Modulation of Forward Propulsion and Foot Dorsiflexion by Spinal and Muscular Stimulation During Human Stepping
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Ethics
2.2. Protocol
2.3. Transcutaneous Spinal–Muscular Stimulation
2.4. Recording of Kinematic Characteristics of Walking
2.5. Data Analysis
3. Results
3.1. Stimulation of the Posterior Root L2 and Extensor Leg Muscles During the Stance Phase
3.2. Stimulation of the T12 Posterior Root and Leg Flexor Muscles During the Swing Phase
3.3. Combined Stimulation of the Posterior Roots of L2 and the Extensor Muscles of the Legs in the Stance Phase and the Posterior Roots of T12 and the Flexor Muscles of the Legs in the Swing Phase
3.4. Characteristics of Foot Movement During Spinal–Muscular Stimulation
4. Discussion
4.1. Regulation of Stepping Movements During Combined Spinal and Muscle Stimulation
4.2. Neurophysiological and Biomechanical Correlates of Forward Propulsion and Foot Dorsiflexion During Spinal and Muscular Stimulation
5. Limitations and Future Directions
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AIS | ASIA Impairment Scale |
| ASIA | American Spinal Injury Association |
| FES | functional electrical stimulation |
| HAM | right hamstring muscles |
| L2 | right spinal cord roots at L2 vertebrae level |
| MG | right m. gastrocnemius |
| SCI | spinal cord injury |
| T12 | right spinal cord roots at T12 vertebrae level |
| TA | right m. tibialis anterior |
| TSV | tab-separated values |
References
- Yu, P.; Zhang, W.; Liu, Y.; Sheng, C.; So, K.-F.; Zhou, L.; Zhu, H. The Effects and Potential Mechanisms of Locomotor Training on Improvements of Functional Recovery after Spinal Cord Injury. In International Review of Neurobiology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 147, pp. 199–217. [Google Scholar]
- Loy, K.; Bareyre, F.M. Rehabilitation Following Spinal Cord Injury: How Animal Models Can Help Our Understanding of Exercise-Induced Neuroplasticity. Neural Regen. Res. 2019, 14, 405. [Google Scholar] [CrossRef]
- Samejima, S.; Henderson, R.; Pradarelli, J.; Mondello, S.E.; Moritz, C.T. Activity-Dependent Plasticity and Spinal Cord Stimulation for Motor Recovery Following Spinal Cord Injury. Exp. Neurol. 2022, 357, 114178. [Google Scholar] [CrossRef]
- Duysens, J.; Van de Crommert, H.W.A.A. Neural Control of Locomotion; Part 1: The Central Pattern Generator from Cats to Humans. Gait Posture 1998, 7, 131–141. [Google Scholar] [CrossRef]
- Dimitrijevic, M.R.; Gerasimenko, Y.; Pinter, M.M. Evidence for a Spinal Central Pattern Generator in Humans. Ann. N. Y. Acad. Sci. 1998, 860, 360–376. [Google Scholar] [CrossRef] [PubMed]
- Dietz, V. Spinal Cord Pattern Generators for Locomotion. Clin. Neurophysiol. 2003, 114, 1379–1389. [Google Scholar] [CrossRef] [PubMed]
- Gorodnichev, R.M.; Pivovarova, E.A.; Puhov, A.; Moiseev, S.A.; Gerasimenko, Y.P.; Savochin, A.A.; Moshonkina, T.R.; Chsherbakova, N.A.; Kilimnik, V.A.; Selionov, V.A.; et al. Transcutaneous Electrical Stimulation of the Spinal Cord: A Noninvasive Tool for the Activation of Stepping Pattern Generators in Humans. Hum. Physiol. 2012, 38, 158–167. [Google Scholar] [CrossRef]
