The Compartmental and Fibrillar Polyhedral Architecture of Fascia: An Assessment of Connective Tissue Anatomy Without Its Abstract Classifications
Abstract
1. Introduction
The Connective Tissues (CTs)
2. The Architectural Framework
2.1. A Heterarchy of Compartments
Dissecting the Compartmental ‘Cells’
2.2. The Extracellular Matrix (ECM)
2.2.1. Fluids
2.2.2. Fibres
2.2.3. Mesenchymal Cells
2.2.4. The Classification Conundrum
2.3. Bones and Muscles in Context
3. Discussion
3.1. The Anatomical Contrivance
3.2. Return to the Compartmental Reality
3.2.1. Dynamics
3.2.2. Closed-Chain Kinematics
3.3. The Architectural Context
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Schrodinger, E. What Is Life? Canto; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Linnaeus, C. Systema Naturæ Per Regna Tria Naturæ, Secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Synonymis, Locis, 10th ed.; Laurentius Salvius: Stockholm, Sweden, 1758. [Google Scholar]
- White, H.E.; Tucker, A.S.; Goswami, A. Divergent patterns of cranial suture fusion in marsupial and placental mammals. Zool. J. Linn. Soc. 2025, 203, zlae060. [Google Scholar] [CrossRef]
- Owen, R. On the Nature of Limbs: A Discourse; John van Voorst: London, UK, 1849. [Google Scholar]
- Lamarck, J.B. Zoological Philosophy: An Exposition with Regard to the Natural History of Animals; Hafner: New York, NY, USA, 1963. [Google Scholar]
- Glazier, P.S.; Davids, K. The problem of measurement indeterminacy in complex neurobiological movement systems. J. Biomech. 2009, 42, 2694–2696. [Google Scholar] [CrossRef]
- Scarr, G.; Blyum, L.; Levin, S.M.; de Solórzano, S.L. Moving beyond Vesalius: Why anatomy needs a mapping update. Med. Hypotheses 2024, 183, 111257. [Google Scholar] [CrossRef]
- Winslow, J.-B. An Anatomical Exposition of the Structure of the Human Body; Bettesworth & Hitch: London, UK; Osborn & Longman: London, UK; Ware: London, UK; Birt: London, UK; Davis: London, UK; Astley: London, UK, 1734; Available online: https://archive.org/details/anatomicalexposi01winsuoft (accessed on 11 September 2025).
- Vesalius, A. De Humani Corporis Fabrica; University of Padua: Padua, Italy, 1543. [Google Scholar]
- Williams, P.L.; Warwick, R. Gray’s Anatomy, 36th ed.; Churchill Livingstone: London, UK, 1980. [Google Scholar]
- Standring, S. Gray’s Anatomy: The Anatomical Basis of Clinical Practice, 42nd ed.; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- van der Wal, J. The architecture of the connective tissue in the musculoskeletal system—An often overlooked functional parameter as to proprioception in the locomotor apparatus. Int. J. Ther. Massage Bodyw. 2009, 2, 9–23. [Google Scholar] [CrossRef]
- Neumann, P.E.; Neumann, E.E.; Tissues, E. General histological woes: Encore. Tissues, please. Clin. Anat. 2023, 36, 782–786. [Google Scholar] [CrossRef] [PubMed]
- Stecco, C.; Pratt, R.; Nemetz, L.D.; Schleip, R.; Stecco, A.; Theise, N.D. Towards a comprehensive definition of the human fascial system. J. Anat. 2025, 246, 1084–1098. [Google Scholar] [CrossRef]
- Schleip, R.; Stecco, C.; Driscoll, M.; Huijing, P.A. Fascia: The Tensional Network of the Human Body, 2nd ed.; Elsevier: London, UK, 2022. [Google Scholar]
- Hutson, M.; Ward, A. Oxford Textbook of Musculoskeletal Medicine, 2nd ed.; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Borelli, G. De Moto Animalium; Angeli Bernabo: Rome, Italy, 1680. [Google Scholar]
- Newton, I. The Mathematical Principles of Natural Philosophy; Royal Society: London, UK, 1687. [Google Scholar]
