Quantification of Sodium Relaxation Times and Concentrations as Surrogates of Proteoglycan Content of Patellar CARTILAGE at 3T MRI
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. MRI
2.2.1. Characterization of the 23Na Coil
2.2.2. MRI Sequence Parameters
2.3. Image Post-Processing
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- MacKay, J.W.; Low, S.B.L.; Smith, T.O.; Toms, A.P.; McCaskie, A.W.; Gilbert, F.J. Systematic Review and Meta-Analysis of the Reliability and Discriminative Validity of Cartilage Compositional MRI in Knee Osteoarthritis. Osteoarthr. Cartil. 2018, 26, 1140–1152. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sewerin, P.; Müller-Lutz, A.; Odendahl, S.; Eichner, M.; Schneider, M.; Ostendorf, B.; Schleich, C. Prevention of the Progressive Biochemical Cartilage Destruction under Methotrexate Therapy in Early Rheumatoid Arthritis. Clin. Exp. Rheumatol. 2018, 37, 179–185. [Google Scholar] [CrossRef]
- Abrar, D.B.; Schleich, C.; Frenken, M.; Vordenbäumen, S.; Richter, J.; Schneider, M.; Ostendorf, B.; Nebelung, S.; Sewerin, P. DGEMRIC in the Assessment of Pre-Morphological Cartilage Degeneration in Rheumatic Disease: Rheumatoid Arthritis vs. Psoriatic Arthritis. Diagnostics 2021, 11, 147. [Google Scholar] [CrossRef]
- Abrar, D.B.; Schleich, C.; Nebelung, S.; Frenken, M.; Ullrich, T.; Radke, K.L.; Antoch, G.; Vordenbäumen, S.; Brinks, R.; Schneider, M.; et al. Proteoglycan Loss in the Articular Cartilage Is Associated with Severity of Joint Inflammation in Psoriatic Arthritis—a Compositional Magnetic Resonance Imaging Study. Arthritis Res. Ther. 2020, 22, 124. [Google Scholar] [CrossRef] [PubMed]
- Matzat, S.J.; van Tiel, J.; Gold, G.E.; Oei, E.H.G. Quantitative MRI Techniques of Cartilage Composition. Quant. Imaging Med. Surg. 2013, 3, 162–174. [Google Scholar] [CrossRef]
- Bittersohl, B.; Kircher, J.; Miese, F.R.; Dekkers, C.; Habermeyer, P.; Fröbel, J.; Antoch, G.; Krauspe, R.; Zilkens, C. T2* Mapping and Delayed Gadolinium-Enhanced Magnetic Resonance Imaging in Cartilage (DGEMRIC) of Humeral Articular Cartilage-a Histologically Controlled Study. J. Shoulder Elb. Surg. 2015, 24, 1644–1652. [Google Scholar] [CrossRef]
- Besselink, N.J.; Vincken, K.L.; Bartels, L.W.; van Heerwaarden, R.J.; Concepcion, A.N.; Marijnissen, A.C.A.; Spruijt, S.; Custers, R.J.H.; van der Woude, J.-T.A.D.; Wiegant, K.; et al. Cartilage Quality (DGEMRIC Index) Following Knee Joint Distraction or High Tibial Osteotomy. Cartilage 2020, 11, 19–31. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Schleich, C.; Bittersohl, B.; Miese, F.; Schmitt, B.; Müller-Lutz, A.; Sondern, M.; Antoch, G.; Krauspe, R.; Zilkens, C. Glycosaminoglycan Chemical Exchange Saturation Transfer at 3T MRI in Asymptomatic Knee Joints. Acta Radiol. 2016, 57, 627–632. [Google Scholar] [CrossRef] [PubMed]
- Abrar, D.B.; Schleich, C.; Radke, K.L.; Frenken, M.; Stabinska, J.; Ljimani, A.; Wittsack, H.-J.; Antoch, G.; Bittersohl, B.; Hesper, T.; et al. Detection of Early Cartilage Degeneration in the Tibiotalar Joint Using 3 T GagCEST Imaging: A Feasibility Study. Magn. Reson. Mater. Phys. Biol. Med. 2021, 34, 249–260. [Google Scholar] [CrossRef]
