NTD Diagnostics for Disease Elimination: A Review
Abstract
:1. Introduction
NTDs and Disease Elimination
2. Materials and Methods
3. Results
3.1. Global Overview
3.1.1. Setting out Whom and What Diagnosis is for in NTD Elimination Campaigns
3.1.2. Existing Diagnostic Approaches for NTDs
3.1.3. Future Diagnostic Development
3.1.4. Barriers to Unlocking the Potential of Diagnostics
3.2. By Disease
3.2.1. Human African Trypanosomiasis
3.2.2. Onchocerciasis
3.2.3. Schistosomiasis
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Kohli, M.; Sen, P.; Pai, M. Improving access to essential tests for infectious diseases. Microbes Infect. 2019, 21, 1–3. [Google Scholar] [CrossRef]
- WHO. Ending the Neglect to Attain the SDGs: A Roadmap for Neglected Tropical Diseases 2021–2030 Geneva. 2020. Available online: https://www.who.int/neglected_diseases/Ending-the-neglect-to-attain-the-SDGs--NTD-Roadmap.pdf?ua=1 (accessed on 21 February 2020).
- WHO. Accelerating Work to Overcome the Global Impact of Neglected Tropical Diseases: A Roadmap for Implementation Geneva. 2012. Available online: https://www.who.int/neglected_diseases/NTD_RoadMap_2012_Fullversion.pdf (accessed on 26 August 2019).
- WHO. Water Sanitation and Hygiene for Accelerating and Sustaining Progress on Neglected Tropical Diseases: A Global Strategy 2015–2020. Available online: https://www.who.int/water_sanitation_health/publications/wash-and-ntd-strategy/en/ (accessed on 26 August 2019).
- WHO. Global Vector Control Response 2017–2030. Available online: https://www.who.int/vector-control/publications/global-control-response/en/ (accessed on 26 August 2019).
- ESPEN Collect Platform. Available online: http://espen.afro.who.int/tools-resources/espen-collect (accessed on 7 May 2020).
- Tropical Data. Available online: https://www.tropicaldata (accessed on 7 May 2020).
- Solomon, A.W.; Engels, D.; Bailey, R.L.; Blake, I.M.; Brooker, S.; Chen, J.-X.; Chen, J.-H.; Churcher, T.S.; Drakeley, C.J.; Edwards, T.; et al. A Diagnostics Platform for the Integrated Mapping, Monitoring, and Surveillance of Neglected Tropical Diseases: Rationale and Target Product Profiles. PLoS Negl. Trop. Dis. 2012, 6, e1746. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.; Taylor, E.M. MDGs and NTDs: Reshaping the global health agenda. PLoS Negl. Trop. Dis. 2013, 7, e2529. [Google Scholar] [CrossRef] [Green Version]
- Molyneux, D.H.; Hotez, P.J.; Fenwick, A. “Rapid-Impact Interventions”: How a Policy of Integrated Control for Africa’s Neglected Tropical Diseases Could Benefit the Poor. PLoS Med. 2005, 2, e336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molyneux, D.H. The “Neglected Tropical Diseases”: Now a brand identity; Responsibilities, context and promise. Parasites Vectors 2012, 5, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Working to Overcome the Global Impact of Neglected Tropical Diseases: First WHO Report on Neglected Tropical Diseases; World Health Organization: Geneva, Switzerland, 2010; p. 172. [Google Scholar]
- Uniting to Combat Neglected Tropical Diseases. London Declaration on Neglected Tropical Diseases. Available online: https://www.who.int/neglected_diseases/London_Declaration_NTDs.pdf (accessed on 26 August 2019).
- Taylor, E.M.; Smith, J. Neglected Tropical Diseases and Equity in the Post-2015 Health Agenda. IDS Bull. 2018, 49. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.; Taylor, E.M. What Is Next for NTDs in the Era of the Sustainable Development Goals? PLoS Negl. Trop. Dis. 2016, 10, e0004719. [Google Scholar] [CrossRef] [Green Version]
- Stepan, N. Eradication: Ridding the World of Diseases Forever? Cornell University Press: Ithaca, NY, USA, 2011. [Google Scholar]
- CDC. Recommendation of the International Taskforce for Disease Eradication 2008. Available online: https://www.cartercenter.org/resources/pdfs/news/health_publications/itfde/updated_disease_candidate_table.pdf (accessed on 23 August 2019).
- Molyneux, D.H.; Hopkins, D.R.; Zagaria, N. Disease eradication, elimination and control: The need for accurate and consistent usage. Trends Parasitol. 2004, 20, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, D.R. Disease eradication. New Engl. J. Med. 2013, 368, 54–63. [Google Scholar] [CrossRef]
- Dowdle, W.R.; Cochi, S.L. The Principles and Feasibility of Disease Eradication. Available online: http://www.ncbi.nlm.nih.gov/pubmed/22188936 (accessed on 23 August 2019).