- Freutel, M.; Schmidt, H.; Dürselen, L.; Ignatius, A.; Galbusera, F. Finite element modeling of soft tissues: Material models, tissue interaction and challenges. Clin. Biomech. 2014, 29, 363–372. [Google Scholar] [CrossRef]
- Wilke, J.; Schleip, R.; Yucesoy, C.A.; Banzer, W. Not merely a protective packing organ? A review of fascia and its force transmission capacity. J. Appl. Physiol. 2018, 124, 234–244. [Google Scholar] [CrossRef]
- Adstrum, S. Fascial eponyms may help elucidate terminological and nomenclatural development. J. Bodyw. Mov. Ther. 2015, 19, 516–525. [Google Scholar] [CrossRef] [PubMed]
- Adstrum, S.; Nicholson, H. A history of fascia. Clin. Anat. 2019, 32, 862–870. [Google Scholar] [CrossRef]
- Slater, A.M.; Barclay, S.J.; Granfar, R.M.S.; Pratt, R.L. Fascia as a regulatory system in health and disease. Front. Neurol. 2024, 15, 1458385. [Google Scholar] [CrossRef] [PubMed]
- Wong, Z.Y.; Nee, E.; Coles, M.; Buckley, C.D. Why does understanding the biology of fibroblasts in immunity really matter? PLoS Biol. 2023, 21, e3001954. [Google Scholar] [CrossRef] [PubMed]
- Theocharis, A.D.; Manou, D.; Karamanos, N.K. The extracellular matrix as a multitasking player in disease. FEBS J. 2019, 286, 2830–2869. [Google Scholar] [CrossRef]
- Winkler, J.; Abisoye-Ogunniyan, A.; Metcalf, K.J.; Werb, Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat. Commun. 2020, 11, s120. [Google Scholar] [CrossRef]
- Adstrum, S.; Hedley, G.; Schleip, R.; Stecco, C.; Yucesoy, C.A. Defining the fascial system. J. Bodyw. Mov. Ther. 2017, 21, 173–177. [Google Scholar] [CrossRef]
- Bordoni, B.; Escher, A.R.; Tobbi, F.; Pianese, L.; Ciardo, A.; Yamahata, J.; Hernandez, S.; Sanchez, O. Fascial nomenclature: Update 2022. Cureus 2022, 14, e25904. [Google Scholar] [CrossRef] [PubMed]
- Stecco, C.; Adstrum, S.; Hedley, G.; Schleip, R.; Yucesoy, C.A. Update on fascial nomenclature. J. Bodyw. Mov. Ther. 2018, 22, 354. [Google Scholar] [CrossRef]
- Guimberteau, J.C.; Sawaya, E.T.; Armstrong, C. New perspectives on the organization of living tissue and the ongoing connective tissue/fascia nomenclature debate, as revealed by intra-tissue endoscopy that provides real-time images during surgical procedures. Life 2025, 15, 791. [Google Scholar] [CrossRef]
- Schleip, R.; Jäger, H.; Klingler, W. What is “fascia”? A review of different nomenclatures. J. Bodyw. Mov. Ther. 2012, 16, 496–502. [Google Scholar] [CrossRef]
- Stevenson, A.; Waite, M. Concise Oxford English Dictionary, 12th ed.; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- von Haller, A. First Lines of Physiology; Charles Elliot: Edinburgh, UK, 1747; Volume 1. [Google Scholar]
- Malpighi, F.C. De Pulmonibus Epistola altera. In De Pulmonibus Observationes Anatomicae; Jo. Baptistae Ferroni: Bononiae, Italy, 1661. [Google Scholar]
- Levin, S.M.; Scarr, G. Biotensegrity and the mechanics of fascia. In Fascia: The Tensional Network of the Human Body, 2nd ed.; Schleip, R., Huijing, P.A., Stecco, C., Driscoll, M., Eds.; Churchill Livingstone Elsevier: Edinburgh, UK, 2022; pp. 232–238. [Google Scholar]
- Scarr, G. Fascial hierarchies and the relevance of crossed-helical arrangements of collagen to changes in the shape of muscles. J. Bodyw. Mov. Ther. 2016, 20, 377–387. [Google Scholar] [CrossRef]
- Purslow, P.P. The structure and role of intramuscular connective tissue in muscle function. Front. Physiol. 2020, 11, 495. [Google Scholar] [CrossRef]
- Braz, C. Available online: https://www.slideshare.net/claudiabraz5209/biologia-atlas-de-anatomia-humana-laminas2-45066899 (accessed on 11 September 2025).