- Krishnamoorthy, G.; Nanga, R.P.R.; Bagga, P.; Hariharan, H.; Reddy, R. High Quality Three-dimensional GagCEST Imaging of in Vivo Human Knee Cartilage at 7 Tesla. Magn. Reson. Med. 2017, 77, 1866–1873. [Google Scholar] [CrossRef]
- Madelin, G.; Xia, D.; Brown, R.; Babb, J.; Chang, G.; Krasnokutsky, S.; Regatte, R.R. Longitudinal Study of Sodium MRI of Articular Cartilage in Patients with Knee Osteoarthritis: Initial Experience with 16-Month Follow-Up. Eur. Radiol. 2018, 28, 133–142. [Google Scholar] [CrossRef]
- Zbýň, Š.; Schreiner, M.; Juras, V.; Mlynarik, V.; Szomolanyi, P.; Laurent, D.; Scotti, C.; Haber, H.; Deligianni, X.; Bieri, O.; et al. Assessment of Low-Grade Focal Cartilage Lesions in the Knee With Sodium MRI at 7 T. Investig. Radiol. 2020, 55, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Zbýň, Š.; Brix, M.O.; Juras, V.; Domayer, S.E.; Walzer, S.M.; Mlynarik, V.; Apprich, S.; Buckenmaier, K.; Windhager, R.; Trattnig, S. Sodium Magnetic Resonance Imaging of Ankle Joint in Cadaver Specimens, Volunteers, and Patients After Different Cartilage Repair Techniques at 7 T. Investig. Radiol. 2015, 50, 246–254. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Borthakur, A.; Mellon, E.; Niyogi, S.; Witschey, W.; Kneeland, J.B.; Reddy, R. Sodium AndT1ρ MRI for Molecular and Diagnostic Imaging of Articular Cartilage. NMR Biomed. 2006, 19, 781–821. [Google Scholar] [CrossRef] [PubMed]
- Chang, G.; Madelin, G.; Sherman, O.H.; Strauss, E.J.; Xia, D.; Recht, M.P.; Jerschow, A.; Regatte, R.R. Improved Assessment of Cartilage Repair Tissue Using Fluid-Suppressed 23Na Inversion Recovery MRI at 7 Tesla: Preliminary Results. Eur. Radiol. 2012, 22, 1341–1349. [Google Scholar] [CrossRef]
- Insko, E.K.; Kaufman, J.H.; Leigh, J.S.; Reddy, R. Sodium NMR Evaluation of Articular Cartilage Degradation. Magn. Reson. Med. 1999, 41, 30–34. [Google Scholar] [CrossRef]
- Ladd, M.E.; Bachert, P.; Meyerspeer, M.; Moser, E.; Nagel, A.M.; Norris, D.G.; Schmitter, S.; Speck, O.; Straub, S.; Zaiss, M. Pros and Cons of Ultra-High-Field MRI/MRS for Human Application. Prog. Nucl. Magn. Reson. Spectrosc. 2018, 109, 1–50. [Google Scholar] [CrossRef]
- Madelin, G.; Lee, J.-S.; Regatte, R.R.; Jerschow, A. Sodium MRI: Methods and Applications. Prog. Nucl. Magn. Reson. Spectrosc. 2014, 79, 14–47. [Google Scholar] [CrossRef][Green Version]
- Madelin, G.; Regatte, R.R. Biomedical Applications of Sodium MRI in Vivo. J. Magn. Reson. Imaging 2013, 38, 511–529. [Google Scholar] [CrossRef][Green Version]
- Feldman, R.E.; Stobbe, R.; Watts, A.; Beaulieu, C. Sodium Imaging of the Human Knee Using Soft Inversion Recovery Fluid Attenuation. J. Magn. Reson. 2013, 234, 197–206. [Google Scholar] [CrossRef]