- Hotez, P.J.; Pécoul, B.; Rijal, S.; Boehme, C.; Aksoy, S.; Malecela, M.; Tapia-Conyer, R.; Reeder, J. Eliminating the neglected tropical diseases: Translational science and new technologies. PLoS Negl. Trop. Dis. 2016, 10, e0003895. [Google Scholar] [CrossRef]
- Hollingsworth, T.D. Counting Down the 2020 Goals for 9 Neglected Tropical Diseases: What Have We Learned From Quantitative Analysis and Transmission Modeling? Clin. Infect. Dis. 2018, 66, S237–S244. [Google Scholar] [CrossRef]
- Jervis, S.; Chapman, L.A.C.; Dwivedi, S.; Karthick, M.; Das, A.; Le Rutte, E.A.; Courtenay, O.; Medley, G.F.; Banerjee, I.; Mahapatra, T.; et al. Variations in visceral leishmaniasis burden, mortality and the pathway to care within Bihar, India. Parasites Vectors 2017, 10, 601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peeling, R.W.; Mabey, D.C. Diagnostics for the control and elimination of neglected tropical diseases. Parasitology 2014, 141, 1789–1794. [Google Scholar] [CrossRef]
- Bonnet, J.; Boudot, C.; Courtioux, B. Overview of the diagnostic methods used in the field for human african trypanosomiasis: What could change in the next years? BioMed Res. Int. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peeling, R.W. Diagnostics in a digital age: An opportunity to strengthen health systems and improve health outcomes. Int. Heal. 2015, 7, 384–389. [Google Scholar] [CrossRef] [Green Version]
- Albonico, M.; Levecke, B.; LoVerde, P.; Montresor, A.; Prichard, R.; Vercruysse, J.; Webster, J. Monitoring the efficacy of drugs for neglected tropical diseases controlled by preventive chemotherapy. J. Glob. Antimicrob. Resist. 2015, 3, 229–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.-N.; Bergquist, R.; Tanner, M. Elimination of tropical disease through surveillance and response. Infect. Dis. Poverty 2013, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- E1T; Ai, L.; Zhou, X.; Chen, J.-H.; Hu, W.; Bergquist, R.; Guo, J.-G.; Utzinger, J.; Tanner, M.; Zhou, X.-N. Surveillance-response systems: The key to elimination of tropical diseases. Infect. Dis. Poverty 2014, 3, 17. [Google Scholar] [CrossRef] [Green Version]
- Bergquist, R.; Yang, G.-J.; Knopp, S.; Utzinger, J.; Tanner, M. Surveillance and response: Tools and approaches for the elimination stage of neglected tropical diseases. Acta Trop. 2015, 141, 229–234. [Google Scholar] [CrossRef]
- Utzinger, J.; Becker, S.L.; Knopp, S.; Blum, J.; Neumayr, A.; Keiser, J.; Hatz, C. Neglected tropical diseases: Diagnosis, clinical management, treatment and control. Swiss Med. Wkly. 2012, 142. [Google Scholar] [CrossRef] [Green Version]
- Pion, S.D.; Montavon, C.; Chesnais, C.B.; Kamgno, J.; Wanji, S.; Klion, A.D.; Nutman, T.B.; Boussinesq, M. Positivity of Antigen Tests Used for Diagnosis of Lymphatic Filariasis in Individuals Without Wuchereria bancrofti Infection But with High Loa loa Microfilaremia. Am. J. Trop. Med. Hyg. 2016, 95, 1417–1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wanji, S.; Amvongo-Adjia, N.; Koudou, B.; Njouendou, A.J.; Ndongmo, P.W.C.; Kengne-Ouafo, J.A.; Datchoua-Poutcheu, F.R.; Fovennso, B.A.; Tayong, D.B.; Fombad, F.F.; et al. Cross-Reactivity of Filariais ICT Cards in Areas of Contrasting Endemicity of Loa loa and Mansonella perstans in Cameroon: Implications for Shrinking of the Lymphatic Filariasis Map in the Central African Region. PLoS Negl. Trop. Dis. 2015, 9, e0004184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanton, M.C.; Mkwanda, S.Z.; Debrah, A.; Debrah, L.B.; Biritwum, N.-K.; Hoerauf, A.; Cliffe, M.; Best, A.; Molineux, A.; Kelly-Hope, L.A. Developing a community-led SMS reporting tool for the rapid assessment of lymphatic filariasis morbidity burden: Case studies from Malawi and Ghana. BMC Infect. Dis. 2015, 15, 214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurunath, U.; Joshi, R.; Agrawal, A.; Shah, V. An overview of visceral leishmaniasis elimination program in India: A picture imperfect. Expert Rev. Anti Infect. Ther. 2014, 12, 929–935. [Google Scholar] [CrossRef]
