The Role of Artificial Intelligence in the Diagnosis and Prognosis of Renal Cell Tumors
Abstract
:1. Introduction
2. Machine Learning Algorithms
3. Artificial Intelligence-Based Predictors in RCC
4. Commonly Selected Genes
5. Comparisons with Non-Artificial Intelligence-Based Predictors
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Moch, H.; Cubilla, A.L.; Humphrey, P.A.; Reuter, V.E.; Ulbright, T.M. The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs-Part A: Renal, Penile, and Testicular Tumours. Eur. Urol. 2016, 70, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Santoni, M.; Conti, A.; Piva, F.; Massari, F.; Ciccarese, C.; Burattini, L.; Cheng, L.; Lopez-Beltran, A.; Scarpelli, M.; Santini, D.; et al. Role of STAT3 pathway in genitourinary tumors. Future Sci. OA 2015, 1, FSO15. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Shariat, S.F.; Cheng, C.; Ficarra, V.; Murai, M.; Oudard, S.; Pantuck, A.J.; Zigeuner, R.; Karakiewicz, P.I. Prognostic factors and predictive models in renal cell carcinoma: A contemporary review. Eur. Urol. 2011, 60, 644–661. [Google Scholar] [CrossRef] [PubMed]
- Volpe, A.; Patard, J.J. Prognostic factors in renal cell carcinoma. World J. Urol. 2010, 28, 319–327. [Google Scholar] [CrossRef]
- Zhang, G.; Wu, Y.; Zhang, J.; Fang, Z.; Liu, Z.; Xu, Z.; Fan, Y. Nomograms for predicting long-term overall survival and disease-specific survival of patients with clear cell renal cell carcinoma. Onco. Targ. Ther. 2018, 11, 5535–5544. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Zhu, W.; Yu, S.; Li, K.; Ding, Y.; Wu, Q.; Tang, Q.; Zhao, Q.; Lu, C.; Guo, C. Development and validation of a nomogram to predict overall survival for patients with metastatic renal cell carcinoma. BMC Cancer 2020, 20, 1066. [Google Scholar] [CrossRef]
- Xia, M.; Yang, H.; Wang, Y.; Yin, K.; Bian, X.; Chen, J.; Shuang, W. Development and Validation of a Nomogram Predicting the Prognosis of Renal Cell Carcinoma After Nephrectomy. Cancer Manag. Res. 2020, 12, 4461–4473. [Google Scholar] [CrossRef]
- Kamps, R.; Brandao, R.D.; Bosch, B.J.; Paulussen, A.D.; Xanthoulea, S.; Blok, M.J.; Romano, A. Next-Generation Sequencing in Oncology: Genetic Diagnosis, Risk Prediction and Cancer Classification. Int. J. Mol. Sci. 2017, 18, 308. [Google Scholar] [CrossRef]
- Rahman, M.M.; Usman, O.L.; Muniyandi, R.C.; Sahran, S.; Mohamed, S.; Razak, R.A. A Review of Machine Learning Methods of Feature Selection and Classification for Autism Spectrum Disorder. Brain Sci. 2020, 10, 949. [Google Scholar] [CrossRef]
- Shah, M.; Naik, N.; Somani, B.K.; Hameed, B.M.Z. Artificial intelligence (AI) in urology-Current use and future directions: An iTRUE study. Turk. J. Urol. 2020, 46, S27–S39. [Google Scholar] [CrossRef]
- Pai, R.K.; Van Booven, D.J.; Parmar, M.; Lokeshwar, S.D.; Shah, K.; Ramasamy, R.; Arora, H. A review of current advancements and limitations of artificial intelligence in genitourinary cancers. Am. J. Clin. Exp. Urol. 2020, 8, 152–162. [Google Scholar] [PubMed]
- Hamamoto, R.; Suvarna, K.; Yamada, M.; Kobayashi, K.; Shinkai, N.; Miyake, M.; Takahashi, M.; Jinnai, S.; Shimoyama, R.; Sakai, A.; et al. Application of Artificial Intelligence Technology in Oncology: Towards the Establishment of Precision Medicine. Cancers 2020, 12, 3532. [Google Scholar] [CrossRef] [PubMed]
- Hamet, P.; Tremblay, J. Artificial intelligence in medicine. Metabolism 2017, 69S, S36–S40. [Google Scholar] [CrossRef] [PubMed]
