Current Methods for Body Fluid Identification Related to Sexual Crime: Focusing on Saliva, Semen, and Vaginal Fluid
Abstract
1. Introduction
2. Flow of Forensic Examinations Using Biological Samples
3. Saliva Identification
4. Semen Identification
5. Vaginal Fluid Identification
6. Discussion
Funding
Conflicts of Interest
References
- Hares, D.R. Expanding the CODIS core loci in the United States. Forensic. Sci. Int. Genet. 2012, 6, e52–e54. [Google Scholar] [CrossRef]
- Fujii, K.; Watahiki, H.; Mita, Y.; Iwashima, Y.; Kitayama, T.; Nakahara, H.; Mizuno, N.; Sekiguchi, K. Allele frequencies for 21 autosomal short tandem repeat loci obtained using GlobalFiler in a sample of 1501 individuals from the Japanese population. Leg. Med. 2015, 17, 306–308. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Takahashi, K.; Kasai, K. Allele Frequencies of 15 loci using AmpFlSTR Identifiler Kit in Japanese population. J. Forensic Sci. 2005, 50, 718–719. [Google Scholar] [CrossRef]
- Sekiguchi, K.; Imaizumi, K.; Fujii, K.; Mizuno, N.; Ogawa, Y.; Akutsu, T.; Nakahara, H.; Kitayama, T.; Kasai, K. Mitochondrial DNA population data of HV1 and HV2 sequences from Japanese individuals. Leg. Med. 2008, 10, 284–286. [Google Scholar] [CrossRef] [PubMed]
- Mulero, J.J.; Chang, C.W.; Calandro, L.M.; Green, R.L.; Li, Y.; Johnson, C.L.; Hennessy, L.K. Development and validation of the AmpFlSTR Yfiler PCR amplification kit: A male specific, single amplification 17 Y-STR multiplex system. J. Forensic Sci. 2006, 51, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Ikegaya, H.; Hirayama, K.; Motani, H.; Iwase, H.; Kaneko, H.; Fukushima, H.; Akutsu, T.; Sakurada, K. A novel method for ABO genotyping using a DNA chip. J. Forensic Sci. 2011, 56, S183–S187. [Google Scholar] [CrossRef] [PubMed]
- Børsting, C.; Morling, N. Next generation sequencing and its applications in forensic genetics. Forensic Sci. Int. Genet. 2015, 18, 788–789. [Google Scholar] [CrossRef]
- Sender, R.; Fuchs, S.; Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016, 14, e1002533. [Google Scholar] [CrossRef]
- Adler, O.; Adler, O. Über das Verhalten gewisser organisvher Verbindung gegenüber Blut mit besonderer Berücksichtigung des Nachweises von blut. Hoppe-Seylers Z. Physiol. Chem. 1904, 41, 59–67. [Google Scholar] [CrossRef]
- Specht, W. Die Chemiluminescenz des Hämins, ein Hilfsmittel zur Auffindung und Erkennung forensisch wichtiger Blutspuren. Dtsch. Z. Gesamte Gerichtl. Med. 1937, 28, 225–234. [Google Scholar]
- Holland, V.R.; Saunders, B.C.; Rose, F.L.; Walpole, A.L. A safer substitute for benzidine in the detection of blood. Tetrahedron 1974, 30, 3299–3302. [Google Scholar] [CrossRef]
- Akutsu, T.; Matsumura, K.; Tanaka, Y.; Watanabe, K.; Sakurada, K. Applicability of ‘OC-Hemocatch S’for the forensic identification of human blood. Jpn. J. Forensic Sci. Technol. 2014, 19, 103–110. [Google Scholar] [CrossRef][Green Version]
- Asano, M.; Oya, M.; Hayakawa, M. Identification of menstrual blood stains by the electrophoretic pattern of lactate dehydrogenase isozymes. Forensic Sci. 1972, 1, 327–332. [Google Scholar] [CrossRef]
- Whitehead, P.H.; Divall, G.B. Assay of “soluble fibrinogen” in blood stain extracts as an aid to identification of menstrual blood in forensic science: Preliminary findings. Clin. Chem. 1973, 19, 762–765. [Google Scholar] [CrossRef]
- Miyaishi, S.; Kitao, T.; Yamamoto, Y.; Ishizu, H.; Matsumoto, T.; Mizutani, Y.; Heinekann, A.; Püschel, K. Identification of menstrual blood by the simultaneous determination of FDE-D Dimer and myoglobin contents. Jpn. J. Legal Med. 1996, 50, 400–403. [Google Scholar]
