Mini-Review Regarding the Applicability of Genome Editing Techniques Developed for Studying Infertility
Abstract
:1. Introduction
2. Methodology
3. ZFNs and Infertility
4. TALENs and Infertility
5. CRISPR/Cas9 and Infertility
6. Alternative View
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Greil, A.L.; Slauson-Blevins, K.; McQuillan, J. The experience of infertility: A review of recent literature. Sociol. Health Illn. 2010, 32, 140–162. [Google Scholar] [CrossRef] [Green Version]
- ESHRE Capri Workshop Group. Diagnosis and management of the infertile couple: Missing information. Hum. Reprod. Update 2004, 10, 295–307. [Google Scholar] [CrossRef]
- Cedars, M.I.; Taymans, S.E.; De Paolo, L.V.; Warner, L.; Moss, S.B.; Eisenberg, M.L. The sixth vital sign: What reproduction tells us about overall health. Proceedings from a NICHD/CDC workshop. Hum. Reprod. Open 2017, 2017. [Google Scholar] [CrossRef]
- Giulia, G.; Tiziana, M.; Shila, B.; Sandro, G.; Gian, C.D.R.; Chiara, D.M.; Giuseppe, M.; Arianna, C.; Antonio, S.L.; Davide, S.; et al. Non-syndromic monogenic female infertility. Acta Biomed. 2019, 90, 68–74. [Google Scholar]
- Papler, T.B.; Bokal, E.V.; Zmrzljak, U.P.; Stimpfel, M.; Laganà, A.S.; Ghezzi, F.; Jančar, N. PGR and PTX3 gene expression in cumulus cells from obese and normal weighting women after administration of long-acting recombinant follicle-stimulating hormone for controlled ovarian stimulation. Arch. Gynecol. Obs. 2019, 299, 863–871. [Google Scholar] [CrossRef] [PubMed]
- Carroll, D. Genome engineering with targetable nucleases. Annu. Rev. Biochem. 2014, 83, 409–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.-S. Genome editing comes of age. Nat. Protoc. 2016, 11, 1573–1578. [Google Scholar] [CrossRef] [PubMed]
- Urnov, F.D.; Rebar, E.J.; Holmes, M.C.; Zhang, H.S.; Gregory, P.D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 2010, 11, 636–646. [Google Scholar] [CrossRef] [PubMed]
- Joung, J.K.; Sander, J.D. TALENs: A widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 2012, 14, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Ran, F.A.; Hsu, P.D.; Wright, J.; Agarwala, V.; Scott, D.A.; Zhang, F. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013, 8, 2281–2308. [Google Scholar] [CrossRef] [Green Version]
- Abdul-Majeed, S.; Mell, B.; Nauli, S.M.; Joe, B. Cryptorchidism and infertility in rats with targeted disruption of the Adamts16 locus. PLoS ONE 2014, 9, e100967. [Google Scholar] [CrossRef] [Green Version]
- Rumi, M.A.K.; Dhakal, P.; Kubota, K.; Chakraborty, D.; Lei, T.; Larson, M.A.; Wolfe, M.W.; Roby, K.F.; Vivian, J.L.; Soares, M.J.; et al. Generation of Esr1-knockout rats using zinc finger nuclease-mediated genome editing. Endocrinology 2014, 155, 1991–1999. [Google Scholar] [CrossRef] [Green Version]
- Park, A.K.; Liegel, R.P.; Ronchetti, A.; Ebert, A.D.; Geurts, A.; Sidjanin, D.J. Targeted disruption of Tbc1d20with zinc-finger nucleases causes cataracts and testicular abnormalities in mice. BMC Genet. 2014, 15, 135. [Google Scholar] [CrossRef]