- Wilson, J.W. Cellular tissue and the dawn of the cell theory. Isis 1944, 35, 168–173. [Google Scholar] [CrossRef]
- Hooke, R. Micrographia; Royal Society: London, UK, 1665. [Google Scholar]
- Schwann, T. Microscopical Researches; Sydenham Society: London, UK, 1847. [Google Scholar]
- Goss, C.M. The historical background of Schwann’s cell theory. Yale J. Biol. Med. 1937, 10, 125–144. [Google Scholar] [PubMed]
- Klenerman, L. The evolution of the compartment syndrome since 1948 as recorded in the JBJS (B). J. Bone Jt. Surg.-Ser. B 2007, 89, 1280–1282. [Google Scholar] [CrossRef]
- Reed, R.K.; Rubin, K. Transcapillary exchange: Role and importance of the interstitial fluid pressure and the extracellular matrix. Cardiovasc. Res. 2010, 87, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Benias, P.C.; Wells, R.G.; Sackey-Aboagye, B.; Klavan, H.; Reidy, J.; Buonocore, D.; Miranda, M.; Kornacki, S.; Wayne, M.; Carr-Locke, D.L.; et al. Structure and distribution of an unrecognized interstitium in human tissues. Sci. Rep. 2018, 8, 4947. [Google Scholar] [CrossRef]
- Cenaj, O.; Allison, D.H.R.; Imam, R.; Zeck, B.; Drohan, L.M.; Chiriboga, L.; Llewellyn, J.; Liu, C.Z.; Park, Y.N.; Wells, R.G.; et al. Evidence for continuity of interstitial spaces across tissue and organ boundaries in humans. Commun. Biol. 2021, 4, 436. [Google Scholar] [CrossRef]
- Pirri, C.; Wells, R.G.; De Caro, R.; Stecco, C.; Theise, N.D. What’s old is new again—The anatomical studies of Franklin P. Mall and the fascial-interstitial spaces. Clin. Anat. 2023, 36, 887–895. [Google Scholar] [CrossRef]
- Stecco, A.; Cowman, M.; Pirri, N.; Raghavan, P.; Pirri, C. Densification: Hyaluronan aggregation in different human organs. Bioengineering 2022, 9, 159. [Google Scholar] [CrossRef]
- Zhang, S.; Ju, W.; Chen, X.; Zhao, Y.; Feng, L.; Yin, Z.; Chen, X. Hierarchical ultrastructure: An overview of what is known about tendons and future perspective for tendon engineering. Bioact. Mater. 2022, 8, 124–139. [Google Scholar] [CrossRef]
- Guimberteau, J.C.; Armstrong, C. Architecture of Human Living Fascia: The Extracellular Matrix and Cells Revealed Through Endoscopy; Handspring: Edinburgh, UK, 2015. [Google Scholar]
- Attwell, D.; Mishra, A.; Hall, C.N.; O’Farrell, F.M.; Dalkara, T. What is a pericyte? J. Cereb. Blood Flow Metab. 2016, 36, 451–455. [Google Scholar] [CrossRef]
- Koliaraki, V.; Prados, A.; Armaka, M.; Kollias, G. The mesenchymal context in inflammation, immunity and cancer. Nat. Immunol. 2020, 21, 974–982. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Cui, Y.; Han, H.; Guo, E.; Shi, X.; Xiong, K.; Zhang, N.; Zhai, S.; Sang, S.; Liu, M.; et al. Fibroblast atlas: Shared and specific cell types across tissues. Sci. Adv. 2025, 11, eado0173. [Google Scholar] [CrossRef] [PubMed]
- Berry, C.E.; Downer, M.; Morgan, A.G.; Griffin, M.; Liang, N.E.; Kameni, L.; Parker, J.B.L.; Guo, J.; Longaker, M.T.; Wan, D.C. The effects of mechanical force on fibroblast behavior in cutaneous injury. Front. Surg. 2023, 10, 1167067. [Google Scholar] [CrossRef] [PubMed]
- Stecco, C.; Fede, C.; Macchi, V.; Porzionato, A.; Petrelli, L.; Biz, C.; Stern, R.; De Caro, R. The fasciacytes. Clin. Anat. 2018, 31, 667–676. [Google Scholar] [CrossRef]
- Scarr, G. Response to the recent article: Stecco et al. (2025) “Towards a comprehensive definition of the human fascial system.” Journal of Anatomy. DOI: 10.1111/joa.14212. J. Anat. 2025, 247, 408–409. [Google Scholar] [CrossRef]
- Levin, S.M. Bone Is Fascia. 2018. Available online: https://www.researchgate.net/publication/327142198_Bone_is_fascia (accessed on 11 September 2025).