- Bauer, M.; Patzelt, D. Evaluation of mRNA markers for the identification of menstrual blood. J. Forensic Sci. 2002, 47, 1–5. [Google Scholar] [CrossRef]
- Akutsu, T.; Watanabe, K.; Motani, H.; Iwase, H.; Sakurada, K. Evaluation of latex agglutination tests for fibrin-fibrinogen degradation products in the forensic identification of menstrual blood. Leg. Med. 2012, 14, 51–54. [Google Scholar] [CrossRef]
- Vallejo, G. Human chorionic gonadotropin detection by means of enzyme immunoassay: A useful method in forensic pregnancy diagnosis in bloodstains. J. Forensic Sci. 1990, 35, 293–300. [Google Scholar] [CrossRef]
- Vergote, G.; Heyndrickx, B.; Paredes, M. Forensic determination of pregnancy hormones in human bloodstains. J. Forensic Sci. Soc. 1991, 31, 409–419. [Google Scholar] [CrossRef]
- Gauvin, J.; Zubakov, D.; von Rhee-Binkhorst, J.; Kloosterman, A.; Steegers, E.; Kayser, M. Forensic pregnancy diagnostics with placental mRNA markers. Int. J. Legal Med. 2010, 124, 13–17. [Google Scholar] [CrossRef][Green Version]
- Wraxall, B.G. The identification of foetal haemoglobin in bloodstains. J. Forensic Sci. Soc. 1972, 12, 457–458. [Google Scholar] [CrossRef]
- Katsumata, Y.; Sato, K.; Tamaki, K.; Tsutsumi, H.; Oya, M. Identification of Fetal Bloodstains by Enzyme-Linked Immunosorbent Assay for Human Alpha-Fetoprotein. J. Forensic Sci. 1985, 30, 1210–1215. [Google Scholar] [CrossRef]
- Sakurada, K.; Sakai, I.; Sekiguchi, K.; Shiraishi, T.; Ikegaya, H.; Yoshida, K. Usefulness of a latex agglutination assay for FDP D-dimer to demonstrate the presence of postmortem blood. Int. J. Legal Med. 2005, 119, 167–171. [Google Scholar] [CrossRef]
- Coombs, R.R.A.; Dodd, B. Possible application of the principle of mixed agglutination in the identification of blood stains. Med. Sci. Law. 1961, 1, 359–377. [Google Scholar] [CrossRef]
- Pereira, M. ABO and Lewis typing of semen, saliva and other body fluids. Haematologia 1984, 17, 317–322. [Google Scholar]
- Miyasaka, S.; Yoshino, M.; Sato, H.; Miyake, B.; Seta, S. The ABO blood grouping of a minute hair sample by the immunohistochemical technique. Forensic Sci. Int. 1987, 31, 85–98. [Google Scholar] [CrossRef]
- Kipps, A.E.; Whitehead, P.H. The significance of amylase in forensic investigations of body fluids. Forensic Sci. 1975, 6, 137–144. [Google Scholar] [CrossRef]
- Akutsu, T.; Watanabe, K.; Fujinami, Y.; Sakurada, K. Applicability of ELISA detection of statherin for forensic identification of saliva. Int. J. Legal Med. 2010, 124, 493–498. [Google Scholar] [CrossRef]
- Chauncey, H.H.; Henriques, B.L.; Tanzer, J.M. Comparative enzyme activity of saliva from the sheep, hog, dog, rabbit, rat, and human. Arch. Oral. Boil. 1963, 8, 615–627. [Google Scholar] [CrossRef]
- Li, R. Determination of amylase activity. In Forensic Biology; CRC Press: Boca Raton, FL, USA, 2008; p. 139. [Google Scholar]
- Miwa, J. Medico-legal studies on the human saliva (Part 3)—A basic study concerning the qualitative salivary test by blue starch agarose plate method. Nihon Univ. Dent. J. 1982, 56, 413–419. [Google Scholar]
- Sakurada, K. Current examination of objects related to biological samples: Focusing on saliva identification. Acta Crim. Japon. 2017, 83, 150–157. [Google Scholar]
- Miller, D.W.; Hodges, J.C. Validation of Abacus SALIgAE Test for Forensic Identification of Saliva. Available online: https://www.semanticscholar.org/paper/Validation-of-Abacus-SALIgAE®-Test-for-the-Forensic-Miller-Hodges/4362b9f046cf783757e72b22b4e1dd8e3108c06a (accessed on 2 August 2020).
