Deep Neural Frameworks Improve the Accuracy of General Practitioners in the Classification of Pigmented Skin Lesions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pigmented Skin Image Dataset
2.2. Deep Neural Networks
2.3. Image Preprocessing
2.4. Generation of Synthetic Pigmented Skin Lesion Images Using an infoGAN
2.5. Contests among General Practitioners
2.6. Statistical Analysis
3. Results
3.1. Classification Metrics across Eight Different DNNs
3.2. Classification Metrics of Different DNNs Aggregating Image and Clinical Features
3.3. Performance across Synthetic Pigmented-Skin Lesion Images
3.4. Performance across General Practitioners with and without Assistance from DNNs Output
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Haenssle, H.A.; Fink, C.; Schneiderbauer, R.; Toberer, F.; Buhl, T.; Blum, A.; Kalloo, A.; Hassen, A.B.H.; Thomas, L.; Enk, A.; et al. Man against machine: Diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann. Oncol. 2018, 29, 1836–1842. [Google Scholar] [CrossRef] [PubMed]
- Annessi, G.; Bono, R.; Sampogna, F.; Faraggiana, T.; Abeni, D. Sensitivity, specificity, and diagnostic accuracy of three dermoscopic algorithmic methods in the diagnosis of doubtful melanocytic lesions: The importance of light brown structureless areas in differentiating atypical melanocytic nevi from thin melanomas. J. Am. Acad. Dermatol. 2007, 56, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Argenziano, G.; Soyer, H.P. Dermoscopy of pigmented skin lesions--a valuable tool for early diagnosis of melanoma. Lancet Oncol. 2001, 2, 443–449. [Google Scholar] [CrossRef]
- Brochez, L.; Verhaeghe, E.; Grosshans, E.; Haneke, E.; Pierard, G.; Ruiter, D.; Naeyaert, J.M. Inter-observer variation in the histopathological diagnosis of clinically suspicious pigmented skin lesions. J. Pathol. 2002, 196, 459–466. [Google Scholar] [CrossRef]
- Russo, T.; Piccolo, V.; Lallas, A.; Giacomel, J.; Moscarella, E.; Alfano, R.; Argenziano, G. Dermoscopy of malignant skin tumours: What’s new? Dermatology 2017, 233, 64–73. [Google Scholar] [CrossRef]
- Witkowski, A.M.; Ludzik, J.; Arginelli, F.; Bassoli, S.; Benati, E.; Casari, A.; De Carvalho, N.; De Pace, B.; Farnetani, F.; Losi, A.; et al. Improving diagnostic sensitivity of combined dermoscopy and reflectance confocal microscopy imaging through double reader concordance evaluation in telemedicine settings: A retrospective study of 1000 equivocal cases. PLoS ONE 2017, 12, e0187748. [Google Scholar] [CrossRef]
- Kittler, H.; Pehamberger, H.; Wolff, K.; Binder, M. Diagnostic accuracy of dermoscopy. Lancet Oncol. 2002, 3, 159–165. [Google Scholar] [CrossRef]
- Vestergaard, M.E.; Macaskill, P.; Holt, P.E.; Menzies, S.W. Dermoscopy compared with naked eye examination for the diagnosis of primary melanoma: A meta-analysis of studies performed in a clinical setting. Br. J. Dermatol. 2008, 159, 669–676. [Google Scholar] [CrossRef]
- Federman, D.G.; Concato, J.; Kirsner, R.S. Comparison of dermatologic diagnoses by primary care practitioners and dermatologists. A review of the literature. Arch. Fam. Med. 1999, 8, 170–172. [Google Scholar] [CrossRef]
- Federman, D.G.; Kirsner, R.S. The abilities of primary care physicians in dermatology: Implications for quality of care. Am. J. Manag. Care 1997, 3, 1487–1492. [Google Scholar]
- Moreno, G.; Tran, H.; Chia, A.L.; Lim, A.; Shumack, S. Prospective study to assess general practitioners’ dermatological diagnostic skills in a referral setting. Australas J. Dermatol. 2007, 48, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Suneja, T.; Smith, E.D.; Chen, G.J.; Zipperstein, K.J.; Fleischer, A.B., Jr.; Feldman, S.R. Waiting times to see a dermatologist are perceived as too long by dermatologists: Implications for the dermatology workforce. Arch. Dermatol. 2001, 137, 1303–1307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, H.; Chen, K.; Lim, A.C.; Jabbour, J.; Shumack, S. Assessing diagnostic skill in dermatology: A comparison between general practitioners and dermatologists. Australas J. Dermatol. 2005, 46, 230–234. [Google Scholar] [CrossRef]