- Wang, H.; Hu, Y.-C.; Markoulaki, S.; Welstead, G.G.; Cheng, A.; Shivalila, C.S.; Pyntikova, T.; Dadon, D.B.; Voytas, D.F.; Bogdanove, A.J.; et al. TALEN-mediated editing of the mouse Y chromosome. Nat. Biotechnol. 2013, 31, 530–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, T.; Miyata, K.; Sonobe, M.; Yamashita, S.; Tamano, M.; Miura, K.; Kanai, Y.; Miyamoto, S.; Sakuma, T.; Yamamoto, T.; et al. Production of Sry knockout mouse using TALEN via oocyte injection. Sci. Rep. 2013, 3, 3136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Zhu, B.; Ge, W. Genetic analysis of zebrafish gonadotropin (FSH and LH) functions by TALEN-mediated gene disruption. Mol. Endocrinol. 2015, 29, 76–98. [Google Scholar] [CrossRef] [Green Version]
- Matsubara, Y.; Kato, T.; Kashimada, K.; Tanaka, H.; Zhi, Z.; Ichinose, S.; Mizutani, S.; Morio, T.; Chiba, T.; Ito, Y.; et al. TALEN-mediated gene disruption on Y chromosome reveals critical role of EIF2S3Y in mouse spermatogenesis. Stem Cells Dev. 2015, 24, 1164–1170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, P.; Liu, Q.; Liu, S.; Su, X.; Feng, W.; Lei, X.; Liu, J.; Cui, K.; Huang, B.; Shi, D. Generation of Foxo3-targeted mice by injection of mRNAs encoding transcription activator-like effector nucleases (TALENs) into Zygotes. Reprod. Domest. Anim. 2015, 50, 474–483. [Google Scholar] [CrossRef]
- Vanoevelen, J.M.; Van Erven, B.; Bierau, J.; Huang, X.; Berry, G.T.; Vos, R.; Coelho, A.I.; Rubio-Gozalbo, M.E. Impaired fertility and motor function in a zebrafish model for classic galactosemia. J. Inherit. Metab. Dis. 2018, 41, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Xia, H.; Zhong, C.; Wu, X.; Chen, J.; Tao, B.; Xia, X.; Shi, M.; Zhu, Z.; Trudeau, V.L.; Hu, W.; et al. mettl3mutation disrupts gamete maturation and reduces fertility in Zebrafish. Genetics 2018, 208, 729–743. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Chen, Y.; Wang, L.; Yin, Y.; Li, G.; Guo, Y.; Liu, Y.; Lin, H.; Cheng, C.H.; Liu, X. Fertility impairment with defective spermatogenesis and steroidogenesis in male zebrafish lacking androgen receptor. Biol. Reprod. 2017, 98, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Anuar, N.D.; Kurscheid, S.; Field, M.A.; Zhang, L.; Rebar, E.; Gregory, P.; Buchou, T.; Bowles, J.; Koopman, P.; Tremethick, D.J.; et al. Gene editing of the multi-copy H2A.B gene and its importance for fertility. Genome Biol. 2019, 20, 1–16. [Google Scholar] [CrossRef]
- Singh, P.; Schimenti, J.C. The genetics of human infertility by functional interrogation of SNPs in mice. Proc. Natl. Acad. Sci. USA 2015, 112, 10431–10436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, S.; Wang, X.; Li, W.; Yang, X.; Li, Z.; Liu, W.; Li, C.; Zhu, Z.; Wang, L.; Wang, J.; et al. Biallelic mutations in CFAP43 and CFAP44 cause male infertility with multiple morphological abnormalities of the sperm flagella. Am. J. Hum. Genet. 2017, 100, 854–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujihara, Y.; Oji, A.; Larasati, T.; Kojima-Kita, K.; Ikawa, M. Human globozoospermia-related gene Spata16 is required for sperm formation revealed by CRISPR/Cas9-mediated mouse models. Int. J. Mol. Sci. 2017, 18, 2208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kherraf, Z.-E.; Conne, B.; Amiri-Yekta, A.; Kent, M.C.; Coutton, C.; Escoffier, J.; Nef, S.; Arnoult, C.; Ray, P.F. Creation of knock out and knock in mice by CRISPR/Cas9 to validate candidate genes for human male infertility, interest, difficulties and feasibility. Mol. Cell. Endocrinol. 