- Li, R. Precipitation-based assays. In Forensic Biology; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Sakurada, K.; Akutsu, T.; Watanabe, K.; Fujinami, Y.; Yoshino, M. Expression of statherin mRNA and protein in nasal and vaginal secretions. Leg. Med. 2011, 13, 309–313. [Google Scholar] [CrossRef]
- Old, J.B.; Schweers, B.A.; Boonlayangoor, P.W.; Reich, K.A. Developmental Validation of RSID™-Saliva: A Lateral Flow Immunochromatographic Strip Test for the Forensic Detection of Saliva. J. Forensic Sci. 2009, 54, 866–873. [Google Scholar] [CrossRef] [PubMed]
- Juusola, J.; Ballantyne, J. Messenger ENA profiling: A prototype method to supplant conventional methods for body fluid identification. Forensic Sci. Int. 2003, 135, 85–96. [Google Scholar] [CrossRef]
- Juusola, J.; Ballantyne, J. Multiplex mRNA profiling for the identification of body fluids. Forensic Sci. Int. 2005, 152, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Nussbaumer, C.; Gharehbaghi-Schnell, E.; Korschineck, I. Messenger RNA profiling: A novel method for body fluid identification by Real-Time PCR. Forensic Sci. Int. 2006, 157, 181–186. [Google Scholar] [CrossRef]
- Sakurada, K.; Ikegaya, H.; Fukushima, H.; Akutsu, T.; Watanabe, K.; Yoshino, M. Evaluation of mRNA-based approach for identification of saliva and semen. Leg. Med. 2009, 11, 125–128. [Google Scholar] [CrossRef]
- Sakurada, K.; Akutsu, T.; Watanabe, K.; Miyasaka, S.; Kasai, K. Identification of body fluid stains using real-time RT-PCR: Discrimination between salivary, nasal, and vaginal secretions. Jpn. J. Forensic Sci. Tech. 2013, 18, 1–11. [Google Scholar] [CrossRef]
- Watanabe, K.; Iwashima, Y.; Akutsu, T.; Sekiguchi, K.; Sakurada, K. Evaluation of a co-extraction method for real-time PCR-based body fluid identification and DNA typing. Leg. Med. 2014, 16, 56–59. [Google Scholar] [CrossRef]
- Akutsu, T.; Kitayama, T.; Watanabe, K.; Sakurada, K. Comparison of automated and manual purification of total RNA for mRNA-based identification of body fluids. Forensic Sci. Int. Genet. 2015, 14, 11–17. [Google Scholar] [CrossRef]
- Watanabe, K.; Akutsu, T.; Takamura, A.; Sakurada, K. Practical evaluation of an RNA-based saliva identification method. Sci. Justice 2017, 57, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Hanson, E.K.; Lubenow, H.; Ballantyne, J. Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal. Biochem. 2009, 387, 303–314. [Google Scholar] [CrossRef]
- Zubakov, D.; Boersma, A.W.; Choi, Y.; van Kuijk, P.F.; Wiemer, E.A.; Kayser, M. MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. Int. J. Legal Med. 2010, 124, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Courts, C.; Madea, B. Specific micro-RNA signatures for the detection of saliva and blood in forensic body-fluid identification. J. Forensic Sci. 2011, 56, 1464–1470. [Google Scholar] [CrossRef]
- Sauer, E.; Reinke, A.K.; Courts, C. Differentiation of five body fluids from forensic samples by expression analysis of four microRNAs using quantitative PCR. Forensic Sci. Int. Genet. 2016, 22, 89–99. [Google Scholar] [CrossRef]
- Sirker, M.; Fimmers, R.; Schneider, P.M.; Gomes, I. Evaluating the forensic application of 19 target microRNAs as biomarkers in body fluid and tissue identification. Forensic Sci. Int. Genet. 2017, 27, 41–49. [Google Scholar] [CrossRef]