- Gerasimenko, Y.; Gorodnichev, R.; Moshonkina, T.; Sayenko, D.; Gad, P.; Reggie Edgerton, V. Transcutaneous Electrical Spinal-Cord Stimulation in Humans. Ann. Phys. Rehabil. Med. 2015, 58, 225–231. [Google Scholar] [CrossRef]
- Allen, J.R.; Karri, S.R.; Yang, C.; Stoykov, M.E. Spinal Cord Stimulation for Poststroke Hemiparesis: A Scoping Review. Am. J. Occup. Ther. 2024, 78, 7802180220. [Google Scholar] [CrossRef]
- Laskin, J.J.; Waheed, Z.; Thorogood, N.P.; Nightingale, T.E.; Noonan, V.K. Spinal Cord Stimulation Research in the Restoration of Motor, Sensory, and Autonomic Function for Individuals Living With Spinal Cord Injuries: A Scoping Review. Arch. Phys. Med. Rehabil. 2022, 103, 1387–1397. [Google Scholar] [CrossRef]
- Angeli, C.; Rejc, E.; Boakye, M.; Herrity, A.; Mesbah, S.; Hubscher, C.; Forrest, G.; Harkema, S. Targeted Selection of Stimulation Parameters for Restoration of Motor and Autonomic Function in Individuals With Spinal Cord Injury. Neuromodul. Technol. Neural Interface 2024, 27, 645–660. [Google Scholar] [CrossRef]
- Gill, M.L.; Grahn, P.J.; Calvert, J.S.; Linde, M.B.; Lavrov, I.A.; Strommen, J.A.; Beck, L.A.; Sayenko, D.G.; Van Straaten, M.G.; Drubach, D.I.; et al. Neuromodulation of Lumbosacral Spinal Networks Enables Independent Stepping after Complete Paraplegia. Nat. Med. 2018, 24, 1677–1682. [Google Scholar] [CrossRef]
- Wagner, F.B.; Mignardot, J.-B.; Le Goff-Mignardot, C.G.; Demesmaeker, R.; Komi, S.; Capogrosso, M.; Rowald, A.; Seáñez, I.; Caban, M.; Pirondini, E.; et al. Targeted Neurotechnology Restores Walking in Humans with Spinal Cord Injury. Nature 2018, 563, 65–71. [Google Scholar] [CrossRef]
- Young, W. Electrical Stimulation and Motor Recovery. Cell Transpl. 2015, 24, 429–446. [Google Scholar] [CrossRef]
- Moshonkina, T.; Grishin, A.; Bogacheva, I.; Gorodnichev, R.; Ovechkin, A.; Siu, R.; Edgerton, V.R.; Gerasimenko, Y. Novel Non-Invasive Strategy for Spinal Neuromodulation to Control Human Locomotion. Front. Hum. Neurosci. 2021, 14, 622533. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, C.A.; Hicks, A.L. Muscle Fatigue Characteristics in Paralyzed Muscle after Spinal Cord Injury. Spinal Cord 2011, 49, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Vastano, R.; Perez, M.A. Changes in Motoneuron Excitability during Voluntary Muscle Activity in Humans with Spinal Cord Injury. J. Neurophysiol. 2020, 123, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Patterson, K.K.; Gage, W.H.; Brooks, D.; Black, S.E.; McIlroy, W.E. Changes in Gait Symmetry and Velocity After Stroke: A Cross-Sectional Study From Weeks to Years After Stroke. Neurorehabilit. Neural Repair 2010, 24, 783–790. [Google Scholar] [CrossRef]
- Mentiplay, B.F.; Adair, B.; Bower, K.J.; Williams, G.; Tole, G.; Clark, R.A. Associations between Lower Limb Strength and Gait Velocity Following Stroke: A Systematic Review. Brain Inj. 2015, 29, 409–422. [Google Scholar] [CrossRef]