2018, 468, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Ramanagoudr-Bhojappa, R.; Carrington, B.; Ramaswami, M.; Bishop, K.; Robbins, G.M.; Jones, M.S.; Harper, U.; Frederickson, S.C.; Kimble, D.C.; Sood, R.; et al. Multiplexed CRISPR/Cas9-mediated knockout of 19 Fanconi anemia pathway genes in zebrafish revealed their roles in growth, sexual development and fertility. PLoS Genet. 2018, 14. [Google Scholar] [CrossRef]
- Tang, J.-X.; Chen, D.; Deng, S.-L.; Li, J.; Li, Y.; Fu, Z.; Wang, X.-X.; Zhang, Y.; Chen, S.-R.; Liu, Y.-X.; et al. CRISPR/Cas9-mediated genome editing induces gene knockdown by altering the pre-mRNA splicing in mice. BMC Biotechnol. 2018, 18, 61. [Google Scholar] [CrossRef]
- Lu, Y.; Oura, S.; Matsumura, T.; Oji, A.; Sakurai, N.; Fujihara, Y.; Shimada, K.; Miyata, H.; Tobita, T.; Noda, T.; et al. CRISPR/Cas9-mediated genome editing reveals 30 testis-enriched genes dispensable for male fertility in mice. Biol. Reprod. 2019, 101, 501–511. [Google Scholar] [CrossRef]
- Abbasi, F.; Kodani, M.; Emori, C.; Kiyozumi, D.; Mori, M.; Fujihara, Y.; Ikawa, M. CRISPR/Cas9-mediated genome editing reveals Oosp family genes are dispensable for female fertility in mice. Cells 2020, 9, 821. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Lu, Y.; Nozawa, K.; Xu, Z.; Morohoshi, A.; Castaneda, J.M.; Noda, T.; Miyata, H.; Abbasi, F.; Shawki, H.H.; et al. CRISPR/Cas9-based genome editing in mice uncovers 13 testis- or epididymis-enriched genes individually dispensable for male reproduction. Biol. Reprod. 2020, 103, 183–194. [Google Scholar] [CrossRef]
- Bibikova, M.; Beumer, K.; Trautman, J.K.; Carroll, D. Enhancing gene targeting with designed zinc finger nucleases. Science 2003, 300, 764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bibikova, M.; Golic, M.; Golic, K.G.; Carroll, D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 2002, 161, 1169–1175. [Google Scholar] [PubMed]
- Wolfe, S.A.; Nekludova, L.; Pabo, C.O. DNA recognition by Cys2His2Zinc finger proteins. Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 183–212. [Google Scholar] [CrossRef] [PubMed]
- Bitinaite, J.; Wah, D.A.; Aggarwal, A.K.; Schildkraut, I. FokI dimerization is required for DNA cleavage. Proc. Natl. Acad. Sci. USA 1998, 95, 10570–10575. [Google Scholar] [CrossRef] [Green Version]
- Fujikawa, T.; Ishihara, H.; Leach, J.E.; Tsuyumu, S. Suppression of defense response in plants by the avrBs3/pthA gene family of Xanthomonas spp. Mol. Plant Microbe Interact. 2006, 19, 342–349. [Google Scholar] [CrossRef] [Green Version]
- Wright, D.A.; Li, T.; Yang, B.; Spalding, M.H. TALEN-mediated genome editing: Prospects and perspectives. Biochem. J. 2014, 462, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Boch, J.; Scholze, H.; Schornack, S.; Landgraf, A.; Hahn, S.; Kay, S.; Lahaye, T.; Nickstadt, A.; Bonas, U. Breaking the code of DNA binding specificity of TAL-Type III Effectors. Science 2009, 326, 1509–1512. [Google Scholar] [CrossRef]
- Moscou, M.J.; Bogdanove, A.J. A simple cipher governs DNA recognition by TAL effectors. Science 2009, 326, 1501. [Google Scholar] [CrossRef]