- Peeling, R.W.; Boeras, D.I.; Nkengasong, J. Re-imagining the future of diagnosis of Neglected Tropical Diseases. Comput. Struct. Biotechnol. J. 2017, 15, 271–274. [Google Scholar] [CrossRef]
- Lammie, P.J.; Moss, D.M.; Goodhew, B.; Hamlin, K.; Krolewiecki, A.; West, S.K.; Priest, J.W. Development of a new platform for neglected tropical disease surveillance. Int. J. Parasitol. 2012, 42, 797–800. [Google Scholar] [CrossRef]
- Steel, C.; Golden, A.; Stevens, E.; Yokobe, L.; Domingo, G.J.; Santos, T.D.L.; Nutman, T.B. Rapid Point-of-Contact Tool for Mapping and Integrated Surveillance of Wuchereria bancrofti and Onchocerca volvulus Infection. Clin. Vaccine Immunol. 2015, 22, 896–901. [Google Scholar] [CrossRef] [Green Version]
- Unnasch, T.R.; Golden, A.; Cama, V.; Cantey, P.T. Diagnostics for onchocerciasis in the era of elimination. Int. Heal. 2018, 10, i20–i26. [Google Scholar] [CrossRef]
- Ndung, J.M.; Bieler, S.; Roscigno, G. “Piggy-Backing” on Diagnostic Platforms Brings Hope to Neglected Diseases: The Case of Sleeping Sickness. PLoS Negl. Trop. Dis. 2010, 4, e715. [Google Scholar] [CrossRef] [Green Version]
- Taylor, E.M.; Smith, J. Product Development Partnerships: Delivering Innovation for the Elimination of African Trypanosomiasis? Trop. Med. Infect. Dis. 2020, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- Franco, J.R.; Simarro, P.P.; Diarra, A.; Ruiz-Postigo, J.A.; Jannin, J.G. The journey towards elimination of gambiense human African trypanosomiasis: Not far, nor easy. Parasitology 2014, 141, 748–760. [Google Scholar] [CrossRef] [PubMed]
- Mitashi, P.; Hasker, E.; Mbo, F.; Van Geertruyden, J.-P.; Kaswa, M.; Lumbala, C.; Boelaert, M.; Lutumba, P. Integration of diagnosis and treatment of sleeping sickness in primary healthcare facilities in the Democratic Republic of the Congo. Trop. Med. Int. Heal. 2014, 20, 98–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.J.; Palmer, J. Integrating innovations: A qualitative analysis of referral non-completion among rapid diagnostic test-positive patients in Uganda’s human African trypanosomiasis elimination programme. Infect. Dis. Poverty 2018, 7, 84. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, L.; Wall, S.J.; Carrington, M.; Ferguson, M.A.J. Proteomic Selection of Immunodiagnostic Antigens for Human African Trypanosomiasis and Generation of a Prototype Lateral Flow Immunodiagnostic Device. PLoS Negl. Trop. Dis. 2013, 7, e2087. [Google Scholar] [CrossRef] [PubMed]
- Büscher, P.; Gilleman, Q.; Lejon, V. Rapid Diagnostic Test for Sleeping Sickness. New Engl. J. Med. 2013, 368, 1069–1070. [Google Scholar] [CrossRef]
- Büscher, P.; Mertens, P.; Leclipteux, T.; Gilleman, Q.; Jacquet, D.; Mumba-Ngoyi, D.; Pyana, P.P.; Boelaert, M.; Lejon, V. Sensitivity and specificity of HAT Sero-K-SeT, a rapid diagnostic test for serodiagnosis of sleeping sickness caused by Trypanosoma brucei gambiense: A case-control study. Lancet Glob. Heal. 2014, 2, e359–e363. [Google Scholar] [CrossRef] [Green Version]
- Boelaert, M.; Mukendi, D.; Bottieau, E.; Lilo, J.R.K.; Verdonck, K.; Minikulu, L.; Barbé, B.; Gillet, P.; Yansouni, C.P.; Chappuis, F.; et al. A Phase III Diagnostic Accuracy Study of a Rapid Diagnostic Test for Diagnosis of Second-Stage Human African Trypanosomiasis in the Democratic Republic of the Congo. EBioMedicine 2018, 27, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Bisser, S.; Lumbala, C.; Nguertoum, E.; Kande, V.; Flevaud, L.; Vatunga, G.; Boelaert, M.; Büscher, P.; Josenando, T.; Bessell, P.R.; et al. Sensitivity and Specificity of a Prototype Rapid Diagnostic Test for the Detection of Trypanosoma brucei gambiense Infection: A Multi-centric Prospective Study. PLoS Negl. Trop. Dis. 2016, 10, e0004608. [Google Scholar] [CrossRef]