- Minassian, K.; Jilge, B.; Rattay, F.; Pinter, M.M.; Binder, H.; Gerstenbrand, F.; Dimitrijevic, M.R. Stepping-like Movements in Humans with Complete Spinal Cord Injury Induced by Epidural Stimulation of the Lumbar Cord: Electromyographic Study of Compound Muscle Action Potentials. Spinal Cord 2004, 42, 401–416. [Google Scholar] [CrossRef]
- Hofstoetter, U.S.; Krenn, M.; Danner, S.M.; Hofer, C.; Kern, H.; McKay, W.B.; Mayr, W.; Minassian, K. Augmentation of Voluntary Locomotor Activity by Transcutaneous Spinal Cord Stimulation in Motor-Incomplete Spinal Cord-Injured Individuals. Artif. Organs 2015, 39, E176–E186. [Google Scholar] [CrossRef]
- Hofstoetter, U.S.; Knikou, M.; Guertin, P.A.; Minassian, K. Probing the Human Spinal Locomotor Circuits by Phasic Step-Induced Feedback and by Tonic Electrical and Pharmacological Neuromodulation. Curr. Pharm. Des. 2017, 23, 1805–1820. [Google Scholar] [CrossRef] [PubMed]
- Sayenko, D.G.; Rath, M.; Ferguson, A.R.; Burdick, J.; Havton, L.; Edgerton, V.R.; Gerasimenko, Y.P. Self-Assisted Standing Enabled by Non-Invasive Spinal Stimulation after Spinal Cord Injury. J. Neurotrauma 2019, 36, 1435–1450. [Google Scholar] [CrossRef]
- Skiadopoulos, A.; Knikou, M. Tapping into the Human Spinal Locomotor Centres with Transspinal Stimulation. Sci. Rep. 2024, 14, 5990. [Google Scholar] [CrossRef]
- Watanabe, T.; Endo, S.; Morita, R.; Murakami, K.; Kuge, N. A Preliminary Test of a Portable Prototype System of FES Foot Drop Correction and Gait Measurements with a Hemiplegic Subject. In Proceedings of the Converging Clinical and Engineering Research on Neurorehabilitation II; Ibáñez, J., González-Vargas, J., Azorín, J.M., Akay, M., Pons, J.L., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1217–1221. [Google Scholar]
- Maffiuletti, N.A. Physiological and Methodological Considerations for the Use of Neuromuscular Electrical Stimulation. Eur. J. Appl. Physiol. 2010, 110, 223–234. [Google Scholar] [CrossRef]
- Grishin, A.A.; Bobrova, E.V.; Reshetnikova, V.V.; Moshonkina, T.R.; Gerasimenko, Y.P. A System for Detecting Stepping Cycle Phases and Spinal Cord Stimulation as a Tool for Controlling Human Locomotion. Biomed. Eng. 2021, 54, 312–316. [Google Scholar] [CrossRef]
- Prakash, C.; Kumar, R.; Mittal, N. Recent Developments in Human Gait Research: Parameters, Approaches, Applications, Machine Learning Techniques, Datasets and Challenges. Artif. Intell. Rev. 2018, 49, 1–40. [Google Scholar] [CrossRef]
- Anwary, A.R.; Yu, H.; Vassallo, M. An Automatic Gait Feature Extraction Method for Identifying Gait Asymmetry Using Wearable Sensors. Sensors 2018, 18, 676. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Max, L. Accuracy and Precision of a Custom Camera-Based System for 2-D and 3-D Motion Tracking During Speech and Nonspeech Motor Tasks. J. Speech Lang. Hear. Res. 2014, 57, 426–438. [Google Scholar] [CrossRef]
- Leardini, A.; Sawacha, Z.; Paolini, G.; Ingrosso, S.; Nativo, R.; Benedetti, M.G. A New Anatomically Based Protocol for Gait Analysis in Children. Gait Posture 2007, 26, 560–571. [Google Scholar] [CrossRef] [PubMed]