- Gaj, T.; Gersbach, C.A.; Barbas, C.F., III. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013, 31, 397–405. [Google Scholar] [CrossRef] [Green Version]
- Tobita, T.; Guzman-Lepe, J.; De L’Hortet, A.C. From hacking the human genome to editing organs. Organogenesis 2015, 11, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Khalil, A.M.A. The genome editing revolution: Review. J. Genet. Eng. Biotechnol. 2020, 18, 68. [Google Scholar] [CrossRef]
- Van Der Oost, J.; Jore, M.M.; Westra, E.R.; Lundgren, M.; Brouns, S.J. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem. Sci. 2009, 34, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Mali, P.; Yang, L.; Esvelt, K.M.; Aach, J.; Guell, M.; Dicarlo, J.E.; Norville, J.E.; Church, G.M. RNA-guided human genome engineering via Cass9. Science 2013, 339, 823–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doudna, J.A.; Charpentier, E. The new frontier of genome engineering with CRISPR-Cas. Science 2014, 346. [Google Scholar] [CrossRef] [PubMed]
- Sander, J.D.; Joung, J.K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 2014, 32, 347–355. [Google Scholar] [CrossRef]
- Nakasuji, T.; Ogonuki, N.; Chiba, T.; Kato, T.; Shiozawa, K.; Yamatoya, K.; Tanaka, H.; Kondo, T.; Miyado, K.; Miyasaka, N.; et al. Complementary critical functions of Zfy1 and Zfy2 in mouse spermatogenesis and reproduction. PLoS Genet. 2017, 13, e1006578. [Google Scholar] [CrossRef] [PubMed]
- Sakai, K.; Ito, C.; Wakabayashi, M.; Kanzaki, S.; Ito, T.; Takada, S.; Toshimori, K.; Sekita, Y.; Kimura, T. Usp26 mutation in mice leads to defective spermatogenesis depending on genetic background. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef]
- Ding, D.; Liu, J.; Dong, K.; Midic, U.; Hess, R.A.; Xie, H.; Demireva, E.Y.; Chen, C. PNLDC1 is essential for piRNA 3′ end trimming and transposon silencing during spermatogenesis in mice. Nat. Commun. 2017, 8, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, A.; Qu, R.; Chen, G.; Zhang, L.; Chen, J.; Tao, C.; Fu, J.; Tang, J.; Ru, Y.; Chen, Y.; et al. Disruption in ACTL7A causes acrosomal ultrastructural defects in human and mouse sperm as a novel male factor inducing early embryonic arrest. Sci. Adv. 2020, 6. [Google Scholar] [CrossRef]
- Park, S.; Shimada, K.; Fujihara, Y.; Xu, Z.; Shimada, K.; Larasati, T.; Pratiwi, P.; Matzuk, R.M.; Devlin, D.J.; Yu, Z.; et al. CRISPR/Cas9-mediated genome-edited mice reveal 10 testis-enriched genes are dispensable for male fecundity. Biol. Reprod. 2020, 103, 195–204. [Google Scholar] [CrossRef]
- Tan, W.; Carlson, D.F.; Lancto, C.A.; Garbe, J.R.; Webster, D.A.; Hackett, P.B.; Fahrenkrug, S.C. Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proc. Natl. Acad. Sci. USA 2013, 110, 16526–16531. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Wang, Y.; Li, Z.; Ling, L.; Zeng, B.; James, A.A.; Tan, A.; Huang, Y. Transcription activator-like effector nuclease (TALEN)-mediated female-specific sterility in the silkworm, Bombyx mori. Insect Mol. Biol. 2014, 23, 800–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakai, H.; Konagaya, T.; Takemura, Y.; Sahara, K.; Niimi, T. Double-copulated introduction of ejaculate with dominant larval phenotype to maintain Bombyx mori mutant with dysfunctional apyrene sperm. J. Insect Biotechnol. Sericology 2020, 89, 39–43. [Google Scholar]