- Lumbala, C.; Bessell, P.R.; Lutumba, P.; Baloji, S.; Bieler, S.; Ndung, J.M. Performance of the SD BIOLINE® HAT rapid test in various diagnostic algorithms for gambiense human African trypanosomiasis in the Democratic Republic of the Congo. PLoS ONE 2017, 12, e0180555. [Google Scholar] [CrossRef] [Green Version]
- Van Nieuwenhove, L.; Büscher, P.; Balharbi, F.; Humbert, M.; Dieltjens, T.; Guisez, Y.; Lejon, V. Identification of Mimotopes with Diagnostic Potential for Trypanosoma brucei gambiense Variant Surface Glycoproteins Using Human Antibody Fractions. PLoS Neglected Trop. Dis. 2012, 6, e1682. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, L.; Fleming, J.; Sastry, L.; Mehlert, A.; Wall, S.J.; Ferguson, M.A.J. Identification of sVSG117 as an Immunodiagnostic Antigen and Evaluation of a Dual-Antigen Lateral Flow Test for the Diagnosis of Human African Trypanosomiasis. PLoS Neglected Trop. Dis. 2014, 8, e2976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogé, S.; Van Nieuwenhove, L.; Meul, M.; Heykers, A.; De Koning, A.B.; Bebronne, N.; Guisez, Y.; Büscher, P. Recombinant Antigens Expressed in Pichia pastoris for the Diagnosis of Sleeping Sickness Caused by Trypanosoma brucei gambiense. PLoS Negl. Trop. Dis. 2014, 8, e3006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sternberg, J.; Mitchell, J.A. Plasma neuronal specific enolase: A potential stage diagnostic marker in human African trypanosomiasis. Trans. R. Soc. Trop. Med. Hyg. 2014, 108, 449–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lumbala, C.; Biéler, S.; Kayembe, S.; Makabuza, J.; Ongarello, S.; Ndung’U, J.M. Prospective evaluation of a rapid diagnostic test for Trypanosoma brucei gambiense infection developed using recombinant antigens. PLoS Negl. Trop. Dis. 2018, 12, e0006386. [Google Scholar] [CrossRef] [Green Version]
- Bieler, S.; Matovu, E.; Mitashi, P.; Ssewannyana, E.; Shamamba, S.K.B.; Bessell, P.R.; Ndung, J.M. Improved detection of Trypanosoma brucei by lysis of red blood cells, concentration and LED fluorescence microscopy. Acta Trop. 2012, 121, 135–140. [Google Scholar] [CrossRef]
- Giordani, F.; Munde, M.; Wilson, W.D.; Ismail, M.A.; Kumar, A.; Boykin, D.W.; Barrett, M.P. Green Fluorescent Diamidines as Diagnostic Probes for Trypanosomes. Antimicrob. Agents Chemother. 2013, 58, 1793–1796. [Google Scholar] [CrossRef] [Green Version]
- Ngoyi, D.M.; Ekangu, R.A.; Kodi, M.F.M.; Pyana, P.P.; Balharbi, F.; Decq, M.; Betu, V.K.; Van Der Veken, W.; Sese, C.; Menten, J.; et al. Performance of Parasitological and Molecular Techniques for the Diagnosis and Surveillance of Gambiense Sleeping Sickness. PLoS Negl. Trop. Dis. 2014, 8, e2954. [Google Scholar] [CrossRef] [Green Version]
- Burchmore, R. Parasites in the brain? The search for sleeping sickness biomarkers. Expert Rev. Anti Infect. Ther. 2012, 10, 1283–1286. [Google Scholar] [CrossRef]
- Ngoyi, D.M.; Menten, J.; Pyana, P.P.; Büscher, P.; Lejon, V. Stage determination in sleeping sickness: Comparison of two cell counting and two parasite detection techniques. Trop. Med. Int. Heal. 2013, 18, 778–782. [Google Scholar] [CrossRef]
- Abdulla, M.-H.; Bakhiet, M.; Lejon, V.; Andersson, J.; McKerrow, J.; Al-Obeed, O.; Harris, R.A. TLTF in Cerebrospinal Fluid for Detection and Staging of T. b. gambiense Infection. PLoS ONE 2013, 8, e79281. [Google Scholar] [CrossRef]