- Mayes, C.; Seashols-Williams, S.; Hughes-Stamm, S. A capillary electrophoresis method for identifying forensically relevant body fluids using miRNAs. Leg. Med. 2018, 30, 1–4. [Google Scholar] [CrossRef]
- Frumkin, D.; Wasserstrom, A.; Budowle, B.; Davidson, A. DNA methylation-based forensic tissue identification. Forensic Sci. Int. Genet. 2011, 5, 517–524. [Google Scholar] [CrossRef]
- Lee, H.Y.; Park, M.J.; Choi, A.; An, J.H.; Yang, W.I.; Shin, K.J. Potential forensic application of DNA methylation profiling to body fluid identification. Int. J. Legal Med. 2012, 126, 55–62. [Google Scholar] [CrossRef]
- Park, J.; Kwon, O.; Kim, J.H.; Yoo, H.; Lee, H.; Woo, K.; Kim, S.; Lee, S.; Kim, Y. Identification of body fluid-specific DNA methylation markers for use in forensic science. Forensic Sci. Int. Genet. 2014, 13, 147–153. [Google Scholar] [CrossRef]
- Lee, H.Y.; An, J.H.; Jung, S.E.; Oh, Y.N.; Lee, E.Y.; Choi, A.; Yang, W.I.; Shin, K.J. Genome-wide methylation profiling and a multiplex construction for the identification of body fluids using epigenetic markers. Forensic Sci. Int. Genet. 2015, 17, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.S.; Antunes, J.; Balamurugan, K.; Duncan, G.; Alho, C.S.; McCord, B. Developmental validation studies of epigenetic DNA methylation markers for the detection of blood, semen and saliva samples. Forensic Sci. Int. Genet. 2016, 23, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.C.; Tsai, L.C.; Lee, J.C.; Su, C.W.; Tzen, J.T.; Linacre, A.; Hsieh, H.M. Novel identification of biofluids using a multiplex methylation sensitive restriction enzyme-PCR system. Forensic Sci. Int. Genet. 2016, 25, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, H.; Ohmori, T.; Hara, M.; Takada, A.; Shojo, H.; Adachi, N.; Saito, K. A Simple identification method of saliva by detecting streptococcus salivarius using loop-mediated isothermal amplification. J. Forensic Sci. 2011, 56, S158–S161. [Google Scholar] [CrossRef] [PubMed]
- Choi, A.; Shin, K.; Yang, W.; Lee, H. Body fluid identification by integrated analysis of DNA methylation and body fluid-specific microbial DNA. Int. J. Legal Med. 2014, 128, 33–41. [Google Scholar] [CrossRef]
- Ohta, J.; Sakurada, K. Oral gram-positive bacterial DNA-based identification of saliva from highly degraded samples. Forensic Sci. Int. Genet. 2019, 42, 103–112. [Google Scholar] [CrossRef]
- Ohta, J.; Noda, N.; Minegishi, S.; Sakurada, K. Application of DNA repair for streptococcus salivarius DNA-based identification of saliva from ultraviolet-exposed samples. Forensic Sci. Int. 2020, 306, 110077. [Google Scholar] [CrossRef]
- Kutscher, W.; Wolbergs, H. Prostataphosphatase. Z. Physiol. Chem. 1935, 236, 237–240. [Google Scholar] [CrossRef]
- Li, R. Analytical techniques for identifying semen. In Forensic Biology; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Corin, G.; Stockis, E. Recherche des taches spermatique sur le linge. Arch. Anthropol. Crim. Med. Leg. 1908, 23, 852–864. [Google Scholar]
- Baecchi, B. Neue Methode zum Nachweis der Spermatozoen in Zeugflecken. Dtsch. Med. Wochenschr. 1909, 35, 1105–1106. [Google Scholar] [CrossRef]