- Sakai, H.; Oshima, H.; Yuri, K.; Gotoh, H.; Daimon, T.; Yaginuma, T.; Sahara, K.; Niimi, T. Dimorphic sperm formation by Sex-lethal. Proc. Natl. Acad. Sci. USA 2019, 116, 10412–10417. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.B.; Sebo, Z.L.; Peng, Y.; Guo, Y. An optimized TALEN application for mutagenesis and screening in Drosophila melanogaster. Cell. Logist. 2015, 5, e1023423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, T.; Sakuma, T.; Yokonishi, T.; Katagiri, K.; Kamimura, S.; Ogonuki, N.; Ogura, A.; Yamamoto, T.; Ogawa, T. Genome editing in mouse spermatogonial stem cell lines using TALEN and double-nicking CRISPR/Casstem. Cell Rep. 2015, 5, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Sun, T.; Wang, X.; Tang, J.; Liu, Y. Restore natural fertility of Kit(w)/Kit(wv) mouse with nonobstructive azoospermia through gene editing on SSCs mediated by CRISPR-Cas9. Stem Cell Res. Ther. 2019, 10, 271. [Google Scholar] [CrossRef] [PubMed]
- Ciccarelli, M.; Giassetti, M.I.; Miao, D.; Oatley, M.J.; Robbins, C.; Lopez-Biladeau, B.; Waqas, M.S.; Tibary, A.; Whitelaw, B.; Lillico, S.; et al. Donor-derived spermatogenesis following stem cell transplantation in sterile NANOS2 knockout males. Proc. Natl. Acad. Sci. USA 2020, 117, 24195–24204. [Google Scholar] [CrossRef] [PubMed]
Method | Experimental Model | Gene(s) Targeted | Phenotype Induced | Year of Publication | Reference |
---|---|---|---|---|---|
ZFN | Rats (injection) | ADAMTS-16 | Bilateral cryptorchidism and infertility | 2014 | [11] |
Rats (microinjection) | Esr-1 | Small testes, epididymides, and seminal vesicles Large polycystic ovaries devoid of corpora lutea and narrow, thread-like uteri | 2014 | [12] | |
Mice (injection) | Tbc1d20 | Vacuolated cataracts and testicular abnormalities | 2014 | [13] | |
TALEN | Mice (injection) | Sry, Uty | Anatomical sex reversal | 2013 | [14] |
Mice (microinjection) | Sry | Anatomical sex reversal | 2013 | [15] | |
Zebrafish (injection) | Deletion of hormone- specific β-genes of both FSH and LH | (Fertile)—significant delay of ovaries and testes development in both FSH-deficient zebrafish (Infertile)—normal gonadal growth, but failed to spawn in LF-deficient zebrafish | 2014 | [16] | |
Mice (microinjection) | Eif2s3y | Azoospermia | 2015 | [17] | |
Mice (injection) | Foxo3 | Five infertile female mouse One subfertile and one infertile male mouse | 2015 | [18] | |
Zebrafish (injection) | GALT | Reduced motor activity and impaired fertility | 2017 | [19] | |
Zebrafish (injection) | mettl3 | Significant lower FG and hCG both in vitro and in vivo Reduced sperm maturation and motility Significantly reduced levels of 11-KT and E2 levels and defective gamete maturation | 2018 | [20] | |
Zebrafish (microinjection) | ar | Small testes and decreased levels of 11-KT, estradiol, and LHβ | 2018 | [21] | |
Mice (injection) | H2A.B, H2A.B.3 | Subfertile specimens displaying abnormal sperm and clogged seminiferous tubules | 2019 | [22] | |
CRISPR-Cas9 | Mice (microinjection) | Cdk2 | Infertility and germ cell-depletion in homozygous | 2015 | [23] |