- Anagnostou, T.; Remzi, M.; Lykourinas, M.; Djavan, B. Artificial neural networks for decision-making in urologic oncology. Eur. Urol. 2003, 43, 596–603. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, A.; Ibrahim, M.; Sharma, C.; Liong, R.; Gustafson, S.; Prior, M. CT-based radiomics for differentiating renal tumours: A systematic review. Abdom. Radiol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Piva, F.; Tartari, F.; Giulietti, M.; Aiello, M.M.; Cheng, L.; Lopez-Beltran, A.; Mazzucchelli, R.; Cimadamore, A.; Cerqueti, R.; Battelli, N.; et al. Predicting future cancer burden in the United States by artificial neural networks. Future Oncol. 2020. [Google Scholar] [CrossRef]
- Santoni, M.; Piva, F.; Porta, C.; Bracarda, S.; Heng, D.Y.; Matrana, M.R.; Grande, E.; Mollica, V.; Aurilio, G.; Rizzo, M.; et al. Artificial Neural Networks as a Way to Predict Future Kidney Cancer Incidence in the United States. Clin. Genitourin. Cancer 2020. [Google Scholar] [CrossRef]
- Hugle, M.; Omoumi, P.; van Laar, J.M.; Boedecker, J.; Hugle, T. Applied machine learning and artificial intelligence in rheumatology. Rheumatol. Adv. Pract. 2020, 4, rkaa005. [Google Scholar] [CrossRef]
- Farris, A.B.; Vizcarra, J.; Amgad, M.; Cooper, L.A.D.; Gutman, D.; Hogan, J. Artificial Intelligence and Algorithmic Computational Pathology: Introduction with Renal Allograft Examples. Histopathology 2020. [Google Scholar] [CrossRef]
- Dana, J.; Agnus, V.; Ouhmich, F.; Gallix, B. Multimodality Imaging and Artificial Intelligence for Tumor Characterization: Current Status and Future Perspective. Semin. Nucl. Med. 2020, 50, 541–548. [Google Scholar] [CrossRef]
- Supriya, M.; Deepa, A.J. A novel approach for breast cancer prediction using optimized ANN classifier based on big data environment. Health Care Manag. Sci. 2020, 23, 414–426. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.W.; Chen, C.W.; Lin, W.C.; Ke, S.W.; Tsai, C.F. SVM and SVM Ensembles in Breast Cancer Prediction. PLoS ONE 2017, 12, e0161501. [Google Scholar] [CrossRef] [PubMed]
- Wongvibulsin, S.; Wu, K.C.; Zeger, S.L. Clinical risk prediction with random forests for survival, longitudinal, and multivariate (RF-SLAM) data analysis. BMC Med. Res. Methodol. 2019, 20, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raita, Y.; Goto, T.; Faridi, M.K.; Brown, D.F.M.; Camargo, C.A., Jr.; Hasegawa, K. Emergency department triage prediction of clinical outcomes using machine learning models. Crit. Care 2019, 23, 64. [Google Scholar] [CrossRef] [Green Version]
- Shu, J.; Wen, D.; Xi, Y.; Xia, Y.; Cai, Z.; Xu, W.; Meng, X.; Liu, B.; Yin, H. Clear cell renal cell carcinoma: Machine learning-based computed tomography radiomics analysis for the prediction of WHO/ISUP grade. Eur. J. Radiol. 2019, 121, 108738. [Google Scholar] [CrossRef]
- Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 2019, 1, 206–215. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.P.; Bapi, R.S.; Vinod, P.K. Machine learning models to predict the progression from early to late stages of papillary renal cell carcinoma. Comput. Biol. Med. 2018, 100, 92–99. [Google Scholar] [CrossRef]
- Singh, N.P.; Vinod, P.K. Integrative analysis of DNA methylation and gene expression in papillary renal cell carcinoma. Mol. Gen. Genom. 2020, 295, 807–824. [Google Scholar] [CrossRef]
- Jagga, Z.; Gupta, D. Classification models for clear cell renal carcinoma stage progression, based on tumor RNAseq expression trained supervised machine learning algorithms. BMC Proc. 2014, 8, S2. [Google Scholar] [CrossRef] [Green Version]