- Staroswiecki, E.; Bangerter, N.K.; Gurney, P.T.; Grafendorfer, T.; Gold, G.E.; Hargreaves, B.A. In Vivo Sodium Imaging of Human Patellar Cartilage with a 3D Cones Sequence at 3 T and 7 T. J. Magn. Reson. Imaging 2010, 32, 446–451. [Google Scholar] [CrossRef][Green Version]
- Rong, P.; Regatte, R.R.; Jerschow, A. Clean Demarcation of Cartilage Tissue 23Na by Inversion Recovery. J. Magn. Reson. 2008, 193, 207–209. [Google Scholar] [CrossRef][Green Version]
- Lee, J.-S.; Xia, D.; Madelin, G.; Regatte, R.R. Sodium Inversion Recovery MRI on the Knee Joint at 7 T with an Optimal Control Pulse. J. Magn. Reson. 2016, 262, 33–41. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Madelin, G.; Babb, J.; Xia, D.; Chang, G.; Krasnokutsky, S.; Abramson, S.B.; Jerschow, A.; Regatte, R.R. Articular Cartilage: Evaluation with Fluid-Suppressed 7.0-T Sodium MR Imaging in Subjects with and Subjects without Osteoarthritis. Radiology 2013, 268, 481–491. [Google Scholar] [CrossRef][Green Version]
- Hunter, D.J.; Guermazi, A.; Lo, G.H.; Grainger, A.J.; Conaghan, P.G.; Boudreau, R.M.; Roemer, F.W. Evolution of Semi-Quantitative Whole Joint Assessment of Knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthr. Cartil. 2011, 19, 990–1002. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Madelin, G.; Poidevin, F.; Makrymallis, A.; Regatte, R.R. Classification of Sodium MRI Data of Cartilage Using Machine Learning. Magn. Reson. Med. 2015, 74, 1435–1448. [Google Scholar] [CrossRef][Green Version]
- Nagel, A.M.; Laun, F.B.; Weber, M.A.; Matthies, C.; Semmler, W.; Schad, L.R. Sodium MRI Using a Density-Adapted 3D Radial Acquisition Technique. Magn. Reson. Med. 2009, 62, 1565–1573. [Google Scholar] [CrossRef]
- Haneder, S.; Konstandin, S.; Morelli, J.N.; Nagel, A.M.; Zoellner, F.G.; Schad, L.R.; Schoenberg, S.O.; Michaely, H.J. Quantitative and Qualitative 23 Na MR Imaging of the Human Kidneys at 3 T: Before and after a Water Load. Radiology 2011, 260, 857–865. [Google Scholar] [CrossRef][Green Version]
- Cunningham, C.H.; Pauly, J.M.; Nayak, K.S. Saturated Double-Angle Method for Rapid B1+ Mapping. Magn. Reson. Med. 2006, 55, 1326–1333. [Google Scholar] [CrossRef] [PubMed]
- Lommen, J.; Konstandin, S.; Krämer, P.; Schad, L.R. Enhancing the Quantification of Tissue Sodium Content by MRI: Time-Efficient Sodium B 1 Mapping at Clinical Field Strengths. NMR Biomed. 2016, 29, 129–136. [Google Scholar] [CrossRef]
- Müller-Lutz, A.; Kamp, B.; Nagel, A.M.; Ljimani, A.; Abrar, D.; Schleich, C.; Wollschläger, L.; Nebelung, S.; Wittsack, H.-J. Sodium MRI of Human Articular Cartilage of the Wrist: A Feasibility Study on a Clinical 3T MRI Scanner. Magn. Reson. Mater. Phys. Biol. Med. 2021, 34, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Madelin, G.; Lee, J.-S.; Inati, S.; Jerschow, A.; Regatte, R.R. Sodium Inversion Recovery MRI of the Knee Joint in Vivo at 7T. J. Magn. Reson. 2010, 207, 42–52. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wittsack, H.; Lanzman, R.S.; Mathys, C.; Janssen, H.; Mödder, U.; Blondin, D. Statistical Evaluation of Diffusion-weighted Imaging of the Human Kidney. Magn. Reson. Med. 2010, 64, 616–622. [Google Scholar] [CrossRef]