Mice (injection) | Cfap43, Cfap44 | MMAF phenotype in male mice, whereas the female mice were fertile | 2017 | [24] | |
Mice (injection) | SPATA16 | Point mutation was not essential, but deletion of the 4th exon of Spata16 led to a spermatogenic arrest, not globozoospermia | 2017 | [25] | |
Mice (injection/ electroporation) | Cfap43, Cfap44, FlagC, FlagF | Live pups displayed either insertions or deletions in one of the targeted regions, and up to 30% of mosaicism | 2018 | [26] | |
Zebrafish (microinjection) | fanca, fancb, fancc, fancd1/brca2,fancd2, fance, fancf, fancg, fanci, fancj/brip1, fancl, fancm, fancn/palb2, fanco/rad51c, fancp/slx4, fancq/ercc4, fanct/ube2t, faap100 and faap24 | Partial or complete sex reversal from female-to-male All male and female models were fertile with the exception of two specimens that had mutations in fancd1 and fancj | 2018 | [27] | |
Mice (microinjection) | Ccnb3 | Downregulation of Ccnb3 did not affect the knockout model during embryo development, spermatogenesis, and fertility status | 2018 | [28] | |
Mice (microinjection/ electroporation) | 1700001O22Rik, 1700010B08Rik, Ankrd7, Banf2, Bpifa3, Cct6b, Fam221b, Fndc8, Gsg1, Hmgb4, Hyal6, Mgat4d, Morn3, Oxct2a, Oxct2b, Scp2d1, Slc36a3, Tex13a, Tex13b, Tex35, Tgif2lx1, Tktl2, Tmem202, Tmem270, Trim17, Trpd52l3, Ube2d2b, Ubqln5, Usp26, Vwa3b | Normal fecundity | 2019 | [29] | |
Mice (injection/ electroporation) | Oosp1,Oosp2, Oosp3, Cd160, Egfl6 | Fertile, but exhibited a decreased prolificacy | 2020 | [30] | |
Mice (microinjection/ electroporation) | 4921507P07Rik, Allc, Cabs1, Fam229b, Fscb, Hdgfl1, Iqca, Lelp1, Spata24, Tmem97, Eddm3b, Lrcol1, Tmem114 | Fertile and without any phenotypic change(s) | 2020 | [31] |
Method | Experimental Model | Year of Publication | Reference |
---|---|---|---|
CRISPR-Cas9 and TALEN | Pig, goat and cattle | 2013 | [52] |
TALEN | Bombyx mori | 2014 | [53] |
TALEN | Bombyx mori | 2020 | [54] |
TALEN | Bombyx mori | 2019 | [55] |
TALEN | Drosophila melanogaster | 2015 | [56] |
CRISPR-Cas9 and TALEN—SSCs | Mice | 2015 | [57] |
CRISPR-Cas9—SSCs | Mice | 2019 | [58] |
CRISPR-Cas9 | Mice, pigs, goats and cattle | 2020 | [59] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doroftei, B.; Ilie, O.-D.; Puiu, M.; Ciobica, A.; Ilea, C. Mini-Review Regarding the Applicability of Genome Editing Techniques Developed for Studying Infertility. Diagnostics 2021, 11, 246. https://doi.org/10.3390/diagnostics11020246
Doroftei B, Ilie O-D, Puiu M, Ciobica A, Ilea C. Mini-Review Regarding the Applicability of Genome Editing Techniques Developed for Studying Infertility. Diagnostics. 2021; 11(2):246. https://doi.org/10.3390/diagnostics11020246
Chicago/Turabian StyleDoroftei, Bogdan, Ovidiu-Dumitru Ilie, Maria Puiu, Alin Ciobica, and Ciprian Ilea. 2021. "Mini-Review Regarding the Applicability of Genome Editing Techniques Developed for Studying Infertility" Diagnostics 11, no. 2: 246. https://doi.org/10.3390/diagnostics11020246
APA StyleDoroftei, B., Ilie, O.-D., Puiu, M., Ciobica, A., & Ilea, C. (2021). Mini-Review Regarding the Applicability of Genome Editing Techniques Developed for Studying Infertility. Diagnostics, 11(2), 246. https://doi.org/10.3390/diagnostics11020246