- Galmarini, C.M.; Lucius, M. Artificial intelligence: A disruptive tool for a smarter medicine. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 7571–7583. [Google Scholar]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef]
- Han, S.S.; Kim, M.S.; Lim, W.; Park, G.H.; Park, I.; Chang, S.E. Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm. J. Investig. Dermatol. 2018, 138, 1529–1538. [Google Scholar] [CrossRef] [Green Version]
- Marchetti, M.A.; Codella, N.C.F.; Dusza, S.W.; Gutman, D.A.; Helba, B.; Kalloo, A.; Mishra, N.; Carrera, C.; Celebi, M.E.; DeFazio, J.L.; et al. Results of the 2016 international skin imaging collaboration international symposium on biomedical imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images. J. Am. Acad. Dermatol. 2018, 78, 270–277.e271. [Google Scholar] [CrossRef] [Green Version]
- Tschandl, P.; Argenziano, G.; Razmara, M.; Yap, J. Diagnostic accuracy of content-based dermatoscopic image retrieval with deep classification features. Br. J. Dermatol. 2019, 181, 155–165. [Google Scholar] [CrossRef]
- Hekler, A.; Utikal, J.S.; Enk, A.H.; Hauschild, A.; Weichenthal, M.; Maron, R.C.; Berking, C.; Haferkamp, S.; Klode, J.; Schadendorf, D.; et al. Superior skin cancer classification by the combination of human and artificial intelligence. Eur. J. Cancer 2019, 120, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Duan, Y.; Houthooft, R.; Schulman, J.; Sutskever, I.; Abbeel, P. Infogan: Interpretable representation learning by information maximizing generative adversarial nets. arXiv 2016, arXiv:1606.03657. [Google Scholar]
- Tschandl, P.; Rosendahl, C.; Kittler, H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 2018, 5, 180161. [Google Scholar] [CrossRef] [PubMed]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-excitation networks. arXiv 2019, arXiv:1709.01507v01504. [Google Scholar]
- Tan, M.; Le, Q.V. Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv 2019, arXiv:1905.11946v11942. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.J.; Weyand, T.; Andreeto, M.; Adam, H. Mobilenets: Efficient convolutional networks for mobile vision applications. arXiv 2017, arXiv:1704.04861v04861. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the Neural Information Processing Systems 2014, Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde- Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. arXiv 2014, arXiv:1406.2661. [Google Scholar]
- Tharwat, A. Classification assessment methods. Appl. Comput. Inform. 2018, 15, 1–13. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Fujisawa, Y.; Otomo, Y.; Ogata, Y.; Nakamura, Y.; Fujita, R.; Ishitsuka, Y.; Watanabe, R.; Okiyama, N.; Ohara, K.; Fujimoto, M. Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. Br. J. Dermatol. 2018, 180, 373–381. [Google Scholar] [CrossRef]
- Brinker, T.J.; Hekler, A.; Enk, A.H.; Berking, C.; Haferkamp, S.; Hauschild, A.; Weichenthal, M.; Klode, J.; Schadendorf, D.; Holland-Letz, T.; et al. Deep neural networks are superior to dermatologists in melanoma image classification. Eur. J. Cancer 2019, 119, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Brinker, T.J.; Hekler, A.; Enk, A.H.; Klode, J.; Hauschild, A.; Berking, C.; Schilling, B.; Haferkamp, S.; Schadendorf, D.; Frohling, S.; et al. A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. Eur. J. Cancer 2019, 111, 148–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brinker, T.J.; Hekler, A.; Enk, A.H.; Klode, J.; Hauschild, A.; Berking, C.; Schilling, B.; Haferkamp, S.; Schadendorf, D.; Holland-Letz, T.; et al. Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. Eur. J. Cancer 2019, 113, 47–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brinker, T.J.; Hekler, A.; Hauschild, A.; Berking, C.; Schilling, B.; Enk, A.H.; Haferkamp, S.; Karoglan, A.; von Kalle, C.; Weichenthal, M.; et al. Comparing artificial intelligence algorithms to 157 german dermatologists: The melanoma classification benchmark. Eur. J. Cancer 2019, 111, 30–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harangi, B. Skin lesion classification with ensembles of deep convolutional neural networks. J. Biomed. Inform. 2018, 86, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Jinnai, S.; Yamazaki, N.; Hirano, Y.; Sugawara, Y.; Ohe, Y.; Hamamoto, R. The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 2020, 10, 1123. [Google Scholar] [CrossRef]