- Bhalla, S.; Chaudhary, K.; Kumar, R.; Sehgal, M.; Kaur, H.; Sharma, S.; Raghava, G.P. Gene expression-based biomarkers for discriminating early and late stage of clear cell renal cancer. Sci. Rep. 2017, 7, 44997. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.; Jackson, L.K.; Johnson, W.E.; Li, D.Y.; Bild, A.H.; Piccolo, S.R. Alternative preprocessing of RNA-Sequencing data in The Cancer Genome Atlas leads to improved analysis results. Bioinformatics 2015, 31, 3666–3672. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Yang, M.; Li, Y.; Zhang, M.; Wang, W.; Yuan, D.; Tang, D. An improved clear cell renal cell carcinoma stage prediction model based on gene sets. BMC Bioinf. 2020, 21, 232. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Ren, H.; Zhang, Y.; Zhou, Z. Fifteen-gene expression based model predicts the survival of clear cell renal cell carcinoma. Medicine 2018, 97, e11839. [Google Scholar] [CrossRef] [PubMed]
- Rehrauer, H.; Opitz, L.; Tan, G.; Sieverling, L.; Schlapbach, R. Blind spots of quantitative RNA-seq: The limits for assessing abundance, differential expression, and isoform switching. BMC Bioinf. 2013, 14, 370. [Google Scholar] [CrossRef] [Green Version]
- Ozsolak, F.; Milos, P.M. RNA sequencing: Advances, challenges and opportunities. Nat. Rev. Gen. 2011, 12, 87–98. [Google Scholar] [CrossRef]
- Hirsch, C.D.; Springer, N.M.; Hirsch, C.N. Genomic limitations to RNA sequencing expression profiling. Plant J. 2015, 84, 491–503. [Google Scholar] [CrossRef] [Green Version]
- Lenzi, L.; Facchin, F.; Piva, F.; Giulietti, M.; Pelleri, M.C.; Frabetti, F.; Vitale, L.; Casadei, R.; Canaider, S.; Bortoluzzi, S.; et al. TRAM (Transcriptome Mapper): Database-driven creation and analysis of transcriptome maps from multiple sources. BMC Genom. 2011, 12, 121. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Yoshigoe, K.; Qin, X.; Liu, J.S.; Yang, J.Y.; Niemierko, A.; Deng, Y.; Liu, Y.; Dunker, A.; Chen, Z.; et al. Identification of genes and pathways involved in kidney renal clear cell carcinoma. BMC Bioinf. 2014, 15, S2. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Wang, Y.; Hu, X. Identification and Comprehensive Validation of a DNA Methylation-Driven Gene-Based Prognostic Model for Clear Cell Renal Cell Carcinoma. DNA Cell Biol. 2020, 39, 1799–1812. [Google Scholar] [CrossRef]
- Tang, W.; Cao, Y.; Ma, X. Novel prognostic prediction model constructed through machine learning on the basis of methylation-driven genes in kidney renal clear cell carcinoma. Biosci. Rep. 2020, 40. [Google Scholar] [CrossRef]
- Vidal, M.; Cusick, M.E.; Barabasi, A.L. Interactome networks and human disease. Cell 2011, 144, 986–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartzi, M.; Parkl, M.; Phanl, J.H.; Wang, M.D. Integration of multimodal RNA-seq data for prediction of kidney cancer survival. In Proceedings of the IEEE International Conference Bioinformatics and Biomedicine, Washington, DC, USA, 9–12 November 2015; Volume 2015, pp. 1591–1595. [Google Scholar] [CrossRef] [Green Version]
- Kweon, S.; Lee, J.H.; Lee, Y.; Park, Y.R. Personal Health Information Inference Using Machine Learning on RNA Expression Data from Patients With Cancer: Algorithm Validation Study. J. Med. Internet Res. 2020, 22, e18387. [Google Scholar] [CrossRef] [PubMed]