- Gluckman, J. The study of seminal stains by means of ultrasonic apparatus. J. Forensic Med. 1968, 15, 144–147. [Google Scholar] [PubMed]
- Oppitz, E. Eine neue Färbemethode zum Nachweis der Spermien bei Sittlichkeitsdelikten. Arch. Kriminol. 1969, 144, 145–148. [Google Scholar]
- Miller, K.; Old, J.; Fischer, B.; Schweers, B.; Stipinaite, S.; Reich, K. Developmental Validation of the SPERM HY-LITER™ Kit for the Identification of Human Spermatozoa in Forensic Samples. J. Forensic Sci. 2011, 56, 853–865. [Google Scholar]
- Sensabaugh, G.F. Isolation and characterization of a semen-specific protein from human seminal plasma: A potential new marker for semen identification. J. Forensic Sci. 1978, 23, 106–115. [Google Scholar] [CrossRef]
- Hochmeister, M.N.; Budowle, B.; Rudin, O.; Gehrig, C.; Borer, U.; Thali, M.; Dirnhofer, R. Evaluation of prostate-specific antigen (PSA) membrane test assays for the forensic identification of seminal fluid. J. Forensic Sci. 1999, 44, 1057–1060. [Google Scholar] [CrossRef] [PubMed]
- Pollen, J.F.; Dreillinger, A. Immunohistochemical identification of prostatic acid phosphatase and prostate-specific antigen in female periurethral glands. Urology 1984, 5, 303–304. [Google Scholar]
- Wernet, N.; Albrech, M.; Sesterhenn, I.; Goebbels, R.; Bonkhoff, H.; Seitz, G.; Inniger, R.; Remberger, K. The female prostate: Localization, morphology, immunohistochemical characteristics and significance. Eur. Urol. 1992, 22, 64–69. [Google Scholar] [CrossRef]
- Breul, J.; Pickl, U.; Hartung, R. Prostate-specific antigen in urine. Eur. Urol. 1994, 26, 18–21. [Google Scholar] [CrossRef]
- Mannello, F.; Condemi, L.; Cardinali, A.; Bianchi, G.; Gazzanelli, G. High concentration of prostate-specific antigen in urine of women receiving oral contraceptive. Clin. Chem. 1998, 44, 181–183. [Google Scholar] [CrossRef]
- Lilja, H.; Abrahamsson, P.A.; Lundwall, A. Semenogelin, the predominant protein in human semen. Primary structure and identification of closely related proteins in the male accessory sex glands and on the spermatozoa. J. Biol. Chem. 1989, 264, 1894–1900. [Google Scholar]
- Old, J.; Schweers, B.A.; Boonlayangoor, P.W.; Fischer, B.; Miller, K.W.P.; Reich, K. Developmental Validation of RSID™-Semen: A Lateral Flow Immunochromatographic Strip Test for the Forensic Detection of Human Semen. J. Forensic Sci. 2012, 57, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Akutsu, T.; Sakurada, K. Development of a real-time PCR-based method for analyzing semen-specific unmethylated DNA regions and methylation status in aged body fluid stains. J. Forensic Sci. 2016, 61, S208–S212. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Taniguchi, K.; Akutsu, T. Development of a DNA methylation-based semen-specific SNP typing method: A new approach for genotyping from a mixture of body fluids. Forensic Sci. Int. Genet. 2018, 37, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Papanicolaou, G.N. A new procedure for staining vaginal smears. Science 1942, 95, 438–439. [Google Scholar] [CrossRef]
- Thomas, F.; Van Hecke, W. The demonstration of recent sexual intercourse in the male by the lugol method. Med. Sci. Law 1963, 3, 169–171. [Google Scholar]