- Phillips, M.; Marsden, H.; Jaffe, W.; Matin, R.N.; Wali, G.N.; Greenhalgh, J.; McGrath, E.; James, R.; Ladoyanni, E.; Bewley, A.; et al. Assessment of accuracy of an artificial intelligence algorithm to detect melanoma in images of skin lesions. JAMA Netw. Open 2019, 2, e1913436–e1913448. [Google Scholar] [CrossRef] [Green Version]
- Tschandl, P.; Codella, N.; Akay, B.N.; Argenziano, G.; Braun, R.P.; Cabo, H.; Gutman, D.; Halpern, A.; Helba, B.; Hofmann-Wellenhof, R.; et al. Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: An open, web-based, international, diagnostic study. Lancet Oncol. 2019, 20, 938–947. [Google Scholar] [CrossRef]
- Nasr-Esfahani, E.; Samavi, S.; Karimi, N.; Soroushmehr, S.M.; Jafari, M.H.; Ward, K.; Najarian, K. Melanoma detection by analysis of clinical images using convolutional neural network. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2016, 2016, 1373–1376. [Google Scholar]
- Yu, C.; Yang, S.; Kim, W.; Jung, J.; Chung, K.Y.; Lee, S.W.; Oh, B. Acral melanoma detection using a convolutional neural network for dermoscopy images. PLoS ONE 2018, 13, e0193321. [Google Scholar]
- Pomponiu, V.; Nejati, H.; Cheung, N.M. Deepmole: Deep neural networks for skin mole lesion classificatioz. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016. [Google Scholar]
- Codella, N.; Cai, J.; Abedini, M.; Garnavi, R.; Halpern, A.; Smith, J.R. Deep learning, sparse coding, and svm for melanoma recognition in dermoscopy images. In Proceedings of the 6th International Workshop on Machine Learning in Medical Imaging, Munich, Germany, 5–9 October 2015; pp. 118–126. [Google Scholar]
- Kawahara, J.; BenTaieb, A.; Hamarneh, G. Deep features to classify skin lesions. In Proceedings of the 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, Czech Republic, 13–16 April 2016. [Google Scholar]
- Bi, L.; Kim, J.; Ahn, E.; Feng, D. Automatic skin lesion analysis using large-scale dermoscopy images and deep residual networks. arXiv 2017, arXiv:1703.04197. [Google Scholar]
- Sun, X.; Yang, J.; Sun, M.; Wang, K. A benchmark for automatic visual classification of clinical skin disease images. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016. [Google Scholar]
- Chuchu, N.; Takwoingi, Y.; Dinnes, J.; Matin, R.N.; Bassett, O.; Moreau, J.F.; Bayliss, S.E.; Davenport, C.; Godfrey, K.; O’Connell, S.; et al. Smartphone applications for triaging adults with skin lesions that are suspicious for melanoma. Cochrane Database Syst. Rev. 2018, 12, CD013192. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.E.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Lemley, J.; Bazrafkan, S.; Corcoran, P. Smart augmentation learning an optimal data augmentation strategy. arXiv 2017, arXiv:1703.08383. [Google Scholar] [CrossRef]
- Talavera-Martinez, N.; Biblioni, P.; Gonzalez-Hidalgo, M. Computational texture features of dermoscopic images and their link to the descriptive terminology: A survey. Comput. Methods Programs Biomed. 2019, 182, 105049. [Google Scholar] [CrossRef]
- Mendonca, T.; Ferreira, P.M.; Marques, J.S.; Marcal, A.R.; Rozeira, J. Ph(2)—A dermoscopic image database for research and benchmarking. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013, 2013, 5437–5440. [Google Scholar]
- Kamulegeya, L.H.; Okello, M.; Bwanika, J.M.; Musinguzi, D.; Lubega, W.; Rusoke, D.; Nassiwa, F.; Borve, A. Using artificial intelligence on dermatology conditions in uganda: A case for diversity in training data sets for machine learning. BioRxiv 2019, 826057. [Google Scholar] [CrossRef] [Green Version]
- Maron, R.C.; Weichenthal, M.; Utikal, J.S.; Hekler, A.; Berking, C.; Hauschild, A.; Enk, A.H.; Haferkamp, S.; Klode, J.; Schadendorf, D.; et al. Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks. Eur. J. Cancer 2019, 119, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Hulstaert, E.; Hulstaert, L. Artificial intelligence in dermato-oncology: A joint clinical and data science perspective. Int. J. Dermatol. 2019, 58, 989–990. [Google Scholar] [CrossRef]