- Avants, B.B.; Tustison, N.J.; Song, G.; Cook, P.A.; Klein, A.; Gee, J.C. A Reproducible Evaluation of ANTs Similarity Metric Performance in Brain Image Registration. Neuroimage 2011, 54, 2033–2044. [Google Scholar] [CrossRef][Green Version]
- Wang, M.; Tsang, A.; Tam, V.; Chan, D.; Cao, P.; Wu, E.X. Multiparametric MR Investigation of Proteoglycan Diffusivity, T2 Relaxation, and Concentration in an Ex Vivo Model of Intervertebral Disc Degeneration. J. Magn. Reson. Imaging 2020, 51, 1390–1400. [Google Scholar] [CrossRef] [PubMed]
- Borthakur, A.; Shapiro, E.M.; Akella, S.V.S.; Gougoutas, A.; Kneeland, J.B.; Reddy, R. Quantifying Sodium in the Human Wrist in Vivo by Using MR Imaging. Radiology 2002, 224, 598–602. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef][Green Version]
- Hafner, T.; Schock, J.; Post, M.; Abrar, D.B.; Sewerin, P.; Linka, K.; Knobe, M.; Kuhl, C.; Truhn, D.; Nebelung, S. A Serial Multiparametric Quantitative Magnetic Resonance Imaging Study to Assess Proteoglycan Depletion of Human Articular Cartilage and Its Effects on Functionality. Sci. Rep. 2020, 10, 15106. [Google Scholar] [CrossRef]
- Madelin, G.; Jerschow, A.; Regatte, R.R. Sodium Relaxation Times in the Knee Joint in Vivo at 7T. NMR Biomed. 2012, 25, 530–537. [Google Scholar] [CrossRef][Green Version]
- Burstein, D.; Springer, C.S. Sodium MRI Revisited. Magn. Reson. Med. 2019, 82, 521–524. [Google Scholar] [CrossRef][Green Version]
- Nagel, A.M.; Umathum, R.; Rösler, M.B.; Ladd, M.E.; Litvak, I.; Gor’kov, P.L.; Brey, W.W.; Schepkin, V.D. 39 K and 23 Na Relaxation Times and MRI of Rat Head at 21.1 T. NMR Biomed. 2016, 29, 759–766. [Google Scholar] [CrossRef]
- Borthakur, A.; Hancu, I.; Boada, F.E.; Shen, G.X.; Shapiro, E.M.; Reddy, R. In Vivo Triple Quantum Filtered Twisted Projection Sodium MRI of Human Articular Cartilage. J. Magn. Reson. 1999, 141, 286–290. [Google Scholar] [CrossRef] [PubMed]
- Zaric, O.; Juras, V.; Szomolanyi, P.; Schreiner, M.; Raudner, M.; Giraudo, C.; Trattnig, S. Frontiers of Sodium MRI Revisited: From Cartilage to Brain Imaging. J. Magn. Reson. Imaging 2021, 54, 58–75. [Google Scholar] [CrossRef] [PubMed]
- Bangerter, N.K.; Kaggie, J.D.; Taylor, M.D.; Hadley, J.R. Sodium MRI Radiofrequency Coils for Body Imaging. NMR Biomed. 2016, 29, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Lachner, S.; Utzschneider, M.; Zaric, O.; Minarikova, L.; Ruck, L.; Zbýň, Š.; Hensel, B.; Trattnig, S.; Uder, M.; Nagel, A.M. Compressed Sensing and the Use of Phased Array Coils in 23Na MRI: A Comparison of a SENSE-Based and an Individually Combined Multi-Channel Reconstruction. Z. Med. Phys. 2021, 31, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Madelin, G.; Chang, G.; Otazo, R.; Jerschow, A.; Regatte, R.R. Compressed Sensing Sodium MRI of Cartilage at 7T: Preliminary Study. J. Magn. Reson. 2012, 214, 360–365. [Google Scholar] [CrossRef][Green Version]