- Tiberti, N.; Lejon, V.; Hainard, A.; Courtioux, B.; Robin, X.; Turck, N.; Kristensson, K.; Matovu, E.; Enyaru, J.C.; Ngoyi, D.M.; et al. Neopterin is a cerebrospinal fluid marker for treatment outcome evaluation in patients affected by Trypanosoma brucei gambiense sleeping sickness. PLoS Neglected Trop. Dis. 2013, 7, e2088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilboudo, H.; Camara, O.; Ravel, S.; Bucheton, B.; Lejon, V.; Camara, M.; Kaboré, J.; Jamonneau, V.; Deborggraeve, S. The trypanosome’s spliced leader RNA is a more specific marker for cure of human African trypanosomiasis than DNA. J. Infect. Dis. 2015, 212, 1996–1998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deborggraeve, S.; Büscher, P. Recent progress in molecular diagnosis of sleeping sickness. Expert Rev. Mol. Diagn. 2012, 12, 719–730. [Google Scholar] [CrossRef]
- Büscher, P.; Deborggraeve, S. How can molecular diagnostics contribute to the elimination of human African trypanosomiasis? Expert Rev. Mol. Diagn. 2015, 15, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Namangala, B.; Hachaambwa, L.; Kajino, K.; Mweene, A.S.; Hayashida, K.; Simuunza, M.; Simukoko, H.; Choongo, K.; Chansa, P.; Lakhi, S.; et al. The use of Loop-mediated Isothermal Amplification (LAMP) to detect the re-emerging Human African Trypanosomiasis (HAT) in the Luangwa and Zambezi valleys. Parasites Vectors 2012, 5, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitashi, P.; Hasker, E.; Ngoyi, D.M.; Pyana, P.P.; Lejon, V.; Van Der Veken, W.; Lutumba, P.; Büscher, P.; Boelaert, M.; Deborggraeve, S. Diagnostic Accuracy of Loopamp Trypanosoma brucei Detection Kit for Diagnosis of Human African Trypanosomiasis in Clinical Samples. PLoS Negl. Trop. Dis. 2013, 7, e2504. [Google Scholar] [CrossRef] [PubMed]
- Hayashida, K.; Kajino, K.; Hachaambwa, L.; Namangala, B.; Sugimoto, C. Direct Blood Dry LAMP: A Rapid, Stable, and Easy Diagnostic Tool for Human African Trypanosomiasis. PLoS Negl. Trop. Dis. 2015, 9, e0003578. [Google Scholar] [CrossRef]
- Nikolskaia, O.V.; Thekisoe, O.; Dumler, J.S.; Grab, D.J. Loop-Mediated Isothermal Amplification for Detection of the 5.8S Ribosomal Ribonucleic Acid Internal Transcribed Spacer 2 Gene Found in Trypanosoma brucei gambiense. Am. J. Trop. Med. Hyg. 2016, 96, 275–279. [Google Scholar] [CrossRef] [Green Version]
- Rock, K.S.; Torr, S.J.; Lumbala, C.; Keeling, M. Quantitative evaluation of the strategy to eliminate human African trypanosomiasis in the Democratic Republic of Congo. Parasites Vectors 2015, 8, 532. [Google Scholar] [CrossRef] [Green Version]
- Mathurin, K.; Djetchi, M.; Ilboudo, H.; Kaba, D.; Coulibaly, B.; Gouan, E.; Kouakou, L.; Bucheton, B.; Solano, P.; Courtin, F.; et al. A targeted door-to-door strategy for sleeping sickness detection in low-prevalence settings in Côte d’Ivoire. Parasite 2016, 23, 51. [Google Scholar] [CrossRef] [Green Version]
- Checchi, F.; Cox, A.P.; Chappuis, F.; Priotto, G.; Chandramohan, D.; Haydon, D.T. Prevalence and under-detection of gambiense human African trypanosomiasis during mass screening sessions in Uganda and Sudan. Parasites Vectors 2012, 5, 157. [Google Scholar] [CrossRef] [PubMed]
- Lejon, V.; Jacobs, J.; Simarro, P.P. Elimination of sleeping sickness hindered by difficult diagnosis. Bull. World Heal. Organ. 2013, 91, 718. [Google Scholar] [CrossRef] [PubMed]
- Simarro, P.; Cecchi, G.; Franco, J.R.; Paone, M.; Diarra, A.; Postigo, J.A.R.; Mattioli, R.C.; Jannin, J.G. Mapping the capacities of fixed health facilities to cover people at risk of gambiense human African trypanosomiasis. Int. J. Heal. Geogr. 2014, 13, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wamboga, C.; Matovu, E.; Bessell, P.R.; Picado, A.; Bieler, S.; Ndung, J.M. Enhanced passive screening and diagnosis for gambiense human African trypanosomiasis in north-western Uganda—Moving towards elimination. PLoS ONE 2017, 12, e0186429. [Google Scholar] [CrossRef] [Green Version]