- Winkler, J.K.; Fink, C.; Toberer, F.; Enk, A.; Deinlein, T.; Hofmann-Wellenhof, R.; Thomas, L.; Lallas, A.; Blum, A.; Stolz, W.; et al. Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition. JAMA Dermatol. 2019, 155, 1135–1141. [Google Scholar] [CrossRef]
- Yoshida, T.; Celebi, M.E.; Schaefer, G.; Iyatomi, H. Simple and effective pre-processing for automated melanoma discrimination based on cytological findings. In Proceedings of the IEEE International Conference on Big Data, Washington, DC, USA, 6 December 2016. [Google Scholar]
- Jafari, M.; Karimi, N.; Nasr-Esfahani, E. Skin lesion segmentation in clinical images using deep learning. In Proceedings of the 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4 December 2016. [Google Scholar]
- Salido, J.; Ruiz, C. Using deep learning to detect melanoma in dermoscopy images. Int. J. Mach. Learn. Comput. 2018, 8, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Maglogiannis, I.; Doukas, C.N. Overview of advance computer vision systems for skin lesions characterization. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 721–733. [Google Scholar] [CrossRef]
- Riaz, F.; Hassan, A.; Javed, M.Y.; Coimbra, M.T. Detecting melanoma in dermoscopy images using scale adaptive local binary patterns. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2014, 2014, 6758–6761. [Google Scholar]
- Bello-Cerezo, R.; Bianconi, F.; Di Maria, F.; Napoletano, P.; Smeraldi, F. Comparative evaluation of hand-crafted image descriptors vs. Off-the-shelf cnn-based features for colour texture classification under ideal and realistic conditions. Appl. Sci. 2019, 9, 738. [Google Scholar] [CrossRef] [Green Version]
- Filali, Y.; El Khoukhi, H.; Sabri, M.A.; Arab, A. Efficient fusion of hand-crafted and pre-trained cnns features to classify melanoma skin cancer. Multimed. Tools Appl. 2020, 79, 31219–31238. [Google Scholar] [CrossRef]
Class | Training Set (n) | Test Set (n) |
---|---|---|
Melanocytic nevi | 5565 | 1140 |
Benign keratoses 1 | 912 | 186 |
Vascular lesions 2 | 118 | 24 |
Dermatofibroma | 96 | 20 |
Intraepithelial carcinoma 3 | 271 | 56 |
Basal cell carcinoma | 427 | 87 |
Melanoma | 924 | 189 |
Total | 8313 | 1702 |
Low-Resolution Images 1 | High-Resolution Images | |||
---|---|---|---|---|
DNN 2 | Accuracy 3 | Error Rate | Accuracy | Error Rate |
ResNet34 | 75.32 | 24.68 | 76.73 | 23.27 |
ResNet50 | 74.56 | 25.44 | 75.97 | 24.03 |
ResNet101 | 75.62 | 24.38 | 77.02 | 22.98 |
SEResNet50 | 77.82 | 22.22 | 79.13 | 20.87 |
VGG16 | 76.85 | 23.15 | 78.25 | 21.75 |
VGG19 | 74.21 | 25.79 | 75.62 | 24.38 |
EfficientNetB5 | 74.05 | 25.91 | 75.50 | 24.5 |
MobileNet | 82.47 | 17.53 | 83.88 | 16.12 |
Low-Resolution Images 1 | High-Resolution Images | |||
---|---|---|---|---|
DNN 2 | Accuracy 3 | Error Rate | Accuracy | Error Rate |
ResNet34 | 77.43 | 22.57 | 78.84 | 21.16 |
ResNet50 | 79.31 | 20.69 | 80.72 | 19.28 |
ResNet101 | 77.55 | 22.45 | 78.96 | 21.04 |
SEResNet50 | 80.01 | 19.99 | 80.72 | 19.28 |
VGG16 | 80.25 | 19.75 | 81.65 | 18.35 |
VGG19 | 79.43 | 20.57 | 79.02 | 20.98 |
EfficientNetB5 | 75.73 | 24.27 | 77.14 | 22.86 |
MobileNet | 81.24 | 18.76 | 84.73 | 15.27 |
Condition | Accuracy 1 | Error Rate |
---|---|---|
EfficientNetB5 | 77.14 | 22.86 |
GPs 2 | 17.29 | 82.71 |
GPs + AI | 42.43 | 57.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucius, M.; De All, J.; De All, J.A.; Belvisi, M.; Radizza, L.; Lanfranconi, M.; Lorenzatti, V.; Galmarini, C.M. Deep Neural Frameworks Improve the Accuracy of General Practitioners in the Classification of Pigmented Skin Lesions. Diagnostics 2020, 10, 969. https://doi.org/10.3390/diagnostics10110969
Lucius M, De All J, De All JA, Belvisi M, Radizza L, Lanfranconi M, Lorenzatti V, Galmarini CM. Deep Neural Frameworks Improve the Accuracy of General Practitioners in the Classification of Pigmented Skin Lesions. Diagnostics. 2020; 10(11):969. https://doi.org/10.3390/diagnostics10110969
Chicago/Turabian StyleLucius, Maximiliano, Jorge De All, José Antonio De All, Martín Belvisi, Luciana Radizza, Marisa Lanfranconi, Victoria Lorenzatti, and Carlos M. Galmarini. 2020. "Deep Neural Frameworks Improve the Accuracy of General Practitioners in the Classification of Pigmented Skin Lesions" Diagnostics 10, no. 11: 969. https://doi.org/10.3390/diagnostics10110969