- Harkema, S.; Angeli, C.; Gerasimenko, Y. Historical Development and Contemporary Use of Neuromodulation in Human Spinal Cord Injury. Curr. Opin. Neurol. 2022, 35, 536–543. [Google Scholar] [CrossRef]
- Gerasimenko, Y.P.; Lu, D.C.; Modaber, M.; Zdunowski, S.; Gad, P.; Sayenko, D.G.; Morikawa, E.; Haakana, P.; Ferguson, A.R.; Roy, R.R.; et al. Noninvasive Reactivation of Motor Descending Control after Paralysis. J. Neurotrauma 2015, 32, 1968–1980. [Google Scholar] [CrossRef] [PubMed]
- Gorodnichev, R.M.; Pukhov, A.M.; Moiseev, S.; Ivanov, S.; Markevich, V.; Bogacheva, I.; Grishin, A.; Moshonkina, T.R.; Gerasimenko, Y.P. Regulation of Gait Cycle Phases during Noninvasive Electrical Stimulation of the Spinal Cord. Hum. Physiol. 2021, 47, 60–69. [Google Scholar] [CrossRef]
- Siu, R.; Brown, E.H.; Mesbah, S.; Gonnelli, F.; Pisolkar, T.; Edgerton, V.R.; Ovechkin, A.V.; Gerasimenko, Y.P. Novel Noninvasive Spinal Neuromodulation Strategy Facilitates Recovery of Stepping after Motor Complete Paraplegia. J. Clin. Med. 2022, 11, 3670. [Google Scholar] [CrossRef]
- Moshonkina, T.R.; Ananyev, S.S.; Lyakhovetskii, V.A.; Grishin, A.A.; Gerasimenko, Y.P. Control of Walking Cycle Using Noninvasive Electrical Stimulation of the Spinal Cord and Muscles. Hum. Physiol. 2025, 51, 46–59. [Google Scholar] [CrossRef]
- Santos, G.F.; Jakubowitz, E.; Pronost, N.; Bonis, T.; Hurschler, C. Predictive Simulation of Post-Stroke Gait with Functional Electrical Stimulation. Sci. Rep. 2021, 11, 21351. [Google Scholar] [CrossRef]
- Jaqueline da Cunha, M.; Rech, K.D.; Salazar, A.P.; Pagnussat, A.S. Functional Electrical Stimulation of the Peroneal Nerve Improves Post-Stroke Gait Speed When Combined with Physiotherapy. A Systematic Review and Meta-Analysis. Ann. Phys. Rehabil. Med. 2021, 64, 101388. [Google Scholar] [CrossRef]
- Skvortsov, D.V.; Grebenkina, N.V.; Klimov, L.V.; Kaurkin, S.N.; Bulatova, M.A.; Ivanova, G.E. Functional Electrical Stimulation for Gait Correction in the Early Recovery Phase after Ischemic Stroke. Extreme Med. 2025, 27, 417–428. [Google Scholar] [CrossRef]
- Bartloff, J.; Lanotte, F.; O’Brien, M.K.; Jayaraman, A. Advancing Gait Rehabilitation through Wearable Technologies: Current Landscape and Future Directions. Expert Rev. Med. Devices 2025, 22, 1105–1116. [Google Scholar] [CrossRef] [PubMed]
- Hosobuchi, Y. Electrical Stimulation of the Cervical Spinal Cord Increases Cerebral Blood Flow in Humans. Stereotact. Funct. Neurosurg. 1985, 48, 372–376. [Google Scholar] [CrossRef]
- Visocchi, M.; Giordano, A.; Calcagni, M.; Cioni, B.; Di Rocco, F.; Meglio, M. Spinal Cord Stimulation and Cerebral Blood Flow in Stroke: Personal Experience. Stereotact. Funct. Neurosurg. 2002, 76, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Keser, Z.; Ikramuddin, S.; Shekhar, S.; Feng, W. Neuromodulation for Post-Stroke Motor Recovery: A Narrative Review of Invasive and Non-Invasive Tools. Curr. Neurol. Neurosci. Rep. 2023, 23, 893–906. [Google Scholar] [CrossRef]