- Lyndaker, A.M.; Vasileva, A.; Wolgemuth, D.J.; Weiss, R.S.; Lieberman, H.B. Clamping down on mammalian meiosis. Cell Cycle 2013, 12, 3135–3145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phan, N.N.; Wang, C.Y.; Chen, C.F.; Sun, Z.; Lai, M.D.; Lin, Y.C. Voltage-gated calcium channels: Novel targets for cancer therapy. Oncol. Lett. 2017, 14, 2059–2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purdue, M.P.; Song, L.; Scelo, G.; Houlston, R.S.; Wu, X.; Sakoda, L.C.; Thai, K.; Graff, R.E.; Rothman, N.; Brennan, P.; et al. Pathway Analysis of Renal Cell Carcinoma Genome-Wide Association Studies Identifies Novel Associations. Cancer Epidemiol. Biomarkers Prev. 2020, 29, 2065–2069. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.M.; Min, K.J.; Seo, S.U.; Kim, S.; Park, J.W.; Song, D.K.; Lee, H.S.; Kim, S.H.; Kwon, T.K. Up-regulation of 5-lipoxygenase by inhibition of cathepsin G enhances TRAIL-induced apoptosis through down-regulation of survivin. Oncotarget 2017, 8, 106672–106684. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Deng, Z.; Chen, Y.; Gao, Y.; Wu, D.; Zhu, G.; Li, L.; Song, W.; Wang, X.; Wu, K.; et al. Overexpression of FABP7 promotes cell growth and predicts poor prognosis of clear cell renal cell carcinoma. Urol. Oncol. 2015, 33, 113.e9–113.e17. [Google Scholar] [CrossRef]
- Nagao, K.; Shinohara, N.; Smit, F.; de Weijert, M.; Jannink, S.; Owada, Y.; Mulders, P.; Oosterwijk, E.; Matsuyama, H. Fatty acid binding protein 7 may be a marker and therapeutic targets in clear cell renal cell carcinoma. BMC Cancer 2018, 18, 1114. [Google Scholar] [CrossRef] [Green Version]
- Fiorentino, M.; Gruppioni, E.; Massari, F.; Giunchi, F.; Altimari, A.; Ciccarese, C.; Bimbatti, D.; Scarpa, A.; Iacovelli, R.; Porta, C.; et al. Wide spetcrum mutational analysis of metastatic renal cell cancer: A retrospective next generation sequencing approach. Oncotarget 2017, 8, 7328–7335. [Google Scholar] [CrossRef] [Green Version]
- Behbahani, T.E.; Thierse, C.; Baumann, C.; Holl, D.; Bastian, P.J.; von Ruecker, A.; Muller, S.C.; Ellinger, J.; Hauser, S. Tyrosine kinase expression profile in clear cell renal cell carcinoma. World J. Urol. 2012, 30, 559–565. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, H.; Dong, H.; Zhu, L.; Wang, S.; Wang, P.; Ren, Q.; Zhu, H.; Chen, J.; Lin, Z.; et al. LAT, HOXD3 and NFE2L3 identified as novel DNA methylation-driven genes and prognostic markers in human clear cell renal cell carcinoma by integrative bioinformatics approaches. J. Cancer 2019, 10, 6726–6737. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Lu, L.; Wu, L.; Chen, H.; Zhu, W.; He, Y. Identification of prognostic genes in kidney renal clear cell carcinoma by RNAseq data analysis. Mol. Med. Rep. 2017, 15, 1661–1667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Jin, S.; Gu, W.; Wan, F.; Zhang, H.; Shi, G.; Qu, Y.; Ye, D. Construction and Validation of a 9-Gene Signature for Predicting Prognosis in Stage III Clear Cell Renal Cell Carcinoma. Front. Oncol. 2019, 9, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berglund, A.; Amankwah, E.K.; Kim, Y.C.; Spiess, P.E.; Sexton, W.J.; Manley, B.; Park, H.Y.; Wang, L.; Chahoud, J.; Chakrabarti, R.; et al. Influence of gene expression on survival of clear cell renal cell carcinoma. Cancer Med. 2020, 9, 8662–8675. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Hu, W.F.; Zhang, W.; Li, G.H.; Guo, Y.L. A 17-Gene Signature Predicted Prognosis in Renal Cell Carcinoma. Dis. Markers 2020, 2020. [Google Scholar] [CrossRef]
- Skubitz, K.M.; Zimmermann, W.; Kammerer, R.; Pambuccian, S.; Skubitz, A.P. Differential gene expression identifies subgroups of renal cell carcinoma. J. Lab. Clin. Med. 2006, 147, 250–267. [Google Scholar] [CrossRef]