- Checchi, F.; Funk, S.; Chandramohan, D.; Chappuis, F.; Haydon, D.T. The impact of passive case detection on the transmission dynamics of gambiense Human African Trypanosomiasis. PLoS Negl. Trop. Dis. 2018, 12, e0006276. [Google Scholar] [CrossRef] [Green Version]
- Palmer, J.; Robert, O.; Kansiime, F. Including refugees in disease elimination: Challenges observed from a sleeping sickness programme in Uganda. Confl. Heal. 2017, 11, 22. [Google Scholar] [CrossRef] [Green Version]
- Vlaminck, J.; Fischer, P.U.; Weil, G.J. Diagnostic Tools for Onchocerciasis Elimination Programs. Trends Parasitol. 2015, 31, 571–582. [Google Scholar] [CrossRef] [Green Version]
- Coffeng, L.E.; Stolk, W.A.; Zouré, H.G.M.; Veerman, L.; Agblewonu, K.B.; Murdoch, M.E.; Noma, M.; Fobi, G.; Richardus, J.H.; Bundy, D.A.P.; et al. African Programme for Onchocerciasis Control 1995–2015: Updated Health Impact Estimates Based on New Disability Weights. PLoS Neglected Trop. Dis. 2014, 8, e2759. [Google Scholar] [CrossRef] [Green Version]
- WHO/Department of Control of Neglected Tropical Diseases. Guidelines for Stopping Mass Drug Administration and Verifying Elimination of Human Onchocerciasis: Criteria and Procedures. Available online: https://www.who.int/onchocerciasis/resources/9789241510011/en/ (accessed on 26 August 2019).
- Golden, A.; Faulx, D.; Kalnoky, M.; Stevens, E.; Yokobe, L.; Peck, R.; Karabou, P.; Banla, M.; Rao, R.; Adade, K.; et al. Analysis of age-dependent trends in Ov16 IgG4 seroprevalence to onchocerciasis. Parasites Vectors 2016, 9, 338. [Google Scholar] [CrossRef] [Green Version]
- Lont, Y.L.; Coffeng, L.E.; De Vlas, S.J.; Golden, A.; Santos, T.D.L.; Domingo, G.J.; Stolk, W. Modelling Anti-Ov16 IgG4 Antibody Prevalence as an Indicator for Evaluation and Decision Making in Onchocerciasis Elimination Programmes. PLoS Negl. Trop. Dis. 2017, 11, e0005314. [Google Scholar] [CrossRef]
- Dieye, Y.; Storey, H.L.; Barrett, K.L.; Gerth-Guyette, E.; Di Giorgio, L.; Golden, A.; Faulx, D.; Kalnoky, M.; Ndiaye, M.K.N.; Sy, N.; et al. Feasibility of utilizing the SD BIOLINE Onchocerciasis IgG4 rapid test in onchocerciasis surveillance in Senegal. PLoS Negl. Trop. Dis. 2017, 11, e0005884. [Google Scholar] [CrossRef] [PubMed]
- Globisch, D.; Moreno, A.Y.; Hixon, M.S.; Nunes, A.A.K.; Denery, J.R.; Specht, S.; Hoerauf, A.; Janda, K.D. Onchocerca volvulus-neurotransmitter tyramine is a biomarker for river blindness. Proc. Natl. Acad. Sci. USA 2013, 110, 4218–4223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirey, R.J.; Globisch, D.; Eubanks, L.M.; Hixon, M.S.; Janda, K.D. Noninvasive Urine Biomarker Lateral Flow Immunoassay for Monitoring Active Onchocerciasis. ACS Infect. Dis. 2018, 4, 1423–1431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lloyd, M.M.; Gilbert, R.; Taha, N.T.; Weil, G.J.; Meïté, A.; Kouakou, I.M.; Fischer, P.U.; Taha, T.Y.N. Conventional parasitology and DNA-based diagnostic methods for onchocerciasis elimination programmes. Acta Trop. 2015, 146, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Mekonnen, S.A.; Beissner, M.; Saar, M.; Ali, S.; Zeynudin, A.; Kassahun, T.; Adbaru, M.G.; Battke, F.; Poppert, S.; Hoelscher, M.; et al. O-5S quantitative real-time PCR: A new diagnostic tool for laboratory confirmation of human onchocerciasis. Parasites Vectors 2017, 10, 451. [Google Scholar] [CrossRef] [Green Version]
- Prince-Guerra, J.L.; Cama, V.A.; Wilson, N.; Thiele, E.A.; Likwela, J.; Ndakala, N.; Muzinga, J.M.W.; Ayebazibwe, N.; Ndjakani, Y.D.; Pitchouna, N.A.; et al. Comparison of PCR Methods for Onchocerca volvulus Detection in Skin Snip Biopsies from the Tshopo Province, Democratic Republic of the Congo. Am. J. Trop. Med. Hyg. 2018, 98, 1427–1434. [Google Scholar] [CrossRef] [Green Version]