- Sharkey, J. Regarding: Update on fascial nomenclature-an additional proposal by John Sharkey MSc, Clinical Anatomist. J. Bodyw. Mov. Ther. 2019, 23, 6–8. [Google Scholar] [CrossRef]
- Reznikov, N.; Bilton, M.; Lari, L.; Stevens, M.M.; Kröger, R. Fractal-like hierarchical organization of bone begins at the nanoscale. Science 2018, 360, eaao2189. [Google Scholar] [CrossRef]
- Golman, M.; Abraham, A.C.; Kurtaliaj, I.; Marshall, B.P.; Hu, Y.J.; Schwartz, A.G.; Guo, X.E.; Birman, V.; Thurner, P.J.; Genin, G.M.; et al. Toughening mechanisms for the attachment of architectured materials: The mechanics of the tendon enthesis. Sci. Adv. 2021, 7, 5584. [Google Scholar] [CrossRef]
- Masi, A.T.; Hannon, J.C. Human resting muscle tone (HRMT): Narrative introduction and modern concepts. J. Bodyw. Mov. Ther. 2009, 12, 320–332. [Google Scholar] [CrossRef]
- Dahmann, C.; Oates, A.C.; Brand, M. Boundary formation and maintenance in tissue development. Nat. Rev. Genet. 2011, 12, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Monier, B.; Pélissier-Monier, A.; Brand, A.H.; Sanson, B. An actomyosin-based barrier inhibits cell mixing at compartmental boundaries in Drosophila embryos. Nat. Cell Biol. 2010, 12, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Lemke, S.B.; Nelson, C.M. Dynamic changes in epithelial cell packing during tissue morphogenesis. Curr. Biol. 2021, 31, R1098–R1110. [Google Scholar] [CrossRef]
- Von Hagens, G.; Whalley, A. Body Worlds: The Anatomical Exhibition of Real Human Bodies; Verlagsgesellschaft mbH: Heidelberg, Germany, 2007. [Google Scholar]
- Rifkin, B.; Ackerman, M.; Folkenberg, J. Human Anatomy: A Visual History from the Renaissance to the Digital Age; Abrams: New York, NY, USA, 2006. [Google Scholar]
- Saunders, J.B.; O’Malley, C. The Illustrations from the Works of Andreas Vesalius of Brussels; Dover Publications: New York, NY, USA, 1973. [Google Scholar]
- Ambrose, C.T. Giovanni Borelli’s De motu animalium, 1685. Transylvania Treasures 2008, 1, 8–9. [Google Scholar]
- Darwin, C. The Various Contrivances by Which Orchids Are Fertilised by Insects, 2nd ed.; John Murray: London, UK, 1862. [Google Scholar]
- Deriglazov, A. Classical Mechanics: Hamiltonian and Lagrangian Formalism, 2nd ed.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Roupa, I.; da Silva, M.R.; Marques, F.; Gonçalves, S.B.; Flores, P.; da Silva, M.T. On the Modeling of Biomechanical Systems for Human Movement Analysis: A Narrative Review. Arch. Comput. Methods Eng. 2022, 29, 4915–4958. [Google Scholar] [CrossRef]
- Heidegger, M. The Question Concerning Technology, and Other Essays; Garland Publishing: London, UK, 1977. [Google Scholar]
- Foster, M. Lectures on the History of Physiology During Sixteenth, Seventeenth and Eighteenth Centuries; Cambridge University Press: London, UK, 1901. [Google Scholar]
- Anderson, M. Clinical Memoranda: No. V. Case of diffused and circumscribed fatty tumours of the subcutaneous cellular tissue, complicated with aneurism. Glasg. Med. J. 1872, 4, 465–470. [Google Scholar]
- Clarke, D.N.; Martin, A.C. Actin-based force generation and cell adhesion in tissue morphogenesis. Curr. Biol. 2021, 31, R667–R680. [Google Scholar] [CrossRef]
- Goodwin, K.; Nelson, C.M. Generating tissue topology through remodeling of cell-cell adhesions. Exp. Cell Res. 2017, 358, 45–51. [Google Scholar] [CrossRef]
- Ingber, D.E. From tensegrity to human organs-on-chips: Implications for mechanobiology and mechanotherapeutics. Biochem. J. 2023, 480, 243–257. [Google Scholar] [CrossRef]
- Boghdady, C.M.; Kalashnikov, N.; Mok, S.; McCaffrey, L.; Moraes, C. Revisiting tissue tensegrity: Biomaterial-based approaches to measure forces across length scales. APL Bioeng. 2021, 5, 041501. [Google Scholar] [CrossRef]