- Jones Jr, E.L.; Leon, J.A. Lugol’s test reexamined again: Buccal cells. J. Forensic Sci. 2004, 49, 64–67. [Google Scholar]
- Rothwell, T.J.; Harvey, K.J. The limitation of the Lugol’s iodine staining technique for the identification of vaginal epithelial cells. J. Forensic Sci. Soc. 1978, 18, 181–184. [Google Scholar] [CrossRef]
- Hausmann, R.; Pregler, C.; Schellmann, B. The value of the Lugol’s iodine staining technique for the identification of vaginal epithelial cells. Int. J. Legal Med. 1994, 106, 298–301. [Google Scholar] [CrossRef]
- Fleming, R.I.; Harbison, S. The use of bacteria for the identification of vaginal secretions. Forensic Sci. Int. Genet. 2010, 4, 311–315. [Google Scholar] [CrossRef]
- Giampaoli, S.; Berti, A.; Valeriani, F.; Gianfranceschi, G.; Piccolella, A.; Buggiotti, L.; Rapone, C.; Valentini, A.; Ripani, L.; Romano Spica, V. Molecular identification of vaginal fluid by microbial signature. Forensic Sci. Int. Genet. 2012, 6, 559–564. [Google Scholar] [CrossRef]
- Akutsu, T.; Motani, H.; Watanabe, K.; Iwase, H.; Sakurada, K. Detection of bacterial 16S ribosomal RNA genes for forensic identification of vaginal fluid. Leg. Med. 2012, 14, 160–162. [Google Scholar] [CrossRef]
- Benschop, C.C.; Quaak, F.C.; Boon, M.E.; Sijen, T.; Kuiper, I. Vaginal microbial flora analysis by next generation sequencing and microarrays; can microbes indicate vaginal origin in a forensic context? Int. J. Legal Med. 2012, 126, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Hanssen, E.N.; Liland, K.H.; Gill, P.; Snipen, L. Optimizing body fluid recognition from microbial taxonomic profiles. Forensic Sci. Int. Genet. 2018, 37, 13–20. [Google Scholar] [CrossRef]
- Fredricks, D.N.; Fiedler, T.L.; Thomas, K.K.; Mitchell, C.M.; Marrazzo, J.M. Changes in vaginal bacterial concentrations with intravaginal metronidazole therapy for bacterial vaginosis as assessed by quantitative PCR. J. Clin. Microbiol. 2009, 47, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Torcia, M.G. Interplay among Vaginal Microbiome, Immune Response and Sexually Transmitted Viral Infections. Int. J. Mol. Sci. 2019, 20, 266. [Google Scholar] [CrossRef] [PubMed]
- Hanson, E.K.; Ballantyne, J. Highly specific mRNA biomarkers for the identification of vaginal secretions in sexual assault investigations. Sci. Justice 2013, 53, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Haas, C.; Hanson, E.; Anjos, M.J.; Ballantyne, K.N.; Banemann, R.; Bhoelai, B.; Borges, E.; Carvalho, M.; Courts, C.; De Cock, G.; et al. RNA/DNA co-analysis from human menstrual blood and vaginal secretion stains: Results of a fourth and fifth collaborative EDNAP exercise. Forensic Sci. Int. Genet. 2014, 8, 203–212. [Google Scholar] [CrossRef]
- Akutsu, T.; Watanabe, K.; Takayama, A.; Sakurada, K. Quantitative evaluation of candidate and development of a multiplex RT-PCR assay for the forensic identification of vaginal fluid. Forensic Sci. Int. Genet. 2017, 6, e211–e213. [Google Scholar] [CrossRef]
- Akutsu, T.; Yokota, I.; Watanabe, K.; Sakurada, K. Development of a multiplex RT-PCR assay and statistical evaluation of its use in forensic identification of vaginal fluid. Leg. Med. 2020, 45, 101715. [Google Scholar] [CrossRef]