- Apanovich, N.; Peters, M.; Apanovich, P.; Mansorunov, D.; Markova, A.; Matveev, V.; Karpukhin, A. The Genes-Candidates for Prognostic Markers of Metastasis by Expression Level in Clear Cell Renal Cell Cancer. Diagnostics 2020, 10, 30. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Peng, Z.; Wang, K.; Qi, Y.; Yang, Y.; Zhang, Y.; An, X.; Luo, S.; Zheng, J. NDUFA4L2 is associated with clear cell renal cell carcinoma malignancy and is regulated by ELK1. PeerJ 2017, 5, e4065. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Lan, G.; Peng, L.; Xie, X.; Peng, F.; Yu, S.; Wang, Y.; Tang, X. NDUFA4L2 expression predicts poor prognosis in clear cell renal cell carcinoma patients. Ren. Fail. 2016, 38, 1199–1205. [Google Scholar] [CrossRef] [Green Version]
- Lucarelli, G.; Rutigliano, M.; Sallustio, F.; Ribatti, D.; Giglio, A.; Lepore Signorile, M.; Grossi, V.; Sanese, P.; Napoli, A.; Maiorano, E.; et al. Integrated multi-omics characterization reveals a distinctive metabolic signature and the role of NDUFA4L2 in promoting angiogenesis, chemoresistance, and mitochondrial dysfunction in clear cell renal cell carcinoma. Aging 2018, 10, 3957–3985. [Google Scholar] [CrossRef]
- Yao, M.; Murakami, T.; Shioi, K.; Mizuno, N.; Ito, H.; Kondo, K.; Hasumi, H.; Sano, F.; Makiyama, K.; Nakaigawa, N.; et al. Tumor signatures of PTHLH overexpression, high serum calcium, and poor prognosis were observed exclusively in clear cell but not non clear cell renal carcinomas. Cancer Med. 2014, 3, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Hansson, J.; Lindgren, D.; Nilsson, H.; Johansson, E.; Johansson, M.; Gustavsson, L.; Axelson, H. Overexpression of Functional SLC6A3 in Clear Cell Renal Cell Carcinoma. Clin. Cancer Res. 2017, 23, 2105–2115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudenko, E.; Kondratov, O.; Gerashchenko, G.; Lapska, Y.; Kravchenko, S.; Koliada, O.; Vozianov, S.; Zgonnyk, Y.; Kashuba, V. Aberrant expression of selenium-containing glutathione peroxidases in clear cell renal cell carcinomas. Exp. Oncol. 2015, 37, 105–110. [Google Scholar] [CrossRef]
- Liu, Q.; Jin, J.; Ying, J.; Sun, M.; Cui, Y.; Zhang, L.; Xu, B.; Fan, Y.; Zhang, Q. Frequent epigenetic suppression of tumor suppressor gene glutathione peroxidase 3 by promoter hypermethylation and its clinical implication in clear cell renal cell carcinoma. Int. J. Mol. Sci. 2015, 16, 10636–10649. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.S.; Choi, Y.P.; Kang, S.; Gao, M.Q.; Kim, B.; Park, H.R.; Choi, Y.D.; Lim, J.B.; Na, H.J.; Kim, H.K.; et al. Panel of candidate biomarkers for renal cell carcinoma. J. Proteome Res. 2010, 9, 3710–3719. [Google Scholar] [CrossRef]
- Su Kim, D.; Choi, Y.D.; Moon, M.; Kang, S.; Lim, J.B.; Kim, K.M.; Park, K.M.; Cho, N.H. Composite three-marker assay for early detection of kidney cancer. Cancer Epidemiol. Biomarkers Prev. 2013, 22, 390–398. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.S.; Ham, W.S.; Jang, W.S.; Cho, K.S.; Choi, Y.D.; Kang, S.; Kim, B.; Kim, K.J.; Lim, E.J.; Rha, S.Y.; et al. Scale-Up Evaluation of a Composite Tumor Marker Assay for the Early Detection of Renal Cell Carcinoma. Diagnostics 2020, 10, 750. [Google Scholar] [CrossRef]
- Neely, B.A.; Wilkins, C.E.; Marlow, L.A.; Malyarenko, D.; Kim, Y.; Ignatchenko, A.; Sasinowska, H.; Sasinowski, M.; Nyalwidhe, J.O.; Kislinger, T.; et al. Proteotranscriptomic Analysis Reveals Stage Specific Changes in the Molecular Landscape of Clear-Cell Renal Cell Carcinoma. PLoS ONE 2016, 11, e0154074. [Google Scholar] [CrossRef]
- Yang, H.; Zhao, K.; Yu, Q.; Wang, X.; Song, Y.; Li, R. Evaluation of plasma and tissue S100A4 protein and mRNA levels as potential markers of metastasis and prognosis in clear cell renal cell carcinoma. J. Int. Med. Res. 2012, 40, 475–485. [Google Scholar] [CrossRef] [Green Version]