- Kratzer, F.J.; Flassbeck, S.; Schmitter, S.; Wilferth, T.; Magill, A.W.; Knowles, B.R.; Platt, T.; Bachert, P.; Ladd, M.E.; Nagel, A.M. 3D Sodium (23 Na) Magnetic Resonance Fingerprinting for Time-efficient Relaxometric Mapping. Magn. Reson. Med. 2021, 86, 2412–2425. [Google Scholar] [CrossRef] [PubMed]
- Khajehim, M.; Christen, T.; Tam, F.; Graham, S.J. Streamlined Magnetic Resonance Fingerprinting: Fast Whole-Brain Coverage with Deep-Learning Based Parameter Estimation. Neuroimage 2021, 238, 118237. [Google Scholar] [CrossRef] [PubMed]
- Müller-Lutz, A.; Schleich, C.; Pentang, G.; Schmitt, B.; Lanzman, R.S.; Matuschke, F.; Wittsack, H.-J.; Miese, F. Age-Dependency of Glycosaminoglycan Content in Lumbar Discs: A 3t GagcEST Study. J. Magn. Reson. Imaging 2015, 42, 1517–1523. [Google Scholar] [CrossRef]
23Na Coil Sensitivity | B1 Mapping | Protocol 1 | Protocol 2 | 1H Imaging | |
---|---|---|---|---|---|
Sequence type | DA-3D-RAD | DA-3D-RAD | DA-3D-RAD | DA-3D-RAD | DA-3D-RAD |
Nucleus | 23Na | 23Na | 23Na | 23Na | 1H |
Orientation | tra | tra | tra | tra | tra |
Repetition time (ms) | 60 | 300 | 8/9/10/11/12/13/14/15/16/18/20/23/26/30/40/50/70 | 84 | 30 |
Echo time (ms) | 0.3 | 0.3 | 0.3 | (0.30/6.45/12.60/18.80) (1.50/7.65/13.80/20.00) (3.00/9.15/15.30/21.50) | 0.8 |
Inversion time (ms) | - | - | - | 24 | - |
Inversion pulse Duration (ms) | - | - | - | 1 | - |
Field of View (mm) | 180 × 180 × 180 | 180 × 180 × 180 | 180 × 180 × 180 | 180 × 180 × 180 | 180 × 180 × 180 |
Projections | 50,000 | 50,000 | 9000 | 9000 | 9000 |
Pixel size (mm/px) | 3 × 3 × 3 | 3 × 3 × 3 | 3 × 3 × 3 | 3 × 3 × 3 | 1 × 1 × 1 |
Flip angle (°) | 90 | 40/80 | 90 | 90 | 10 |
Pulse duration (ms) | 0.5 | 0.5 | 0.5 | 0.5 | 0.2 |
Readout time (ms) | 5 | 5 | 5 | 5 | 1 |
Averages | 12 | 2 | 1 | 1 | 1 |
Total examination time (h:min:s) | 10:00:00 | 16:40:00 | 00:57:45 | 00:37:48 | 00:04:30 |
PD-Weighted fs | ||
---|---|---|
Sequence type | TSE | TSE |
Turbo Factor | 38 | 109 |
GRAPPA | 2 | 2 |
Orientation | cor/tra/sag | sag |
Repetition time (ms) | 4980 | 864 |
Echo time (ms) | 42 | 13 |
Field of View (mm) | 160 × 160 | 160 × 160 |
Image matrix (px) | 512 × 512 | 512 × 512 |
Pixel size (mm/px) | 0.3 × 0.3 | 0.3 × 0.3 |
Flip angle (°) | 180 | 180 |
Slices | 35 | 35 |
Slice thickness (mm) | 3 | 3 |
Total examination time (min:s) | 09:57 | 03:10 |
Radiologist/ | Volunteers | Patient | |||||
---|---|---|---|---|---|---|---|
Measurement | Mean | Std | Min | Median | Max | ||
1/1 | 14.45 | 0.74 | 13.24 | 14.47 | 15.33 | 15.42 | |
(ms) | 1/2 | 14.58 | 0.74 | 13.24 | 14.78 | 15.36 | 15.60 |
2/1 | 14.61 | 0.68 | 13.26 | 14.80 | 15.29 | 15.60 | |
1/1 | 37.91 | 2.92 | 35.07 | 37.79 | 44.24 | 39.78 | |
(ms) | 1/2 | 38.32 | 2.89 | 35.02 | 39.24 | 44.50 | 39.65 |
2/1 | 38.88 | 2.86 | 35.07 | 39.24 | 43.81 | 39.99 | |
1/1 | 77.30 | 3.73 | 72.80 | 78.53 | 82.64 | 71.23 | |
(%) | 1/2 | 76.54 | 3.73 | 72.71 | 75.34 | 82.60 | 71.03 |
2/1 | 75.10 | 4.15 | 68.10 | 73.58 | 82.55 | 70.69 | |
1/1 | 0.9917 | 0.0045 | 0.9808 | 0.9926 | 0.9959 | 0.9829 | |
1/2 | 0.9918 | 0.0040 | 0.9831 | 0.9932 | 0.9962 | 0.9907 | |