- Sakurada, K.; Motani, H.; Akutsu, T.; Ikegaya, H.; Iwase, H. Identification of vaginal stains by detection of 17β-estradiol. Can. Soc. Forensic Sci. J. 2008, 41, 13–19. [Google Scholar] [CrossRef]
- Igoh, A.; Doi, Y.; Sakurada, K. Identification and evaluation of potential forensic marker proteins in vaginal fluid by liquid chromatography/mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 7135–7144. [Google Scholar] [CrossRef] [PubMed]
- Sirker, M.; Schneider, P.M.; Gomes, I. A 17-month time course study of human RNA and DNA degradation in body fluids under dry and humid environmental conditions. Int. J. Legal Med. 2016, 130, 1431–1438. [Google Scholar] [CrossRef] [PubMed]
- Mayes, C.; Houston, R.; Seashols-Williams, S.; LaRue, B.; Hughes-Stamm, S. The stability and persistence of blood and semen mRNA and miRNA targets for body fluid identification in environmentally challenged and laundered samples. Leg. Med. 2019, 38, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Naue, J.; Hoefsloot, H.C.J.; Kloosterman, A.D.; Verschure, P.J. Forensic DNA methylation profiling from minimal traces: How low can we go? Forensic Sci. Int. Genet. 2018, 33, 17–23. [Google Scholar] [CrossRef]
- Parker, C.; Hanson, E.; Ballantyne, J. Optimization of dried stain co-extraction methods for efficient recovery of high quality DNA and RNA for forensic analysis. Forensic Sci. Int. Genet. Suppl. Ser. 2011, 3, e309–e310. [Google Scholar] [CrossRef]
- Omelia, E.J.; Uchimoto, M.L.; Williams, G. Quantitative PCR analysis of blood- and saliva-specific microRNA markers following solid-phase DNA extraction. Anal. Biochem. 2013, 435, 120–122. [Google Scholar] [CrossRef]
- Schweighardt, A.J.; Tate, C.M.; Scott, K.A.; Harper, K.A.; Robertson, J.M. Evaluation of commercial kits for dual extraction of DNA and RNA from human body fluids. J. Forensic Sci. 2015, 60, 157–165. [Google Scholar] [CrossRef]
- Lewis, C.A.; Layne, T.R.; Seashols-Williams, S.J. Detection of microRNAs in DNA extractions for forensic biological source identification. J. Forensic Sci. 2019, 64, 1823–1830. [Google Scholar] [CrossRef]
- Watanabe, K.; Akutsu, K. Evaluation of a co-extraction kit for mRNA, miRNA and DNA methylation-based body fluid identification. Leg. Med. 2020, 42, 101630. [Google Scholar] [CrossRef]
- Wickenheiser, R.A. Trace DNA: A review, discussion of theory, and application of the transfer of trace quantities of DNA through skin contact. J. Forensic Sci. 2010, 47, 442–450. [Google Scholar]
- Oorschot, R.A.H.V.; Ballantyne, K.N.; Mitchell, R.J. Forensic trace DNA: A review. Invest. Genet. 2010, 1, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Akutsu, T.; Watanabe, K.; Takamura, A.; Sakurada, K. Evaluation of skin- or sweat-characteristic mRNAs for inferring the human origin of touched contact traces. Leg. Med. 2018, 33, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Ruan, T.; Barash, M.; Gunn, P.; Bruce, D. Investigation of DNA transfer onto clothing during regular daily activities. Int. J. Legal Med. 2018, 132, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Akutsu, T.; Ikegaya, H.; Watanabe, K.; Miyasaka, S. Immunohistochemical staining of skin-expressed proteins to identify exfoliated epidermal cells for forensic purposes. Forensic Sci. Int. 2019, 303, 109940. [Google Scholar] [CrossRef] [PubMed]