- Kuper, C.; Beck, F.X.; Neuhofer, W. NFAT5-mediated expression of S100A4 contributes to proliferation and migration of renal carcinoma cells. Front. Physiol. 2014, 5, 293. [Google Scholar] [CrossRef] [Green Version]
- Yamauchi, M.; Kataoka, H.; Itoh, H.; Seguchi, T.; Hasui, Y.; Osada, Y. Hepatocyte growth factor activator inhibitor types 1 and 2 are expressed by tubular epithelium in kidney and down-regulated in renal cell carcinoma. J. Urol. 2004, 171, 890–896. [Google Scholar] [CrossRef]
- Morris, M.R.; Gentle, D.; Abdulrahman, M.; Maina, E.N.; Gupta, K.; Banks, R.E.; Wiesener, M.S.; Kishida, T.; Yao, M.; Teh, B.; et al. Tumor suppressor activity and epigenetic inactivation of hepatocyte growth factor activator inhibitor type 2/SPINT2 in papillary and clear cell renal cell carcinoma. Cancer Res. 2005, 65, 4598–4606. [Google Scholar] [CrossRef] [Green Version]
- Yamasaki, K.; Mukai, S.; Sugie, S.; Nagai, T.; Nakahara, K.; Kamibeppu, T.; Sakamoto, H.; Shibasaki, N.; Terada, N.; Toda, Y.; et al. Dysregulated HAI-2 Plays an Important Role in Renal Cell Carcinoma Bone Metastasis through Ligand-Dependent MET Phosphorylation. Cancers 2018, 10, 190. [Google Scholar] [CrossRef] [Green Version]
- Schrodter, S.; Braun, M.; Syring, I.; Klumper, N.; Deng, M.; Schmidt, D.; Perner, S.; Muller, S.C.; Ellinger, J. Identification of the dopamine transporter SLC6A3 as a biomarker for patients with renal cell carcinoma. Mol. Cancer 2016, 15, 10. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Zou, Y.M.; Lei, D.; Huang, Y.; Li, W.; Mo, Z.; Hu, Y. Promoter DNA methylation analysis reveals a novel diagnostic CpG-based biomarker and RAB25 hypermethylation in clear cell renel cell carcinoma. Sci. Rep. 2017, 7, 14200. [Google Scholar] [CrossRef]
- Tian, Z.H.; Yuan, C.; Yang, K.; Gao, X.L. Systematic identification of key genes and pathways in clear cell renal cell carcinoma on bioinformatics analysis. Ann. Transl. Med. 2019, 7, 89. [Google Scholar] [CrossRef]
- Milner, C.M.; Day, A.J. TSG-6: A multifunctional protein associated with inflammation. J. Cell Sci. 2003, 116, 1863–1873. [Google Scholar] [CrossRef] [Green Version]
- Shioi, K.; Komiya, A.; Hattori, K.; Huang, Y.; Sano, F.; Murakami, T.; Nakaigawa, N.; Kishida, T.; Kubota, Y.; Nagashima, Y.; et al. Vascular cell adhesion molecule 1 predicts cancer-free survival in clear cell renal carcinoma patients. Clin. Cancer Res. 2006, 12, 7339–7346. [Google Scholar] [CrossRef] [Green Version]
- Albiges, L.; Salem, M.; Rini, B.; Escudier, B. Vascular endothelial growth factor-targeted therapies in advanced renal cell carcinoma. Hematol. Oncol. Clin. North Am. 2011, 25, 813–833. [Google Scholar] [CrossRef]
- Ma, J.; Wang, W.; Azhati, B.; Wang, Y.; Tusong, H. miR-106a-5p Functions as a Tumor Suppressor by Targeting VEGFA in Renal Cell Carcinoma. Dis. Markers 2020, 2020, 8837941. [Google Scholar] [CrossRef]
- Takahashi, M.; Rhodes, D.R.; Furge, K.A.; Kanayama, H.; Kagawa, S.; Haab, B.B.; Teh, B.T. Gene expression profiling of clear cell renal cell carcinoma: Gene identification and prognostic classification. Proc. Natl. Acad. Sci. USA 2001, 98, 9754–9759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasselli, J.R.; Shih, J.H.; Iyengar, S.R.; Maranchie, J.; Riss, J.; Worrell, R.; Torres-Cabala, C.; Tabios, R.; Mariotti, A.; Stearman, R.; et al. Predicting survival in patients with metastatic kidney cancer by gene-expression profiling in the primary tumor. Proc. Natl. Acad. Sci. USA 2003, 100, 6958–6963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Ljungberg, B.; Grankvist, K.; Rasmuson, T.; Tibshirani, R.; Brooks, J.D. Gene expression profiling predicts survival in conventional renal cell carcinoma. PLoS Med. 2006, 3, e13. [Google Scholar] [CrossRef]