2/1 | 0.9918 | 0.0045 | 0.9806 | 0.9930 | 0.9971 | 0.9903 |
Radiologist/ | Volunteers | Patient | |||||
---|---|---|---|---|---|---|---|
Measurement | Mean | Std | Min | Median | Max | ||
1/1 | 0.358 | 0.147 | 0.103 | 0.353 | 0.663 | 0.105 | |
(ms) | 1/2 | 0.365 | 0.155 | 0.104 | 0.370 | 0.677 | 0.107 |
2/1 | 0.365 | 0.174 | 0.105 | 0.357 | 0.751 | 0.107 | |
1/1 | 12.62 | 0.73 | 11.30 | 12.55 | 13.74 | 13.99 | |
(ms) | 1/2 | 12.77 | 0.70 | 11.35 | 12.78 | 13.74 | 14.00 |
2/1 | 12.79 | 0.72 | 11.49 | 12.71 | 13.98 | 14.00 | |
1/1 | 34.39 | 4.78 | 25.35 | 34.48 | 41.44 | 25.86 | |
(%) | 1/2 | 34.11 | 4.92 | 25.37 | 34.28 | 41.72 | 26.00 |
2/1 | 33.81 | 5.09 | 25.28 | 34.66 | 41.79 | 25.99 | |
1/1 | 0.9856 | 0.0088 | 0.9643 | 0.9879 | 0.9931 | 0.9623 | |
R2 | 1/2 | 0.9870 | 0.0097 | 0.9631 | 0.9910 | 0.9960 | 0.9657 |
2/1 | 0.9861 | 0.0093 | 0.9640 | 0.9888 | 0.9949 | 0.9650 |
Radiologist/ | Volunteers | Patient | ||||||
---|---|---|---|---|---|---|---|---|
Measurement | Mean | Std | Min | Median | Max | p-Value | ||
Protocol 1 | 1/1 | 215 | 44 | 166 | 203 | 291 | 0.441 | 135 |
23Na-Conc. | 1/2 | 204 | 40 | 169 | 187 | 276 | 0.859 | 129 |
(mmol/L) | 2/1 | 218 | 52 | 151 | 203 | 297 | 0.374 | 136 |
Protocol 2 | 1/1 | 200 | 48 | 130 | 199 | 267 | - | 158 |
23Na-Conc. | 1/2 | 194 | 45 | 134 | 188 | 261 | - | 152 |
(mmol/L) | 2/1 | 204 | 39 | 134 | 201 | 291 | - | 136 |
Magnetic Field Strength of MRI Scanner (T) | 23Na Relaxation Time Results for Patellar Cartilage and Synovial Fluid | |||||
---|---|---|---|---|---|---|
Madelin et al. [39] | 7.0 | 17.7 ± 2.6 | - | 0.5 ± 0.1 | 11.4 ± 1.8 | 39 ± 4 |
Feldman et al. [20] | 4.7 | 21 ± 1 | 48 ± 3 | 0.8 ± 0.2 | 19.7 ± 0.5 | 65 ± 12 |
Staroswiecki et al. [21] | 7.0 | - | - | - | 13.2 ± 1.5 | - |
3.0 | - | - | - | 15.5 ± 1.3 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamp, B.; Frenken, M.; Henke, J.M.; Abrar, D.B.; Nagel, A.M.; Gast, L.V.; Oeltzschner, G.; Wilms, L.M.; Nebelung, S.; Antoch, G.; Wittsack, H.-J.; Müller-Lutz, A. Quantification of Sodium Relaxation Times and Concentrations as Surrogates of Proteoglycan Content of Patellar CARTILAGE at 3T MRI. Diagnostics 2021, 11, 2301. https://doi.org/10.3390/diagnostics11122301
Kamp B, Frenken M, Henke JM, Abrar DB, Nagel AM, Gast LV, Oeltzschner G, Wilms LM, Nebelung S, Antoch G, Wittsack H-J, Müller-Lutz A. Quantification of Sodium Relaxation Times and Concentrations as Surrogates of Proteoglycan Content of Patellar CARTILAGE at 3T MRI. Diagnostics. 2021; 11(12):2301. https://doi.org/10.3390/diagnostics11122301
Chicago/Turabian StyleKamp, Benedikt, Miriam Frenken, Jan M. Henke, Daniel B. Abrar, Armin M. Nagel, Lena V. Gast, Georg Oeltzschner, Lena M. Wilms, Sven Nebelung, Gerald Antoch, Hans-Jörg Wittsack, and Anja Müller-Lutz. 2021. "Quantification of Sodium Relaxation Times and Concentrations as Surrogates of Proteoglycan Content of Patellar CARTILAGE at 3T MRI" Diagnostics 11, no. 12: 2301. https://doi.org/10.3390/diagnostics11122301