12.8 | 7.37 | Related with translation regulation, cell growth, and oncogenesis | [57,58] |
3 | P04080 | Cystatin-B OS = Homo sapiens OX = 9606 GN = CSTB PE = 1 SV = 2–(CYTB_HUMAN) | 61.87 | 45.92 | 11.1 | 7.56 | Implicated in various cancer types (lung, colon, liver, ovarian, gastric, breast); proposed as potential prognostic marker. | [59,60] |
5 | NP_002558.1 | Phosphatidylethanolamine-binding protein 1 (Homo sapiens) | 1766.8 | 91.98 | 21 | 7.53 | Involved in various types of cancer. Could act as a metastasis suppressor gene. | [61] |
5 | NP_001008274.1 | Transgelin-3 (Homo sapiens) | 268.99 | 76.38 | 22.5 | 7.33 | Expressed in tumors with aggressive behavior; related to poor prognosis. Possible tumor suppressor. | [62,63] |
6 | NP_001966.1 | Gamma-enolase (Homo sapiens) | 4624.29 | 90.09 | 47.2 | 5.03 | Metabolic enzyme Tumoral marker | [30] |
7 | NP_001677.2 | ATP synthase subunit beta, mitochondrial precursor (Homo sapiens) | 5822.52 | 79.40 | 56.5 | 5.40 | Energy metabolism Found in non-small cell lung cancer; colon, breast, and prostate cancer | [30,64,65] |
9 | NP_000691.1 | Annexin A1 (Homo sapiens) | 804.87 | 76.59 | 38.7 | 7.02 | Expression contributes to the development and progression of cancer | [66] |
11 | NP_002620.1 | Phosphoglycerate mutase 1 isoform 1 (Homo sapiens) | 314.94 | 80.71 | 28.8 | 7.18 | Metabolic enzyme Related with cell proliferation, migration, invasion, and apoptosis. In renal, hepatocellular, lung, breast, and colorectal cancer. | [30,67] |
12 | XP_005256841.1 | 14-3-3 protein épsilon isoform X1 (Homo sapiens) | 302.27 | 61.67 | 27.4 | 4.89 | Cell signaling in apoptosis, mitosis, and cell cycle. Found in small cell lung cancer, squamous cell laryngeal, and renal carcinoma and central nervous system tumors. | [30,68,69] |
13 | NP_001036816.1 | Tropomyosin alpha-3 chain isoform Tpm3.2cy (Homo sapiens) charged multivesicular body protein 5 isoform 1 (Homo sapiens) | 252.15 | 43.38 | 24.6 | 4.83 | Cell structure and mobility. Found in hepatocellular carcinoma and hematopoietic tumorigenesis; involved in transformation, proliferation, invasion, and metastasis in anaplastic large-cell lymphoma | [30,70] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrillo-Najar, C.; Rembao-Bojórquez, D.; Tena-Suck, M.L.; Zavala-Vega, S.; Gelista-Herrera, N.; Ramos-Peek, M.A.; Gómez-Amador, J.L.; Cazares-Raga, F.; Hernández-Hernández, F.d.l.C.; Ortiz-Plata, A. Comparative Proteomic Study Shows the Expression of Hint-1 in Pituitary Adenomas. Diagnostics 2021, 11, 330. https://doi.org/10.3390/diagnostics11020330
Carrillo-Najar C, Rembao-Bojórquez D, Tena-Suck ML, Zavala-Vega S, Gelista-Herrera N, Ramos-Peek MA, Gómez-Amador JL, Cazares-Raga F, Hernández-Hernández FdlC, Ortiz-Plata A. Comparative Proteomic Study Shows the Expression of Hint-1 in Pituitary Adenomas. Diagnostics. 2021; 11(2):330. https://doi.org/10.3390/diagnostics11020330
Chicago/Turabian StyleCarrillo-Najar, Carolina, Daniel Rembao-Bojórquez, Martha L. Tena-Suck, Sergio Zavala-Vega, Noemí Gelista-Herrera, Miguel A. Ramos-Peek, Juan L. Gómez-Amador, Febe Cazares-Raga, Fidel de la Cruz Hernández-Hernández, and Alma Ortiz-Plata. 2021. "Comparative Proteomic Study Shows the Expression of Hint-1 in Pituitary Adenomas" Diagnostics 11, no. 2: 330. https://doi.org/10.3390/diagnostics11020330
APA StyleCarrillo-Najar, C., Rembao-Bojórquez, D., Tena-Suck, M. L., Zavala-Vega, S., Gelista-Herrera, N., Ramos-Peek, M. A., Gómez-Amador, J. L., Cazares-Raga, F., Hernández-Hernández, F. d. l. C., & Ortiz-Plata, A. (2021). Comparative Proteomic Study Shows the Expression of Hint-1 in Pituitary Adenomas. Diagnostics, 11(2), 330. https://doi.org/10.3390/diagnostics11020330