- Sessa, F.; Salerno, M.; Bertozzi, G.; Messina, G.; Ricci, P.; Ledda, C.; Rapisarda, V.; Cantatore, S.; Turillazzi, E.; Pomara, C. Touch DNA: Impact of handling time on touch deposit and evaluation of different recovery techniques: An experimental study. Sci. Rep. 2019, 9, 9542. [Google Scholar] [CrossRef]
- Neckovic, A.; van Oorschot, R.A.H.; Szkuta, B.; Durdle, A. Investigation of direct and indirect transfer of microbiomes between individuals. Forensic Sci. Int. Genet. 2020, 45, 102212. [Google Scholar] [CrossRef]
- Virkler, K.; Lednev, I. Raman spectroscopy offers great potential for the nondestructive confirmatory identification of body fluids. Forensic Sci. Int. 2008, 181, e1–e5. [Google Scholar] [CrossRef]
- Takamura, A.; Watanabe, K.; Akutsu, T.; Ozawa, T. Soft and robust identification of body fluid using fourier transform infrared spectroscopy and chemometric strategies for forensic analysis. Sci. Rep. 2018, 8, 8459. [Google Scholar] [CrossRef]
Body Fluid | Enzymatic | Serological | Microscopic | Molecular Biological | Micro-Biological | Other |
---|---|---|---|---|---|---|
Saliva | Colorimetry Phadebas® SALIgAE® Blue starch agarose plate method [30,31,32,33] | Immunodiffusion Immunoelectrophoresis ELISA Immunochromatography RSIDTM-Saliva [28,34,35,36] | mRNA microRNA DNA methylation [37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56] | Oral bacteria [57,58,59,60] | ||
Semen | Acid phosphatase test [61,62] | Immunodiffusion Immunoelectrophoresis Immunochromatography SPERM HY-LITERTM SERATEC®PSA Semiquant RSIDTM-Semen [34,67,68,69,70,71,72,73,74,75] | Baecchi staining Corin-Stockis staining Oppitz staining Hematoxylin & eosin staining [62,63,64,65,66] | mRNA microRNA DNA methylation [37,38,39,40,45,46,48,49,50,51,52,53,54,55,56,76,77] | ||
Vaginal fluid | Immunodiffusion Immunoelectrophoresis [34] | Papanicolaou staining Lugol’s staining [79,80,81,82] | mRNA microRNA DNA methylation [35,38,41,45,46,48,49,52,53,54,55,90,91,92,93] | Vaginal bacteria [83,84,85,86,87,88,89] | GC-MS LC-MS [94,95] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakurada, K.; Watanabe, K.; Akutsu, T. Current Methods for Body Fluid Identification Related to Sexual Crime: Focusing on Saliva, Semen, and Vaginal Fluid. Diagnostics 2020, 10, 693. https://doi.org/10.3390/diagnostics10090693
Sakurada K, Watanabe K, Akutsu T. Current Methods for Body Fluid Identification Related to Sexual Crime: Focusing on Saliva, Semen, and Vaginal Fluid. Diagnostics. 2020; 10(9):693. https://doi.org/10.3390/diagnostics10090693
Chicago/Turabian StyleSakurada, Koichi, Ken Watanabe, and Tomoko Akutsu. 2020. "Current Methods for Body Fluid Identification Related to Sexual Crime: Focusing on Saliva, Semen, and Vaginal Fluid" Diagnostics 10, no. 9: 693. https://doi.org/10.3390/diagnostics10090693
APA StyleSakurada, K., Watanabe, K., & Akutsu, T. (2020). Current Methods for Body Fluid Identification Related to Sexual Crime: Focusing on Saliva, Semen, and Vaginal Fluid. Diagnostics, 10(9), 693. https://doi.org/10.3390/diagnostics10090693