- Brannon, A.R.; Reddy, A.; Seiler, M.; Arreola, A.; Moore, D.T.; Pruthi, R.S.; Wallen, E.M.; Nielsen, M.E.; Liu, H.; Nathanson, K.L.; et al. Molecular Stratification of Clear Cell Renal Cell Carcinoma by Consensus Clustering Reveals Distinct Subtypes and Survival Patterns. Genes Cancer 2010, 1, 152–163. [Google Scholar] [CrossRef]
- Yaycioglu, O.; Eskicorapci, S.; Karabulut, E.; Soyupak, B.; Gogus, C.; Divrik, T.; Turkeri, L.; Yazici, S.; Ozen, H. A preoperative prognostic model predicting recurrence-free survival for patients with kidney cancer. Jpn. J. Clin. Oncol. 2013, 43, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Raj, G.V.; Thompson, R.H.; Leibovich, B.C.; Blute, M.L.; Russo, P.; Kattan, M.W. Preoperative nomogram predicting 12-year probability of metastatic renal cancer. J. Urol. 2008, 179, 2146–2151; discussion 2151. [Google Scholar] [CrossRef]
- Wu, J.; Xu, W.H.; Wei, Y.; Qu, Y.Y.; Zhang, H.L.; Ye, D.W. An Integrated Score and Nomogram Combining Clinical and Immunohistochemistry Factors to Predict High ISUP Grade Clear Cell Renal Cell Carcinoma. Front. Oncol. 2018, 8, 634. [Google Scholar] [CrossRef] [Green Version]
- Park, C.; Ahn, J.; Kim, H.; Park, S. Integrative gene network construction to analyze cancer recurrence using semi-supervised learning. PLoS ONE 2014, 9, e86309. [Google Scholar] [CrossRef] [Green Version]
- Sato, F.; Shimada, Y.; Selaru, F.M.; Shibata, D.; Maeda, M.; Watanabe, G.; Mori, Y.; Stass, S.A.; Imamura, M.; Meltzer, S.J. Prediction of survival in patients with esophageal carcinoma using artificial neural networks. Cancer 2005, 103, 1596–1605. [Google Scholar] [CrossRef]
- Yu, J.; Hu, Y.; Xu, Y.; Wang, J.; Kuang, J.; Zhang, W.; Shao, J.; Guo, D.; Wang, Y. LUADpp: An effective prediction model on prognosis of lung adenocarcinomas based on somatic mutational features. BMC Cancer 2019, 19, 263. [Google Scholar] [CrossRef]
- Baek, B.; Lee, H. Prediction of survival and recurrence in patients with pancreatic cancer by integrating multi-omics data. Sci. Rep. 2020, 10, 18951. [Google Scholar] [CrossRef]
- Kim, D.; Li, R.; Dudek, S.M.; Wallace, J.R.; Ritchie, M.D. Binning somatic mutations based on biological knowledge for predicting survival: An application in renal cell carcinoma. Pac. Symp. Biocomput. 2015, 96–107. [Google Scholar]
- Piva, F.; Giulietti, M.; Occhipinti, G.; Santoni, M.; Massari, F.; Sotte, V.; Iacovelli, R.; Burattini, L.; Santini, D.; Montironi, R.; et al. Computational analysis of the mutations in BAP1, PBRM1 and SETD2 genes reveals the impaired molecular processes in renal cell carcinoma. Oncotarget 2015, 6, 32161–32168. [Google Scholar] [CrossRef]
Aim | Technique and Data | Results | Reference |
---|---|---|---|
ccRCC stages (I and II vs. III and IV) | J48, naïve Bayes, sequential minimal optimization and random forest on RNA-seq data from TCGA | 62 genes selected. Random forest was the best predictor: 88.89% sensitivity, 76.84% accuracy and auROC of 0.778 | Jagga et al., 2014 [29] |
ccRCC vs. normal | SVM on RNA-seq data from TCGA | 186 selected genes, overall sensitivity 96.5%; overall specificity 97%; overall AUC 98.7% | Yang et al., 2014 [38] |
ccRCC survival (< or ≥5 years) | SVM and KNN learning on RNA-seq data from TCGA | SVM (AUC 0.6042; total accuracy 0.6111) KNN (AUC 0.6444; total accuracy 0.6481) | Schwartzi et al., 2015 [42] |