- Lagatie, O.; Merino, M.; Debrah, L.B.; Debrah, A.; Stuyver, L. An isothermal DNA amplification method for detection of Onchocerca volvulus infection in skin biopsies. Parasites Vectors 2016, 9, 624. [Google Scholar] [CrossRef] [Green Version]
- Poole, C.B.; Li, Z.; Alhassan, A.; Guelig, D.; Diesburg, S.; Tanner, N.A.; Zhang, Y.; Evans, T.C.; Labarre, P.; Wanji, S.; et al. Colorimetric tests for diagnosis of filarial infection and vector surveillance using non-instrumented nucleic acid loop-mediated isothermal amplification (NINA-LAMP). PLoS ONE 2017, 12, e0169011. [Google Scholar] [CrossRef]
- Golden, A.; Stevens, E.J.; Yokobe, L.; Faulx, D.; Kalnoky, M.; Peck, R.; Valdez, M.; Steel, C.; Karabou, P.; Banla, M.; et al. A Recombinant Positive Control for Serology Diagnostic Tests Supporting Elimination of Onchocerca volvulus. PLoS Negl. Trop. Dis. 2016, 10, e0004292. [Google Scholar] [CrossRef] [Green Version]
- Rebollo, M.P.; Zouré, H.; Ogoussan, K.; Sodahlon, Y.; A Ottesen, E.; Cantey, P.T. Onchocerciasis: Shifting the target from control to elimination requires a new first-step—Elimination mapping. Int. Heal. 2018, 10, i14–i19. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Qiu, C.; Ding, H.; Lu, D.-B. The ratio of the seroprevalence to the egg-positive prevalence of Schistosoma japonicum in China: A meta-analysis. BMC Infect. Dis. 2018, 18, 404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO/Department of Control of Neglected Tropical Diseases. Integrating Neglected Tropical Diseases into Global Health and Development: Fourth WHO Report on Neglected Tropical Diseases. Available online: https://www.who.int/neglected_diseases/resources/9789241565448/en/ (accessed on 26 August 2019).
- Stothard, J.R.; Stanton, M.C.; Bustinduy, A.L.; Sousa-Figueiredo, J.C.; Van Dam, G.J.; Betson, M.; Waterhouse, D.; Ward, S.; Allan, F.; Hassan, A.A.; et al. Diagnostics for schistosomiasis in Africa and Arabia: A review of present options in control and future needs for elimination. Parasitology 2014, 141, 1947–1961. [Google Scholar] [CrossRef] [PubMed]
- Van Dam, G.J.; Xu, J.; Bergquist, R.; De Dood, C.; Utzinger, J.; Qin, Z.-Q.; Guan, W.; Feng, T.; Yu, X.-L.; Zhou, J.; et al. An ultra-sensitive assay targeting the circulating anodic antigen for the diagnosis of Schistosoma japonicum in a low-endemic area, People’s Republic of China. Acta Trop. 2015, 141, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Le, L.; Hsieh, M. Diagnosing Urogenital Schistosomiasis: Dealing with Diminishing Returns. Trends Parasitol. 2017, 33, 378–387. [Google Scholar] [CrossRef]
- Ogongo, P.; Kariuki, T.M.; Wilson, R.A. Diagnosis of Schistosomiasis mansoni: An evaluation of existing methods and research towards single worm pair detection. Parasitology 2018, 145, 1355–1366. [Google Scholar] [CrossRef]
- Weerakoon, K.G.; Gobert, G.N.; Cai, P.; McManus, D.P. Advances in the Diagnosis of Human Schistosomiasis. Clin. Microbiol. Rev. 2015, 28, 939–967. [Google Scholar] [CrossRef] [Green Version]
- Bergquist, R.; Zhou, X.-N.; Rollinson, D.; Reinhard-Rupp, J.; Klohe, K. Elimination of schistosomiasis: The tools required. Infect. Dis. Poverty 2017, 6, 158. [Google Scholar] [CrossRef] [Green Version]
- Gomes, L.I.; Enk, M.J.; Rabello, A. Diagnosing schistosomiasis: Where are we? Rev. Soc. Bras. Med. Trop. 2014, 47, 3–11. [Google Scholar] [CrossRef]