- Paci, G.; Mao, Y. Forced into shape: Mechanical forces in Drosophila development and homeostasis. Semin. Cell Dev. Biol. 2021, 120, 160–170. [Google Scholar] [CrossRef]
- Sleboda, D.A.; Roberts, T.J. Incompressible fluid plays a mechanical role in the development of passive muscle tension. Biol. Lett. 2017, 13, 20160630. [Google Scholar] [CrossRef] [PubMed]
- Scarr, G. Fascial hierarchies and the relevance of crossed-helical arrangements of collagen to changes in shape; part II: The proposed effect of blood pressure (Traube-Hering-Mayer) waves on the fascia. J. Bodyw. Mov. Ther. 2016, 20, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Petridou, N.I.; Heisenberg, C. Tissue rheology in embryonic organization. EMBO J. 2019, 38, e102497. [Google Scholar] [CrossRef] [PubMed]
- Ehrig, S.; Schamberger, B.; Bidan, C.M.; West, A.; Jacobi, C.; Lam, K.; Kollmannsberger, P.; Petersen, A.; Tomancak, P.; Kommareddy, K.; et al. Surface tension determines tissue shape and growth kinetics. Sci. Adv. 2019, 5, 9394–9405. [Google Scholar] [CrossRef]
- Drenckhan, W.; Hutzler, S.; Weaire, D. Foam physics: The simplest example of soft condensed matter. AIP Conf. Proc. 2005, 748, 22–28. [Google Scholar] [CrossRef]
- Levin, S.M.; de Solórzano, S.L.; Scarr, G. The significance of closed kinematic chains to biological movement and dynamic stability. J. Bodyw. Mov. Ther. 2017, 21, 664–672. [Google Scholar] [CrossRef]
- Müller, M. A novel classification of planar four-bar linkages and its application to the mechanical analysis of animal systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1996, 351, 689–720. [Google Scholar] [CrossRef]
- Burgess, S. A review of linkage mechanisms in animal joints and related bioinspired designs. Bioinspiration Biomim. 2021, 16, 041001. [Google Scholar] [CrossRef]
- Levin, S.M. The tensegrity-truss as a model for spine mechanics: Biotensegrity. J. Mech. Med. Biol. 2002, 2, 375–388. [Google Scholar] [CrossRef]
- Scarr, G.; Blyum, L.; Levin, S.M.; de Solórzano, S.L. Biotensegrity is the super-stability hypothesis for biology. BioSystems 2025, 256, 105569. [Google Scholar] [CrossRef] [PubMed]
- Levin, S.M.; de Solórzano, S.L. Bouncing bones—Ancient wisdom meets modern science in a new take on locomotion. Front. Physiol. 2024, 15, 1432410. [Google Scholar] [CrossRef] [PubMed]
- Kiely, J.; Collins, D.J. Uniqueness of human running coordination: The integration of modern and ancient evolutionary innovations. Front. Psychol. 2016, 7, 262. [Google Scholar] [CrossRef] [PubMed]
- Van der Wal, J. De fabrica humani corporis—Fascia as the fabric of the body. In Fascia, Function, and Medical Applications; Lesondak, D., Akey, A.M., Eds.; CRC Press: Boca Raton, FL, USA, 2020; pp. 3–18. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scarr, G. The Compartmental and Fibrillar Polyhedral Architecture of Fascia: An Assessment of Connective Tissue Anatomy Without Its Abstract Classifications. Life 2025, 15, 1479. https://doi.org/10.3390/life15091479
Scarr G. The Compartmental and Fibrillar Polyhedral Architecture of Fascia: An Assessment of Connective Tissue Anatomy Without Its Abstract Classifications. Life. 2025; 15(9):1479. https://doi.org/10.3390/life15091479
Chicago/Turabian StyleScarr, Graham. 2025. "The Compartmental and Fibrillar Polyhedral Architecture of Fascia: An Assessment of Connective Tissue Anatomy Without Its Abstract Classifications" Life 15, no. 9: 1479. https://doi.org/10.3390/life15091479
APA StyleScarr, G. (2025). The Compartmental and Fibrillar Polyhedral Architecture of Fascia: An Assessment of Connective Tissue Anatomy Without Its Abstract Classifications. Life, 15(9), 1479. https://doi.org/10.3390/life15091479