ccRCC stages (I and II vs. III and IV) | SVM, random forests, SMO, naïve Bayes, J48 on RNA-seq data from TCGA | 64 and 38 genes selected. SVM was the best predictor: sensitivity 73.44%, specificity 71.43%, accuracy 72.64%, 0.81 ROC (on validation data) | Bhalla et al., 2017 [30] |
Papillary RCC stages | KNN, SVM, naïve Bayes, random forests, shrunken centroid | 104 selected genes. Shrunken was the best predictor: PR-AUC 0.81, MCC 0.71, accuracy 88.5% (in an independent dataset) | Singh et al., 2018 [27] |
ccRCC survival | Lasso regression on TCGA data | 4 gene methylation data. According to ROC curve: 1-year survival rates 0.794, 3-year 0.752, 5-year 0.731 | Tang et al., 2020 [40] |
ccRCC stages (I, II and III, IV) | SVM, logistic regression, MLP, random forests and naïve Bayes on TCGA data | 23 genes selected. SVM was the best predictor: accuracy 81.15%, AUC 0.86 (in a testing set) | Li et al., 2020 [32] |
Papillary RCC stages | Random forests, naïve Bayes, linear-SVM, KNN, shrunken centroid, group Lasso, BEMKL on TCGA data | DNA methylation in addition to previously selected [27] 104 features. Random forests and group Lasso (for both MCC 0.77, PR-AUC 0.79, accuracy 90.4) | Singh et al., 2020 [28] |
Aim | Technique and Data | Results | Reference |
---|---|---|---|
ccRCC survival at 5 years | Clustering on cDNA microarray (29 patients) | 40 genes correlated with survival (Kaplan–Meier, p < 0.0001) and histological grade. | Takahashi et al., 2001 [82] |
metastatic ccRCC subgroups | Clustering on cDNA microarray (58 patients) | 45 genes distinguishing groups for overall survival (p = 0.001) | Vasselli et al., 2003 [83] |
ccRCC survival after surgery | Clustering and supervised PCA on cDNA microarray (177 patients) | 259 genes correlated with survival (p < 0.001 by the log-rank test on test set) | Zhao et al., 2006 [84] |
Top 4 genes correlated with survival (p = 0.02) | |||
ccRCC vs. normal | Clustering and PCA on cDNA microarray (16 patients) | 21 genes over expressed in ccRCC compared to normal tissues | Skubitz et al., 2006 [57] |
ccRCC subgroups | Fewer genes distinguishing 2 ccRCC subgroups likely related to pathologic grade | ||
ccRCC survival | PCA and clustering and logical analysis on cDNA microarray (48 patients) | 110 genes associated with tumor stage (p = 0.009) and grade (p = 0.0007) and survival (median survival of 8.6 vs. 2.0 years, p = 0.002) | Brannon et al., 2010 [85] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giulietti, M.; Cecati, M.; Sabanovic, B.; Scirè, A.; Cimadamore, A.; Santoni, M.; Montironi, R.; Piva, F. The Role of Artificial Intelligence in the Diagnosis and Prognosis of Renal Cell Tumors. Diagnostics 2021, 11, 206. https://doi.org/10.3390/diagnostics11020206
Giulietti M, Cecati M, Sabanovic B, Scirè A, Cimadamore A, Santoni M, Montironi R, Piva F. The Role of Artificial Intelligence in the Diagnosis and Prognosis of Renal Cell Tumors. Diagnostics. 2021; 11(2):206. https://doi.org/10.3390/diagnostics11020206
Chicago/Turabian StyleGiulietti, Matteo, Monia Cecati, Berina Sabanovic, Andrea Scirè, Alessia Cimadamore, Matteo Santoni, Rodolfo Montironi, and Francesco Piva. 2021. "The Role of Artificial Intelligence in the Diagnosis and Prognosis of Renal Cell Tumors" Diagnostics 11, no. 2: 206. https://doi.org/10.3390/diagnostics11020206
APA StyleGiulietti, M., Cecati, M., Sabanovic, B., Scirè, A., Cimadamore, A., Santoni, M., Montironi, R., & Piva, F. (2021). The Role of Artificial Intelligence in the Diagnosis and Prognosis of Renal Cell Tumors. Diagnostics, 11(2), 206. https://doi.org/10.3390/diagnostics11020206