- Bergquist, R.; Johansen, M.V.; Utzinger, J. Diagnostic dilemmas in helminthology: What tools to use and when? Trends Parasitol. 2009, 25, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.-F.; Xu, J.; Bergquist, R.; Yu, L.-L.; Yan, X.-L.; Zhu, H.-Q.; Wen, L.-Y. Development and application of diagnostics in the national schistosomiasis control programme in The People’s Republic of China. In Advances in Parasitology; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Belizario, V.; Bungay, A.A.; Su, G.S.; De Veyra, C.; Lacuna, J.D. Assessment of three schistosomiasis endemic areas using kato-katz technique and elisa antigen and antibody tests. Southeast Asian J. Trop. Med. Public Heal. 2016, 47, 638. [Google Scholar]
- Etet, P.F.S.; Mahomoodally, M.F. New Insights in Staging and Chemotherapy of African Trypanosomiasis and Possible Contribution of Medicinal Plants. Sci. World J. 2012, 2012, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, M.D.; Brooker, S.J.; Belizario, V.Y.; Gay-Andrieu, F.; Gilleard, J.S.; Levecke, B.; Van Lieshout, L.; Medley, G.; Mekonnen, Z.; Mirams, G.; et al. Diagnostic tools for soil-transmitted helminths control and elimination programs: A pathway for diagnostic product development. PLoS Negl. Trop. Dis. 2018, 12, e0006213. [Google Scholar] [CrossRef] [PubMed]
- Utzinger, J.; Becker, S.; Van Lieshout, L.; Van Dam, G.; Knopp, S. New diagnostic tools in schistosomiasis. Clin. Microbiol. Infect. 2015, 21, 529–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawkins, K.R.; Cantera, J.L.; Storey, H.L.; Leader, B.T.; Santos, T.D.L. Diagnostic Tests to Support Late-Stage Control Programs for Schistosomiasis and Soil-Transmitted Helminthiases. PLoS Negl. Trop. Dis. 2016, 10, e0004985. [Google Scholar] [CrossRef] [Green Version]
- Porrás, A.I.; Yadon, Z.E.; Altcheh, J.; Britto, C.; Chaves, G.C.; Flevaud, L.; Martins-Filho, O.A.; Ribeiro, I.; Schijman, A.G.; Shikanai-Yasuda, M.A.; et al. Target Product Profile (TPP) for Chagas Disease Point-of-Care Diagnosis and Assessment of Response to Treatment. PLoS Negl. Trop. Dis. 2015, 9, e0003697. [Google Scholar] [CrossRef] [Green Version]
- WHO. Report of the First Meeting of the WHO Diagnostic Technical Advisory Group for Neglected Tropical Diseases. Available online: https://www.who.int/neglected_diseases/resources/9789240003590/en/ (accessed on 3 June 2020).
- WHO. Second WHO Model List of Essential In Vitro Diagnostics. Available online: https://www.who.int/medical_devices/publications/EDL_2_0_Standalone.pdf?ua=1 (accessed on 26 March 2020).
Disease | Target |
---|---|
Chagas Disease | Regional elimination |
Human African Trypanosomiasis | Global elimination |
Human Rabies | Regional elimination |
Leprosy | Global elimination |
Lymphatic Filariasis | Regional elimination |
Onchocerciasis | Regional elimination |
Schistosomiasis | Regional elimination |
Trachoma | Global elimination |
Visceral Leishmaniasis | Global elimination |
Initial Search Yield (n =) | Included Papers (n =) | |
---|---|---|
Chagas disease | 383 | 45 |
Human African trypanosomiasis | 1271 | 106 |
Lymphatic filariasis | 1527 | 145 |
Onchocerciasis | 59 | 35 |
Schistosomiasis | 117 | 78 |
Trachoma | 28 | 16 |
Visceral leishmaniasis | 80 | 44 |
Minus duplicates | 20 | |
TOTAL | 3465 | 468−20 = 448 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taylor, E.M. NTD Diagnostics for Disease Elimination: A Review. Diagnostics 2020, 10, 375. https://doi.org/10.3390/diagnostics10060375
Taylor EM. NTD Diagnostics for Disease Elimination: A Review. Diagnostics. 2020; 10(6):375. https://doi.org/10.3390/diagnostics10060375
Chicago/Turabian StyleTaylor, Emma Michelle. 2020. "NTD Diagnostics for Disease Elimination: A Review" Diagnostics 10, no. 6: 375. https://doi.org/10.3390/diagnostics10060375
APA StyleTaylor, E. M. (2020). NTD Diagnostics for Disease Elimination: A Review. Diagnostics, 10(6), 375. https://doi.org/10.3390/diagnostics10060375