- Iversen, M.M.; Harrison, A.T.; Stanley, C.T.; Dalrymple, A.N. Rehabilitation of Motor and Sensory Function Using Spinal Cord Stimulation: Recent Advances. Curr. Opin. Biomed. Eng. 2024, 32, 100566. [Google Scholar] [CrossRef]
- Moshonkina, T.R.; Zharova, E.N.; Ananev, S.S.; Shandybina, N.D.; Vershinina, E.A.; Lyakhovetskii, V.A.; Grishin, A.A.; Shlyakhto, E.V.; Gerasimenko, Y.P. A New Technology for Recovery of Locomotion in Patients after a Stroke. Dokl. Biochem. Biophys. 2022, 507, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Karbasforoushan, H.; Cohen-Adad, J.; Dewald, J.P.A. Brainstem and Spinal Cord MRI Identifies Altered Sensorimotor Pathways Post-Stroke. Nat. Commun. 2019, 10, 3524. [Google Scholar] [CrossRef] [PubMed]
- Massey, S.; Konig, D.; Upadhyay, P.; Evcil, Z.B.; Melin, R.; Fatima, M.; Hannah, R.; Duffell, L. The Effects of Transcutaneous Spinal Cord Stimulation Delivered with and without High-frequency Modulation on Spinal and Corticospinal Excitability. Artif. Organs 2024, 48, 297–308. [Google Scholar] [CrossRef]
- Manson, G.A.; Atkinson, D.A.; Shi, Z.; Sheynin, J.; Karmonik, C.; Markley, R.L.; Sayenko, D.G. Transcutaneous Spinal Stimulation Alters Cortical and Subcortical Activation Patterns during Mimicked-Standing: A Proof-of-Concept fMRI Study. Neuroimage Rep. 2022, 2, 100090. [Google Scholar] [CrossRef]






| Stage | Condition |
|---|---|
| 1 | walking without stimulation (control) |
| 2 | walking with L2 stimulation during stance phase |
| 3 | walking with L2+HAM stimulation during stance phase |
| 4 | walking with L2+HAM+MG stimulation during stance phase |
| 5 | walking with T12 stimulation during swing phase |
| 6 | walking with T12+TA stimulation during swing phase |
| 7 | walking with L2+HAM+MG stimulation during stance phase+T12+TA stimulation during swing phase |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ananyev, S.; Sakun, I.; Lyakhovetskii, V.; Grishin, A.; Moshonkina, T.; Gerasimenko, Y. Modulation of Forward Propulsion and Foot Dorsiflexion by Spinal and Muscular Stimulation During Human Stepping. Life 2026, 16, 226. https://doi.org/10.3390/life16020226
Ananyev S, Sakun I, Lyakhovetskii V, Grishin A, Moshonkina T, Gerasimenko Y. Modulation of Forward Propulsion and Foot Dorsiflexion by Spinal and Muscular Stimulation During Human Stepping. Life. 2026; 16(2):226. https://doi.org/10.3390/life16020226
Chicago/Turabian StyleAnanyev, Sergey, Ivan Sakun, Vsevolod Lyakhovetskii, Alexander Grishin, Tatiana Moshonkina, and Yury Gerasimenko. 2026. "Modulation of Forward Propulsion and Foot Dorsiflexion by Spinal and Muscular Stimulation During Human Stepping" Life 16, no. 2: 226. https://doi.org/10.3390/life16020226
APA StyleAnanyev, S., Sakun, I., Lyakhovetskii, V., Grishin, A., Moshonkina, T., & Gerasimenko, Y. (2026). Modulation of Forward Propulsion and Foot Dorsiflexion by Spinal and Muscular Stimulation During Human Stepping. Life, 16(2), 226. https://doi.org/10.3390/life16020226

